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Zusammenfassung

Die Theorie disjunkter NP-Paare, die auf natiirliche Weise statt einzelner
Sprachen Paare von NP-Mengen zum Objekt ihres Studiums macht, ist vor
allem wegen ihrer Anwendungen in der Kryptografie und Beweistheorie inter-
essant. Grollmann und Selman [GS88|, die als erste systematisch mit dem
Studium disjunkter NP-Paare begannen, modellieren die Sicherheit von Public-
Key-Kryptosystemen durch disjunkte NP-Paare. Fine Schliisselrolle fallt dabei
separierbaren NP-Paaren zu, bei denen die zwei Komponenten durch Mengen
niedriger Komplexitat trennbar sind. Eine notwendige Voraussetzung fiir die
Sicherheit eines Kryptosystems ist die Inseparabilitdt des dem Kryptosystem
zugeordneten NP-Paars. Eine wichtige offene Frage ist somit die nach der Exis-
tenz nicht separierbarer Paare.

Die Verbindung von NP-Paaren zu aussagenlogischen Beweissystemen wurde
von Razborov [Raz94] und Pudlédk [Pud03] hergestellt. Razborov ordnet einem
aussagenlogischen Beweissystem P ein so genanntes kanonisches NP-Paar zu.
Die eine Komponente Ref(P) enthilt Informationen {iber die Beweislangen von
Tautologien beziiglich P, die zweite Komponente enthalt Formeln, deren Nega-
tionen erfiillbar sind. Durch diese Ubertragung spiegelt sich die Simulationsord-
nung aussagenlogischer Beweissysteme im Verband der NP-Paare wider. Auch
weitere Eigenschaften von Beweissystemen lassen sich durch NP-Paare model-
lieren. So gibt Pudldak [Pud03] zu einem Beweissystem ein Interpolationspaar
an, welches genau dann separierbar ist, wenn das Beweissystem die effiziente
Interpolationseigenschaft besitzt. Auch die Automatisierbarkeit eines Beweis-
systems, d.h. die fiir das automatische Theorembeweisen wichtige Frage, ob
sich Beweise einer gegebenen Lange auch effizient konstruieren lassen, ist am
kanonischen Paar ablesbar.

Im Zentrum dieser Dissertation steht die Analyse der Beziehung zwischen
disjunkten NP-Paaren und aussagenlogischen Beweissystemen. Haben die be-
reits erwahnten Anwendungen der NP-Paare mafigeblich das Verstéandnis aus-
sagenlogischer Beweissysteme gefordert, so beschreiten wir in dieser Arbeit
gewissermaflen den umgekehrten Weg, indem wir Methoden der Beweistheorie
zur genaueren Untersuchung des Verbands disjunkter NP-Paare heranziehen.
Insbesondere ordnen wir jedem Beweissystem P eine Klasse DNPP(P) von
NP-Paaren zu, deren Disjunktheit in dem Beweissystem P mit polynomiell
langen Beweisen gezeigt werden kann. Hierzu werden NP-Mengen und NP-
Paare geeignet durch Folgen aussagenlogischer Formeln représentiert. Die
Klasse DNPP(P) bildet somit eine Teilklasse aller disjunkten NP-Paare, die
mit zunehmender Stérke des zugrundeliegenden Beweissystems P wachst.
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Zu diesen Klassen DNPP(P) zeigen wir eine Reihe von Resultaten, die illus-
trieren, dass robust definierten Beweissystemen sinnvolle Komplexitatsklassen
DNPP(P) entsprechen. Die Robustheitsanforderungen an die Beweissysteme
sind zumeist logischer Natur: Operationen wie Modus Ponens, Substitutionen
oder Abschwéachungen durch Einfithrung beliebiger Disjunktionsglieder sollen
im Beweissystem effizient moglich sein. Die meisten in der Praxis verwende-
ten und in der Beweistheorie untersuchten Beweissysteme erfiillen diese Eigen-
schaften. In dem allgemeinen Modell von Cook und Reckhow [CRT79] verletzt
die Mehrzahl der Beweissysteme jedoch diese Bedingungen. Daher untersuchen
wir das Zusammenspiel dieser logischen Figenschaften im allgemeinen Cook-
Reckhow-Modell genauer.

Erfiillen die Beweissysteme P die angesprochenen Robustheitsanforderun-
gen, so ergeben sich fiir die Klassen DNPP(P) gute strukturelle Eigenschaften:
die Klassen sind abgeschlossen unter Reduktionen fiir NP-Paare und besitzen
unter diesen Reduktionen vollstdndige oder zumindest harte Paare. Hierbei
ergeben sich fiir Beweissysteme variierender Stérke durchaus unterschiedliche
Konstellationen. So sind etwa die von Pudldk [Pud03] eingefithrten Interpo-
lationspaare fiir schwache Beweissysteme P wie das Resolutionssystem leicht
trennbar und damit vermutlich nicht vollstdndig fiir DNPP(P). Fiir starke Be-
weissysteme wie Frege-Systeme erhalten wir hingegen Vollstandigkeitsresultate
flir die entsprechenden Klassen. Fehlen die erwéhnten Abschlusseigenschaften
der Beweissysteme, so gehen auch die Vollstandigkeitsresultate verloren.

Wie bereits erwahnt wird die Simulationsordnung aussagenlogischer Be-
weissysteme im Verband der NP-Paare reflektiert. Dies &uflert sich zum einen
darin, dass Simulationen zwischen Beweissystemen Reduktionen zwischen den
entsprechenden kanonischen Paaren induzieren. Zum anderen impliziert die
Existenz optimaler Beweissysteme die Existenz vollstandiger NP-Paare. Da
sowohl Beweissysteme als auch NP-Paare als Promise-Klassen aufgefasst werden
konnen, sind vollstandige Probleme fiir diese Klassen nicht bekannt. Insbeson-
dere die Frage nach der Existenz vollstandiger NP-Paare wurde grindlich un-
tersucht, und verschiedene Relativierungen deuten auf die Schwierigkeit dieser
Frage hin [HS92, GSSZ04, GSS05].

Beziiglich des ersten Punktes stellt sich heraus, dass die Beziehung zwi-
schen Simulationen zwischen Beweissystemen und Reduktionen der kano-
nischen Paare doch nicht so stark ist, wie dies vielleicht zunéchst erwartet
werden konnte. Insbesondere geben wir mehrere allgemeine Kriterien an,
die auf indquivalente Beweissysteme mit &quivalenten kanonischen Paaren
fiihren. Natiirlich beriihren solche Resultate auch die Frage nach der Exis-
tenz vollstandiger NP-Paare. Gelange namlich der Nachweis, dass um beliebige
zusatzliche Axiome ® verstiarkte Frege-Systeme EF + & dquivalente Paare be-
sitzen, so wéare das kanonische EF-Paar vollstandig fiir alle disjunkten NP-
Paare. Diese Frage bleibt offen, wir zeigen jedoch die Aquivalenz der kanonis-
chen Paare von Beweissystemen aus einer etwas restriktiver formulierten Klasse
von Erweiterungen von Frege-Systemen.

In der Praxis trifft man statt auf zwei haufig auf eine groflere Zahl konkur-
rierender Bedingungen. Daher widmen wir uns im letzten Kapitel der Er-
weiterung der Theorie disjunkter NP-Paare auf disjunkte Tupel von NP-



Mengen. Viele Begriffe lassen sich problemlos von Paaren auf diese Objekte
groflerer Ausdruckskraft ibertragen. Unser Hauptergebnis in diesem Abschnitt
besteht in dem Nachweis, dass die Frage nach der Existenz vollstandiger Prob-
leme beim Ubergang von Paaren auf Tupel nicht an Schwierigkeit zunimmt: es
existieren genau dann vollstdndige NP-Paare, wenn es fiir alle Zahlen & > 2
(oder aquivalent fiir ein &k > 2) vollstdndige k-Tupel gibt. Auch hier ist
die Beziehung zu Beweissystemen von zentraler Bedeutung. Die obigen Fra-
gen werden namlich zusatzlich durch die Existenz eines Beweissystems cha-
rakterisiert, welches den effizienten Nachweis der Disjunktheit aller k-Tupel
gestattet. Zusétzlich nutzen wir eine dhnliche, aber offenbar stiarkere Bedin-
gung zur Charakterisierung der Existenz optimaler Beweissysteme. Hierdurch
wird noch einmal der Zusammenhang zwischen optimalen Beweissystemen und
vollstandigen Tupeln deutlich.

Ein wichtiges Hilfsmittel zur Untersuchung aussagenlogischer Beweissys-
teme und der daraus abgeleiteten Klassen von NP-Paaren stammt aus der
Korrespondenz starker Beweissysteme zu erststufigen arithmetischen Theorien,
die gemeinhin unter dem Schlagwort beschrankte Arithmetik zusammengefasst
werden. Hierzu werden erststufige arithmetische Formeln in Folgen aussagen-
logischer Formeln iibersetzt. Eine erste solche Ubersetzung geht bereits auf
Cook [CooT75] zuriick, eine weitere stammt von Paris und Wilkie [PW85].
Die Beziehung zwischen Beweissystemen P und arithmetischen Theorien T
wird durch folgende zwei Eigenschaften charakterisiert: Ubersetzungen von T-
Theoremen haben polynomiell lange P-Beweise, und die Korrektheit von P-
Beweisen ist in der Theorie T" beweisbar. Das wichtigste Beispiel eines solchen
Paares bilden erweiterte Frege-Systeme zusammen mit der Theorie S5 [Bus86].

Da die Beziehung zur beschréankten Arithmetik einen zentralen Baustein
in unserer Analyse der NP-Paare bildet, nutzen wir Kapitel 3 zur Entwicklung
dieser Korrespondenz in einer von Krajicek und Pudlék [KP90] angeregten axio-
matischen Fassung. Besonderes Augenmerk richten wir dabei auf die Rolle der
in Kapitel 2 eingefiihrten Abschlueigenschaften aussagenlogischer Beweissys-
teme.

Einer Anwendung der NP-Paare auf die Konstruktion unterer Schranken
in starken Beweissystemen widmen wir uns in Kapitel 5. Der Nachweis un-
terer Schranken fiir Frege-Systeme stellt gegenwértig eine der grofiten Heraus-
forderungen in der Beweiskomplexitat dar. Bereits die Angabe geeigneter Kan-
didaten fur harte Formeln, d.h. solche ohne polynomiell lange Beweise, ist mit
erstaunlichen Schwierigkeiten verbunden [BBP95, Pud91]. Ein vielversprechen-
der Amnsatz, der unabhéngig von Krajicek [KraOla] sowie Alekhnovich, Ben-
Sasson, Razborov und Wigderson [ABSRW04] vorgeschlagen wurde, beruht auf
der Verwendung von Pseudozufallsgeneratoren. In Kapitel 5 charakterisieren
wir die Harte der aus Pseudozufallsgeneratoren konstruierten Formelsequenzen
im Verband der disjunkten NP-Paare.

Die Mehrzahl der Resultate dieser Arbeit wurde in den Tagungsbeitragen
[BeyO4a], [BeyO6a] und [Bey06b] publiziert.
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Chapter 1

Introduction

In den Werken des Menschen, wie in denen der
Natur, sind eigentlich die Absichten vorziglich der
Aufmerksamkeit wert.

Johann Wolfgang Goethe

Disjoint NP-pairs are an interesting complexity theoretic concept with impor-
tant applications in cryptography and propositional proof complexity. Even
though the foundations of the theory of disjoint NP-pairs were already laid in
the 80’s it was only during recent years that disjoint NP-pairs have fully come
into the focus of complexity theoretic research.

In this dissertation we explore the connection between disjoint NP-pairs and
propositional proof complexity. This connection is fruitful for both fields. Var-
ious disjoint NP-pairs have been associated with propositional proof systems
which characterize important properties of these systems, yielding applications
to areas such as automated theorem proving. Further, conditional and uncon-
ditional lower bounds for the separation of disjoint NP-pairs can be translated
to results on lower bounds to the length of propositional proofs. In this way
disjoint NP-pairs have substantially contributed to the understanding of propo-
sitional proof systems.

Conversely, this dissertation aims to transfer proof-theoretic knowledge to
the theory of NP-pairs to gain a more detailed understanding of the structure
of the class of disjoint NP-pairs and in particular of the NP-pairs defined from
propositional proof systems. Let us formulate the fruitfulness of this approach
as the main thesis of this dissertation:

Disjoint NP-pairs are intimately connected to propositional proof systems.
Although the definition of disjoint NP-pairs is completely complezity theoretic
with no reference to proof systems the theory of disjoint NP-pairs is best analysed
and explained by logical methods.

To substantiate this claim we will try to provide an overall picture of the
theory of disjoint NP-pairs, including also a presentation of results in our frame-
work which have been previously obtained by different techniques.
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But before we start to explain this material in more detail let us make some
remarks on the development of the subject.

1.1 Computational Complexity, Bounded Arith-
metic and Propositional Logic

Using logical methods has a rich tradition in complexity theory. In particular
there are very close relations between computational complexity, propositional
proof complexity and bounded arithmetic, and the central tasks in these areas
of separating complexity classes, proving lower bounds to the length of proposi-
tional proofs and separating arithmetic theories can be understood as different
approaches towards the same problem. Let us dwell on these relations a little
as methods from all three areas will be used in this dissertation.

Computational complexity studies the amount of resources which is required
for the solution of computational tasks. A major open problem in the field is
the precise comparison between deterministic and nondeterministic computa-
tions, leading for polynomial time computations to the famous P/NP-problem
formulated already more than 30 years ago by Cook [Coo71] and Karp [Kar72].
The solution of the P/NP-problem has far reaching implications, mainly be-
cause, starting with Cook’s completeness result, a vast number of problems
with immense practical relevance have been shown to be NP-complete. Despite
enormous efforts the separation of complexity classes remains elusive today.
Current techniques such as diagonalization and circuit lower bounds are all
ineffectual, with even theoretical evidence supporting the failure of these ap-
proaches [BGS75, RR94].

A different, logic oriented way of studying complexity classes is through
weak fragments of arithmetic, usually referred to as theories of bounded arith-
metic. These fragments have the right strength to formalize and reason about
efficient computations. More formally, definable functions and predicates in
these theories can be used to characterize functions and languages from stan-
dard complexity classes, the most prominent example being the hierarchy of
theories S5 and T} defined by Buss [Bus86] which correspond to the computa-
tional strength of the levels of the polynomial hierarchy. These strong relations
between the theories S and PH were established by a series of witnessing theo-
rems due to Buss [Bus86, Bus90] and Krajicek, Pudlédk and Takeuti [KPT91]. In
particular Krajicek, Pudldk and Takeuti proved that a collapse of the hierarchy
of the theories S§ implies a collapse of PH. Later Buss [Bus95] and Zambella
[Zam96] independently strengthened this result by showing that Sy = [J3°; S%
is finitely axiomatizable if and only if PH collapses and this collapse is provable
in SQ.

Bounded arithmetic is also closely connected to propositional proof systems.
This connection was first developed by Cook [Coo75] who gave a translation
of bounded first order formulas into polynomial size sequences of propositional
formulas. Different and refined translations have later been introduced by Paris
and Wilkie [PW85] as well as by Krajicek and Pudlak [KP90]. These trans-
lations allow the use of logical and in particular model theoretic machinery to
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obtain lower bounds to the size of propositional proofs, which constitutes the
main objective in propositional proof complexity. In particular Ajtai [Ajt94]
successfully used these methods to show super-polynomial lower bounds to the
proof size in bounded-depths Frege systems (cf. Theorem 3.5.4 for the gen-
eral framework). Together with later improvements this currently forms one of
the strongest results about propositional proof systems. Another connection to
bounded arithmetic comes from the reflection principles which are arithmetic
formulas stating the consistency of propositional proof systems. On the one
hand these formulas are candidates for the separation of arithmetic theories, on
the other hand proving reflection principles in arithmetic theories yields simu-
lations between propositional proof systems. This technique was first used by
Krajicek and Pudlak [KP89] to show the equivalence of extended Frege and
substitution Frege systems.

The circle back to computational complexity is completed with the results of
Cook and Reckhow [CR79], who show that polynomially bounded proof systems
exist if and only if NP is closed under complementation. Thus, similarly as the
circuit complexity approach, proving lower bounds to successively stronger sys-
tems can be understood as a way to address the P/NP-question by non-uniform
methods. In fact, the relationship between proof complexity and computational
complexity extends to other complexity classes than NP. Kdobler, Messner and
Toran [KMT03] have shown that the problem on the existence of complete sets
for promise classes like NP N coNP or BPP can be reformulated as questions
about proof systems.

1.2 Disjoint NP-Pairs

Disjoint NP-pairs, which are the central topic of this dissertation, enjoy connec-
tions to all three fields mentioned in the last paragraph. Like many complexity
theoretic notions the idea to study disjoint pairs of languages instead of single
objects originates in recursion theory. In the 80’s Joachim Grollmann and Alan
Selman [GS88] introduced disjoint NP-pairs as a complexity theoretic concept
in connection to questions concerning the foundations of cryptography. Groll-
mann and Selman developed many of the central notions including reductions
and separators for pairs.

The connection of disjoint NP-pairs to propositional proof systems was first
made by Alexander Razborov [Raz94] who associated a canonical disjoint NP-
pair with a proof system. Razborov used the correspondence to bounded arith-
metic for his investigation of disjoint NP-pairs, namely he studied classes of
NP-pairs which are provably disjoint in some arithmetic theory. He gave a
list of theories and corresponding proof systems for which his canonical pairs
are complete for the respective class of disjoint NP-pairs. In particular this in-
cluded the Frege and extended Frege system. Razborov also raised the question
whether there exists a complete disjoint NP-pair. Similarly as for other promise
classes there are currently no completeness results for the class of all disjoint
NP-pairs. Unfortunately Razborov’s work remained as a technical report and
therefore did not receive wider attention.
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The next step was taken by Pavel Pudldk. In his very influential paper
[Pud03] Pudlék demonstrated that disjoint NP-pairs can characterize different
properties of propositional proof systems. In particular Pudlik showed that
Razborov’s canonical pairs are tightly linked to the automatizability of the proof
system, a concept that is of great relevance for automated theorem proving.
Pudlak also characterizes the feasible interpolation property by a disjoint NP-
pair. Feasible interpolation, introduced by Jan Krajicek [Kra97], provides a
general method for proving lower bounds to the proof size in weak proof systems.
In fact, proving these lower bounds rests again on lower bounds to the monotone
circuit complexity required for the separation of disjoint NP-pairs as provided
by Razborov [Raz85] and Alon and Boppana [AB87]. Pudlédk further shows
that also weak systems like resolution give rise to interesting canonical pairs
with robust properties.

These applications attracted further complexity theoretic research on the
structure of the class of disjoint NP-pairs. Most notably, Glaler, Selman, Sen-
gupta and Zhang investigated the structure of disjoint NP-pairs by complexity
theoretic techniques in a series of papers [GSSZ04, GSS05, GSZ05]. In particu-
lar they worked on the problem on the existence of complete disjoint NP-pairs.
Glafer et al. [GSS05] gave a characterization in terms of uniform enumera-
tions of disjoint NP-pairs and also proved that the answer to the problem does
not depend on the reductions used, i.e. there are reductions for pairs which
vary in strength but are equivalent with respect to the existence of complete
pairs. K&bler, Messner and Tordn [KMTO03] had already previously linked this
problem with the existence of complete sets for other promise classes, showing
in particular that the existence of optimal proof systems implies the existence
of complete disjoint NP-pairs under strong reductions. However, Glafler et al.
[GSSZ04] construct an oracle relative to which there exist complete pairs but
optimal proof systems do not exist. Hence, the problems on the existence of op-
timal proof systems and of complete disjoint NP-pairs appear to be of different
strength.

In this dissertation we continue the line of research of Razborov [Raz94]
and Pudlédk [Pud03] which focuses on the connection between disjoint NP-pairs
and propositional proof systems. While we hope to have contributed to the
understanding of disjoint NP-pairs we feel that the subject as a whole is still
in an early stage of its development and is considerably less understood than
other complexity theoretic concepts. However, we think that it is especially
the interdisciplinary nature of the field, allowing the use of completely different
techniques from complexity theory and from both propositional and first-order
logic, that together with diverse applications will stimulate future research on
this fascinating subject.

1.3 Organization of the Dissertation and Obtained
Results

In this section we will provide an overview of this dissertation.
We start in Chap. 2 by recalling some background information about propo-
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sitional proof systems. This includes the definition of those proof systems that
will play a major role in further chapters: resolution and extensions of Frege
systems. In Sect. 2.6 we define and investigate natural properties of proof sys-
tems which we use throughout this dissertation. These properties are of logical
nature: it should be feasible to carry out basic operations like modus ponens
and substitutions in the proof system. Most of these properties have probably
been used before in several contexts. For a subject like disjoint NP-pairs which
can be seen both from a proof complexity and also from a computational com-
plexity perspective we feel that it is important to be precise about the exact
conditions that are imposed on proof systems. If complexity theorists state a
theorem like

For all propositional proof systems the following holds . . .,

then they really mean that this theorem holds for all functions computed by
deterministic polynomial time Turing machines which have as their range the
set of tautologies. If on the other hand people from proof complexity use this
phrase it is often implicitly understood from the context that the result only
holds for some class of meaningful proof systems, operating for example with
formulas and enjoying some basic closure properties. Therefore, combining
results from both worlds without being conscious about the context in which
they are applicable may result in confusion (at least this happened to me once).
We therefore try to be rather pedantic in always listing explicitly all assumptions
that are made on the proof system. Actually, the results of this dissertation
support the view that the Cook-Reckhow frame work for propositional proof
systems in its full generality is too broad for the study of naturally defined
classes of disjoint NP-pairs. It therefore seems to be natural to concentrate on
proof systems on which further conditions are imposed.

In Chap. 3 we explain the correspondence between bounded arithmetic and
propositional proof systems. We do not give all details but instead concentrate
on those issues that we need for Chap. 4 to explore the structure of disjoint
NP-pairs. In the first four sections of Chap. 3 we outline the formalization
of syntactic concepts such as propositional formulas and propositional proof
systems in arithmetic theories. We also describe in detail the translation of
first-order formulas into sequences of propositional formulas as given by Cook
[Coo75] and by Krajicek and Pudldk [KP90]. We then proceed in Sect. 3.5
with the general correspondence between arithmetic theories and propositional
proof systems as defined by Krajicek and Pudldk [KP90]. In Sect. 3.6 we ex-
plain this correspondence for the theory Si and the extended Frege system as
well as for extensions of EF'F' by additional axioms. Sect. 3.7 is again devoted
to the general correspondence from [KP90]. We give a refined analysis of proof
systems admitting a corresponding arithmetic theory. We call such proof sys-
tems regular and exhibit sufficient conditions for the regularity of propositional
proof systems. These results are particularly useful for our investigations into
disjoint NP-pairs in the following chapter.

The material from Chap. 3 and most of the results proven there are certainly
known to the experts in the field. To my knowledge there is, however, no
account that develops the general correspondence between bounded arithmetic
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and propositional proof systems in full detail as we need it for subsequent
chapters. The original source [KP90] introduces this correspondence in a very
condensed way, and it is unfortunately left out from the standard reference
[Kra95]. There is, however, a number of beautiful introductory expositions,
most notably [Pud98] and [KraOlb].

Chapter 4 on disjoint NP-pairs comprises the main part of this dissertation.
We start with the relevant definitions and make some observations about the
simulation order of disjoint NP-pairs. Section 4.4 then explains in detail how
NP-pairs can be used to characterize properties of propositional proof systems.
The converse approach to exploit proof-theoretic machinery for the analysis
of disjoint NP-pairs starts with Sect. 4.5. We investigate a slight modifica-
tion of the first-order arithmetic representations of disjoint NP-pairs defined
by Razborov [Raz94]. We also define more general propositional representa-
tions for NP-pairs and associate with any propositional proof system P a sub-
class DNPP(P) of NP-pairs for which the disjointness is provable with short
P-proofs. Somewhat surprisingly, under suitable conditions on P these non-
uniform classes DNPP(P) equal their uniform versions which are defined via
arithmetic representations.

In Sect. 4.6 we investigate the class DNPP(P), showing that under reason-
able assumptions on the proof system P this class is closed under reductions for
pairs and possesses hard or complete pairs in form of Razborov’s canonical pair,
Pudlék’s interpolation pair and other pairs associated with the proof system.
The properties of the classes DNPP(P) are decisively influenced by the closure
properties of the underlying proof system. We demonstrate that proof systems
P with different properties give rise to different scenarios for DNPP(P) and the
reductions between the NP-pairs associated with P.

We proceed with the connection between the simulation order of proposi-
tional proof systems and disjoint NP-pairs. As all information about the proof
lengths is coded in the canonical pair the simulations between proof systems
are reflected in reductions between NP-pairs and specifically between canonical
pairs. Among other things this implies that the existence of optimal proposi-
tional proof systems implies the existence of complete NP-pairs. On the other
hand this connection is not as tight as one might hope for. In Sect. 4.13 we pro-
vide different ways to construct non-equivalent proof systems with equivalent
canonical pairs. A first example for this situation is due to Pudlak [Pud03].
Here we search for general conditions on proof systems that yield a collapse
between their canonical pairs. In particular we analyse a weak notion of simu-
lation for proof systems introduced in [KP89] but not much studied elsewhere.
This simulation is provably weaker than the ordinary reduction between proof
systems but is equivalent with respect to the existence of optimal proof systems.
We show that all proof systems that are equivalent with respect to this weak
simulation possess equivalent canonical pairs.

Chapter 5 mentions two applications of the theory of disjoint NP-pairs. The
first application dates back to Grollmann and Selman [GS88] and connects dis-
joint NP-pairs and public-key crypto systems. The second application relates
to a recent program for the search of hard tautologies that are obtained from
pseudorandom generators. Proving lower bounds to the proof size of strong
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proof systems like Frege systems and their extensions is a major challenge in
propositional proof complexity. Even to exhibit viable candidates for formulas
without polynomial size proofs in Frege systems seems to be a complicated task
[BBP95, Pud9l]. Krajicek [Kra0Ola, Kra0lb] and independently Alekhnovich,
Ben-Sasson, Razborov and Wigderson [ABSRWO04] suggested to employ pseu-
dorandom generators as the basis for hard tautologies. So far this program has
proved to be successful for weak systems like resolution [ABSRWO04, Kra04].
In Sect. 5.2 we give a characterization of the hardness of these formulas for
strong proof systems in terms of disjoint NP-pairs. Whether such a charac-
terization helps to solve the original problem remains open. But it provides
further evidence that disjoint NP-pairs are applicable to interesting, seemingly
unconnected areas.

In the last chapter we investigate a natural generalization of disjoint NP-
pairs: instead of pairs we consider k-tuples of pairwise disjoint NP-sets. Con-
cepts such as reductions and separators are smoothly generalized from pairs
to k-tuples. Our main interest in this chapter is the characterization of the
two problems on the existence of optimal proof systems and complete NP-pairs
in terms of disjoint k-tuples of NP-sets. In particular we address the question
whether there exist complete disjoint k-tuples under different reductions. Con-
sidering this problem it is easy to see that the existence of complete k-tuples
implies the existence of complete I-tuples for [ < k: the first [ components of a
complete k-tuple are complete for all [-tuples. Conversely, it is a priori not clear
how to construct a complete k-tuple from a complete [-tuple for I < k. There-
fore it might be tempting to conjecture that the existence of complete k-tuples
forms a hierarchy of assumptions of increasing strength for greater k. However,
we show that this does not happen: there exist complete disjoint NP-pairs if
and only if there exist complete disjoint k-tuples of NP-sets for all £ > 2, and
this is even true under reductions of different strength. Further, we prove that
this is equivalent to the existence of a propositional proof system in which the
disjointness of all k-tuples with respect to suitable propositional representations
of these tuples is provable with short proofs. We also characterize the existence
of optimal proof systems with a similar but apparently stronger condition.

We achieve this by extending the connection between proof systems and
NP-pairs to k-tuples. We define propositional representations for k-tuples and
introduce the complexity classes DNPPy(P) of all disjoint k-tuples of NP-sets
that are representable in the system P. We show that these classes are closed
under our reductions for k-tuples. Further, we define k-tuples from proposi-
tional proof systems which serve as hard languages for DNPPy(P). In partic-
ular we generalize the interpolation pair from [Pud03] and demonstrate that
even these generalized variants still capture the feasible interpolation property
of the proof system.

1.4 Published Parts

Most of the results on disjoint NP-pairs from Chap. 4 have appeared in the con-
ference publications [Bey04a] (Foundations of Software Technology and Theo-
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retical Computer Science, FSTTCS) and [Bey06a] (Theory and Applications
of Models of Computation, TAMC). The article [Bey06a] also contains some
results from Sects. 3.7 and 3.8 on the general correspondence between arith-
metic theories and propositional proof systems. A shortened version of Chap. 6
about disjoint tuples of NP-sets is published as the conference paper [Bey06b]
(International Computer Science Symposium in Russia, CSR).

Full versions of these conference contributions have appeared as technical
reports at the Electronic Colloquium on Computational Complexity (ECCC)
[Bey04b, Bey05a, Bey05b]. The report [Bey04b] also contains the characteri-
zation of the hardness of the 7-formulas in terms of NP-pairs as explained in
Sect. 5.2.



Chapter 2

Propositional Proof Systems

Alles Gescheite ist schon gedacht worden, man muf
nur versuchen, es noch einmal zu denken.

Johann Wolfgang Goethe

This chapter is largely of preliminary nature. We review relevant concepts from
propositional logic and proof complexity. The emphasis is laid on propositional
proof systems and their properties.

We refrain from defining the complexity theoretic notation as we follow the
general conventions. For background information on notions from computa-
tional complexity we refer to [BDG88| and [Pap94].

2.1 Propositional Logic

In this section we will review some notions from propositional logic with the
purpose to fix the notation. The language of propositional logic consists of a
set of propositional variables

Var = {p1,p2,p3...} ,

the connectives A, V, -, —, <, the constants 0,1 and the brackets (,). The set
of propositional formulas Form is inductively defined as follows:

1. Every variable p € Var and constant 0,1 is in Form.

2. If ,9 € Form, then also —p, (¢ V), (¢ A ), (¢ — ), (¢ < ) € Form.

We follow the usual conventions to omit (, ) from formulas, i.e. A binds stronger
than V which is stronger than — and <. For multiple connectives of the same
type brackets are associated from right to left.

Formulas can be coded in binary and we denote by |p| the length of the
encoding of .

For a propositional formula ¢ we define Var(p) as the set of propositional
variables occurring in . A propositional assignment o is a mapping

a: Var — {0,1} .

9
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An assignment « can be extended to a mapping
o' : Form — {0,1}
via:
1. &/(p) = a(p) for p € Var.
2. ¢/(0) =0 and &/(1) = 1.
3. d/(—¢) =1—ad(p) for ¢ € Form.

, R if o/(p) =d/(¢) =1
4. (o NY) = { 0 otherwise.

for ¢, € Form and similarly for the other connectives.

We call o an assignment for a formula ¢ if a is a mapping
a : Var(y) — {0,1}

which can be extended to an ordinary assignment by defining « arbitrarily on
Var \ Var(ep).

We say that « is a satisfying assignment for a formula ¢ if o/(p) = 1. We
denote this by a = ¢. The set of all satisfiable formulas is denoted by

SAT = {¢ € Form | there exists an assignment « such that o = ¢} .

A formula ¢ is a tautology if it is satisfied by all assignments, denoted by = .
The set of all tautologies is

TAUT = {p € Form | = a} .

It is a classical result of Cook [CooT71] that SAT is NP-complete, while TAUT
is complete for coNP.

Instead of the constants 0 and 1 we also use the symbols 1 and T to denote
a fixed unsatisfiable formula and a fixed tautology, respectively.

If & C Form and ¢ € Form, then we write ® = ¢ if all assignments that
satisfy all formulas from & also satisfy .

A substitution o is a mapping

o : Var — Form .
If a substitution ¢ only substitutes variables by constants, i.e.
o(p) € {p,0,1} for all p € Var,

then we call o a substitution by constants.
A substitution o can be extended to a mapping

/
o : Form — Form

defined by:
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1. o'(p) = o(p) for p € Var.

Q

(
2. ¢/(0)=0and ¢'(1) = 1.
(

3. o'(—p) = =0’ (p) for ¢ € Form.

4. o' (p NYp) = d'(p) N o' () for ¢,9 € Form and similarly for the other
connectives.

To simplify the notation we will identify o and ¢’ in the following.

2.2 Propositional Proof Complexity

Propositional proof systems were defined in a very general way by Cook and
Reckhow in [CR79] as polynomial time functions P which have as its range the
set of all tautologies.

Definition 2.2.1 (Cook, Reckhow [CR79]) A propositional proof system is
a polynomial time computable function P with rng(P) = TAUT.

A string 7 with P(7) = ¢ is called a P-proof of the tautology ¢. The
intuition behind this definition is that given a proof it should be easy to de-
termine which formula is actually proven and to verify the correctness of the
proof. Nevertheless it might be difficult to generate proofs for a given formula
and proofs might be very long compared to the size of the formula proven.

Probably the simplest proof system is the truth-table system that proves for-
mulas by checking all propositional assignments. In the sense of Definition 2.2.1
proofs in the truth-table system consist of the proven formula ¢ together with
a string 12V Ag most formulas require exactly exponential proof size in
this system it is neither very interesting from the application oriented nor from
the proof complexity perspective.

But also all the usually studied proof systems are captured by the above
definition. Let us illustrate this by an example. One of the most widely used
proof systems is the resolution calculus and its variants introduced by Davis
and Putnam [DP60] and Robinson [Rob65]. Resolution is a refutation sys-
tem that operates with clauses which are finite sets of negated or unnegated
variables called literals. A clause is associated with the disjunction of the lit-
erals it contains and a set of clauses is associated with the conjunction of its
clauses. Therefore finite sets of clauses correspond to propositional formulas in
conjunctive normal form.

A clause is satisfied by a propositional assignment if at least one literal of
the clause is satisfied by the assignment. Therefore by definition the empty
clause is unsatisfiable. A resolution proof shows the unsatisfiability of a set of
clauses by starting with these clauses and deriving new clauses by the resolution

rule
Cu{p} DU{-p}
cCubD

until the empty clause is derived.



12 CHAPTER 2. PROPOSITIONAL PROOF SYSTEMS

At first glance the resolution systems does not seem to fit into the Cook-
Reckhow framework of propositional proof systems because it is a refutation
system and can furthermore only refute formulas in CNF. But we can associate
with resolution the following function Res:

® if m=(p,C4,...,Ck) where ¢ is a formula in DNF
and C1q,...C} is a resolution refutation of the set

Res(m) = of clauses for -y
¢  if m=(p,1™) with m > 2¥ and ¢ € TAUT
T otherwise.

The second line of the definition is needed to prove formulas which are not
in disjunctive normal form whereas the last line is incorporated because by
definition every string 7w has to be interpreted as a proof of some formula. Res
is computable in polynomial time because in line 2 of its definition the parameter
m is big enough to allow testing ¢ € TAUT by checking all assignments. Hence
Res is a proof system in accordance with the above general definition.

Another common way to extend the resolution system from a proof sys-
tem for formulas in DNF to a proof system for all propositional tautologies
is to transfer the formula to an equivalent formula in DNF, either by direct
translation or by using new auxiliary variables (cf. [Bus98a| for the details).

By the notation

Prame

we indicate that there is a P-proof of ¢ of length < m. If ® is a set of proposi-
tional formulas we write
Pk, ®

if there is a polynomial p such that P <) ¢ forallp € . If & = {p,|n > 0}
is a sequence of formulas we also write P I, ¢, instead of P I, ®.

Proof systems can be compared according to their strength by the notion
of simulation. Given two proof systems P and S we say that S simulates P
(denoted by P < S) if there exists a polynomial p such that for all tautologies
¢ and P-proofs 7 of ¢ there is a S-proof 7’ of ¢ with |7’| < p(|x]) [KP89]. If
such a proof ' can even be computed from 7 in polynomial time we say that
S p-simulates P and denote this by P <, S [CR79]. If P < S, then we will
often simply say that S is stronger than P. As usual we say that P and S are
equivalent (denoted by P = S) if P < .S and S < P. The relation =, is defined
similarly. It is clear that = and =, are equivalence relations on the set of all
proof systems. Their equivalence classes are called degrees.

A proof system is called (p-)optimal if it (p-)simulates all proof systems.
Whether or not optimal proof systems exist is an open problem posed by
Krajicek and Pudldk [KP89]. But it is known that NE = coNE is a sufficient
condition for the existence of optimal proof systems [KP89]. On the other
hand Kobler, Messner and Tordn [KMTO03] showed that optimal proof systems
imply complete sets for various promise classes like NP M coNP. This may be
interpreted as evidence that optimal systems do not exist.

A proof system P is called polynomially bounded if there is a polynomial

p such that P <) ¢ for all tautologies . Given the general notion of a
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proof system from Definition 2.2.1 a proof system is simply a nondeterministic
procedure that accepts TAUT. Hence polynomially bounded proof systems
correspond to NP-algorithms for TAUT. This connection to complexity theory
is made precise by the following theorem of Cook and Reckhow from their
seminal paper [CR79].

Theorem 2.2.2 (Cook, Reckhow [CR79]) There exists a polynomially
bounded proof system if and only if NP = coNP.

Proof. For the first direction let P be a polynomially bounded proof system
with bounding polynomial p. Consider the following algorithm:

1 Input: a formula ¢
2 guess 7€ N=P(¥D)
3 IF P(w)= ¢ THEN accept ELSE reject

Obviously the above algorithm is a nondeterministic polynomial time algorithm
for TAUT. Because TAUT is coNP-complete this implies NP = coNP.

For the other direction assume that NP = coNP. Hence there exists a non-
deterministic polynomial time Turing machine M that accepts TAUT. Let the
polynomial p bound the running time of M. Then

Plr) = % if  codes an accepting computation of M ()
T otherwise

is a proof system which is polynomially bounded by p. a

From this theorem the following approach which is sometimes referred to as
the Cook-Reckhow program is derived. To separate NP from coNP (and hence
also P from NP) it is sufficient to establish for stronger and stronger proof sys-
tems that they are not polynomially bounded. Although it is debatable whether
this approach is indeed a sensible strategy to show NP # coNP the above theo-
rem is often used as a complexity theoretic justification for the interest in lower
bounds to the lengths of proofs for a diversity of proof systems.

Figure 2.1 depicts some of the most common proof systems together with
their simulation relations. A line between proof systems indicates that the
lower proof system is simulated by the higher system in Fig. 2.1. Moreover
all the proof systems below the dashed line have also been separated, i.e. the
simulations do not hold in the opposite direction. The dashed line shows the
current frontier in the search for super-polynomial lower bounds to the proof
length, i.e. for all systems below the line sequences of formulas are known that
do not admit polynomial size proofs in the respective proof systems, whereas for
the systems above the line there is currently no information about non-trivial
lower bounds to the proof size available. A detailed description of the proof
systems depicted in Fig. 2.1 together with information on lower bounds can be
found in the surveys [Pud98] and [Urq95].
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not polynomially
bounded

Bounded-depth Frege | | Cutting planes |

Resolution | Polynomial calculus |

| Davis-Putnam resolution | | Nullstellensatz |

Truth table

Figure 2.1: The simulation order of propositional proof systems
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2.3 Frege Systems and Their Extensions

In this section we will describe Frege systems and their extensions. These
are strong proof systems that will play a central role for the rest of this work.
Unfortunately our present knowledge about proof complexity questions of these
systems is still very poor.

Frege systems derive formulas using axioms and rules. In texts on classical
logic these systems are usually referred to as Hilbert-style systems but in propo-
sitional proof complexity it has become customary to call them Frege systems
[CRT9].

A Frege rule is a (k+1)-tuple (¢g, ¢1 - - ., k) of propositional formulas such
that

{¢179027"'7¢k} ): ®o -
The standard notation for rules is

w1 Y2 ... Pk
2

A Frege rule with £ = 0 is called a Frege axiom.
A formula 1y can be derived from formulas 1,...,%; by a Frege rule

(@0, %1 ..., px) if there exists a substitution o such that

o(p;))=1; fori=0,...,k .

Let F be a finite set of Frege rules. An F-proof of a formula ¢ from a set of
propositional formulas ® is a sequence 1, ..., @; = ¢ of propositional formulas
such that for all = 1,...,[ one of the following holds:

1. ¢ € @ or

2. there exist numbers 1 < 47 < ... < 4 < i such that ¢; can be derived
from ¢;,,..., ;. by a Frege rule from F.

We denote this by F : & - .
F is called complete if for all formulas ¢

Ee <= F:0kp.
F is called implicationally complete if for all ¢ € Form and ® C Form
Pl=p —= F:dFp.

F is a Frege system if F is implicationally complete.
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Without poof we note that the following set of axioms taken from [Bus98a]

p1— (p2 — p1)

(p1 — p2) = (p1 — (P2 — p3)) — (1 — p3)
P1 — p1Vp2

D2 — p1 VP2

(p1 — p3) — (p2 — p3) — (p1 VP2 — p3)
(p1 — p2) — (p1 — —p2) — —p1

—p1 — P

D1 A P2 — P1

D1 Ap2 — P2

D1 — p2 = Pp1/ADP2

(p1 = p2) — (p1 — p2)

(p1 < p2) — (P2 — p1)

(p1 — p2) — (P2 — p1) — (p1 < p2)
1o p1Vop

0« —1

together with the modus ponens rule

p o=
(G
is an example for a Frege system.
This definition leaves much freedom to design individual Frege systems but

if we are only interested in the lengths of proofs there is only one Frege system
F as already noted by Cook and Reckhow [CR79].

Theorem 2.3.1 (Cook, Reckhow [CR79]) Let Fi and F» be Frege systems.
Then Fi =, Fa.

Proof. It is enough to show F; <, F». Let F; = {Ry,... Ry} with the rules R;

Because of the correctness of the rules R; and the implicational completeness
of Fy there exist Fo-proofs m; of ¢} from {¢f,. .. gp}ﬂ}
Let m be an Fj-proof of the formula ¢ and let

Y1 Yy
Yo

be an application of the rule R; in 7 via the substitution o, i.e. a(gpé») = 1), for
7 =0,...,k;. Applying o to each formula in the proof m; gives an Fs-proof of ¢
from {¢1,...,¢y,}. Performing this transformation for every application of an
Fi-rule in 7 we efficiently construct an Fa-proof of ¢ which is only polynomially
longer than 7. O

Now we describe the extensions of Frege systems as introduced in [CR79].
Let F be a Frege system. An extended Frege proof of ¢ from ® C Form is
a sequence (¢1,...,¢; = @) of propositional formulas such that for each i =
1,...,1 one of the following holds:
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1. ¢, € ®or
2. @; has been derived by an F-rule or

3. ; = q <> 1 where v is an arbitrary propositional formula and ¢ is a new
propositional variable that does not occur in ¢, 9 and ¢; for 1 < j <.

The introduction of the extension rule 3 allows the abbreviation of possibly
complex formulas by variables. Hence using this rule for formulas which appear
very often in an F-proof can substantially reduce the proof size.

Analogously as in Theorem 2.3.1 it follows that all extended Frege systems
are polynomially equivalent. Therefore we will henceforth only speak of the
extended Frege system and denote it by EF.

It is clear that EF' simulates Frege systems but whether E'F' is indeed a
strictly stronger system is an open problem.

Another way to enhance the power of Frege systems is to allow substitutions
not only for axioms but also for all formulas that have been derived in Frege
proofs. This is accomplished by introducing the substitution rule

a(p)

which allows to derive o(p) for an arbitrary substitution o from the earlier
proven formula . Augmenting Frege systems by this substitution rule we
arrive at the substitution Frege system SF'.

SF' is polynomially equivalent to EF'. While EF <, SF is relatively easy
to see [CR79] the transformation of SF-proofs to EF-proofs on the proposi-
tional level is quite involved [KP89]. But using the correspondence to bounded
arithmetic this simulation can be shown very elegantly [Dow85, KP89]. We will
discuss this in more detail in Sect. 3.

As mentioned earlier, with present knowledge we cannot exclude the pos-
sibility that E'F’ or even Frege systems are optimal. Still it is interesting to
look for ways to further strengthen the power of EF. This can be done by
adding further axioms to E'F. Since we already know that all formulations of
Frege and extended Frege systems are polynomially equivalent adding any finite
number of new axioms cannot produce stronger systems. Therefore we have to
add infinitely many new axioms to the system. In order to define in this way
a correct proof system in the sense of Definition 2.2.1 we have to require that
this infinite set of axioms can be checked in polynomial time. We will explain
this in a more general context.

We call a proof system line based if proofs in the system consist of sequences
of formulas, and formulas in such a sequence are derived from earlier formulas
in the sequence by the rules available in the proof system. Most of the studied
proof systems like resolution, cutting planes and Frege systems are line based
in this sense.

In the following we will often enhance line based proof systems by additional
axioms. We will do this in two different ways. Let ® be a set of tautologies
which can be decided in polynomial time. By P+ ® we denote the proof system
P augmented by the possibility to use all formulas from ® as axiom schemes.
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This means that formulas from ® as well as substitution instances of these
formulas can be freely introduced as new lines in P 4+ ® -proofs. In contrast to
this standard notation we denote by P U® the proof system that extends P by
formulas from ® as new axioms. The difference to P 4+ @ is that in P U ® we
are only allowed to use formulas from ® but not their substitution instances in
proofs.

2.4 Efficient Deduction

The deduction theorem of propositional logic states that in a Frege system F a
formula 1 is provable from a formula ¢ if and only if ¢ — 9 is provable in F.
Because proof complexity is focusing on the length of proofs it is interesting to
analyse how the proof length is changing in the deduction theorem. An F-proof
of ¢ — 1 together with the axiom ¢ immediately yields the formula ¢ with
one application of modus ponens. Therefore it is only interesting to ask for the
increase in proof length when constructing a proof of ¢ — 1 from an F-proof
of ¢ with the extra axiom ¢. This was analysed in detail in [Bon93, BB93|.

Since the deduction property makes sense for all line based proof systems
we give the following general definition.

Definition 2.4.1 A line based proof system P allows efficient deduction if there
exists a polynomial p such that for all finite sets of tautologies ®

PU® <y tp  dmplies P F<pimim ( /\ ©) — P
ped

where m' = | Apea ©l-

The following deduction theorem for Frege systems is well known (see e.g.
[Kra95]):

Theorem 2.4.2 (Deduction theorem for Frege systems) Every  Frege
system F allows efficient deduction. Moreover, given an F U ®-proof of a
formula o for finite ® C TAUT we can construct an F-proof of (/\goeq) ©) — P
i polynomaial time.

Proof. For every F-rule

Rt
(U
we fix an F-proof 7; of the tautology

(@ =Y)Ao A (g— ) = (g — ) .

Note that for » = 0 this also includes the case that R; is an axiom scheme.

Let ¢1,...,¢, be tautologies and let (0y,...,60x) be a proof of ¥ of size m
in the system F U {p1,...,pn}. Let m' = 37, |¢;|. By induction on j we
construct proofs of the implications
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We distinguish two cases on how the formula ¢; was derived.
If 0; was inferred from 0;,,...,60; by the F-rule R;, then we can get from
m; an F-proof of size O(m’ + |6;| + 32—, |0},]) of the tautology

n n n

(AN @) = 05) A AN @) = 05,0) = (N wi) = 0))

=1 =1 =1

Combining all the earlier proved implications

in a proof of size O(m + m/).
If 0; is one of the formulas from {¢1,..., ¢y}, then we get (AjL; pi) — 6;
in a proof of size O(m'). 0

2.5 The Propositional Sequent Calculus

Historically one of the first and best analysed proof systems is Gentzen’s sequent
calculus [Gen35]. The sequent calculus is widely used both for propositional
and first-order logic. Here we will describe the propositional sequent calculus
LK. The basic objects of the sequent calculus are sequents

PlseesPm — Y1 P

Formally these are ordered pairs of two sequences of propositional formulas
separated by the symbol —. The sequence ¢1, ..., @, is called the antecedent
and 1,...,9 is called the succedent. These cedents are usually denoted by
letters like I' and A. An assignment « satisfies a sequent

I — A

if
a):\/ﬂgo\/\/zp.

pel’ PEA

The sequence ) — A having empty antecedent is abbreviated as — A.
Likewise I' — abbreviates I' — (). Sequences of the form

A— A 00—, —1

are called wnitial sequents. The sequent calculus LK uses the following set of
rules:
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1. weakening rules

I — A nd I — A
AT —A ° I —AA
2. exchange rules
P17A7B7P2_>A and P_>A17A7B7A2
P17B7A7P2_>A P_>A17B7A7A2
3. contraction rules
F17A7A7P2 — A and P_>A17A7A7A2
Pl,A,P2—>A P—>A1,A,A2
4. = : introduction rules
I'—AA AT — A
_— and T ——
-A, T — A I —A-A
5. A : introduction rules
AT — A nd AT — A
ANBT —A ° BAAT — A
d ' —AA I —AB
a I A AAB
6. V : introduction rules
AT — A BT — A
AvBT — A
and r —AA ' —AA
I' —AAVB r —A,BVA
7. cut-rule
r—AA AT — A
I —A

Similarly as in Frege systems an LK -proof of a propositional formula ¢ is a
derivation of the sequent

_>(p

from initial sequents by the above rules. Without proof we note that the above
set of rules specifies a proof system that is complete for the set of all tautologies
not containing the connectives — and < (see [Kra95]).

As Frege systems can be easily transformed into the sequent formulation
a straightforward analysis shows that Frege systems and the Gentzen calculus
LK suitably extended for formulas containing —, < polynomially simulate each
other.

Proposition 2.5.1 (Cook, Reckhow [CRT79]) Frege systems and the propo-
sitional sequent calculus LK are polynomially equivalent.
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2.6 Natural Properties of Proof Systems

Although we are interested in information on general proof systems we will very
often in the course of this dissertation consider proof systems satisfying some
additional properties. The conditions are of logical nature: it should be feasible
to carry out basic operations like modus ponens or substitutions by constants in
the proof system. These are very natural requirements that are met by most of
the studied proof systems. Nevertheless the general definition of propositional
proof systems above permits a great variety of proof systems that violate these
conditions.

Definition 2.6.1 A proof system P is closed under modus ponens if there
exists a polynomial p such that for all formulas ¢ and 1

Pb<me and Plr<,o—9 amply Propimin) ¥ -

This definition is a weak form of saying that modus ponens is available
as a rule in the proof system. If P is closed under modus ponens, then we
can apply modus ponens constantly many times with only polynomial increase
in the proof length. In Frege systems, however, modus ponens can be used
arbitrarily often whereas with our definition this might produce exponentially
long proofs. Therefore a stronger form of closure under modus ponens is given
in the following definition:

Definition 2.6.2 A proof system P is closed under multiple applications of
modus ponens if there exists a constant ¢ such that for all formulas ¢ and ¥

Pt<me and Pr<,o—9 amply Propinijgltc? -

The application we have in mind for this definition is the following. Suppose
we have P F<,, ¢; fori=1,...,k and also

P l_Sm P1r — P2 — ... 7 Pkl -

If P is closed under multiple applications of modus ponens, then we get a P-
proof of @y of size < m + ke + YF_ n; + |@ip1] which is polynomial in n;,
m and k. Using closure under modus ponens in the form of Definition 2.6.1 we
would only get an exponential upper bound on the proof size of py11.

We could have also defined closure under multiple applications of modus
ponens in a slightly weaker fashion: if P F<, ¢; for ¢ = 1,...,k and
P Fep o1 — 92 — ... — @p41, then we get P "§p(n) g1 for some fixed
polynomial p. Definition 2.6.2 implies this condition but is apparently a stricter
formulation which exactly resembles the situation in Frege systems. What is
actually the right formulation of such closure properties might also depend on
the particular application.

If 7 is a Frege proof of a formula ¢, then we can prove substitution instances
o(p) of ¢ by applying the substitution o to every formula in the proof m. This
leads us to the general concept of closure of a proof system under substitutions.
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Definition 2.6.3 P is closed under substitutions if there exists a polynomial
q such that

Plt<p o implies P F<ymiop) o(#)

for all formulas ¢ and all substitutions o.
Likewise we say that P is closed under substitutions by constants if there
exists a polynomial q such that

Plr<, o(z,y) implies P "gq(n) v(a,y)
for all formulas o(Z,7) and constants a € {0,1}7.

Modus ponens and substitutions are transformations on proofs which we
can also define in a more constructive fashion. As we will need these versions
at some places we make the following definition.

Definition 2.6.4 A proof system P is efficiently closed under modus ponens
if there exists a polynomial time computable algorithm that takes as input P-
proofs mi,ma of formulas ¢ and ¢ — ¥ and outputs a P-proof w3 of . If in
addition we always have |w3| < |m1| + || + [¢| + ¢ for some fized constant c,
then we say that the system P is efficiently closed under multiple applications
of modus ponens.

Similarly, we say that P is efficiently closed under substitutions if we can
transform any P-proof of a formula ¢ in polynomial time to a P-proof of o(p)
for arbitrary substitutions o.

Occasionally we will also consider other properties. We say that a proof
system evaluates formulas without variables if formulas using only constants but
no propositional variables have polynomially long proofs. As this is true even
for truth-table evaluations all proof systems simulating the truth-table system
evaluate formulas without variables. A system P is closed under disjunctions if
there is a polynomial g such that

PlF<y, ¢ implies P l_Sq(m—i-Wi\) VY and P ng(meD YV

for arbitrary formulas v. Similarly we say that a proof system P is closed under
conjunctions if there is a polynomial g such that

Prom Ny implies Plcym) ¢ and Plogg, v,

and
Pr<pme and Plr<, v imply Plcjingn) pAY

for all formulas ¢ and .

We can classify properties of proof systems like those above along the fol-
lowing lines. Some properties are monotone in the sense that they are preserved
from weaker to stronger systems, i.e. if P < @) and P has the property, then
also () satisfies the property. Evaluation of formulas without variables is such
a monotone property. Other properties might not be monotone but still ro-
bust under < in the sense that the property is preserved when we change to a
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<-equivalent system. Since we are interested in the degree of a proof system
and not in the particular representative of that degree it would be desirable
to investigate only robust or even monotone properties. But we will also see
examples of properties that are fragile in that there exists a proof system which
has the property while an equivalent system fails to satisfy this property.

The next proposition classifies the above properties according to this termi-
nology.

Proposition 2.6.5 1. Ewvaluation of formulas without variables is mono-
tone.

2. The following properties are <-robust: closure under modus ponens, clo-
sure under substitutions, closure under substitutions by constants, closure
under disjunctions and closure under conjunctions.

3. The efficient versions of the properties from item 2 are <,-robust.

4. Closure under multiple applications of modus ponens is fragile.

Proof. As an example for items 1 to 3 we show the robustness of modus ponens
under <. Assume that P is closed under modus ponens and let p be the
polynomial from the definition of closure under modus ponens. Let ) be a proof
system with P = @) and let ¢; and g9 be the polynomials from P < ) and @ <
P, respectively. If Q F<;, ¢ and Q F<p, ¢ — ¥, then P F<yy ) p and P F<g, i)
¢ — 1. By closure of P under modus ponens we have P < (g,(m)+q¢:(n)) ¥ and
by P < Q we get @ F<qi(p(qa(m)+as () ¥

Now we prove part 4. Let P be a proof system that is closed under multiple
applications of modus ponens. For example we can choose P as a Frege system.
Let ¢, and 1, be polynomial time constructible sequences of tautologies of
strictly increasing lengths. Let p be a polynomial majorizing [¢,| and the
minimal lengths of P-proofs of ¢, and ¢, — ,. Such sequences ¢, and ¥,
are easy to find.

Now we define the system @ as

0 if m=0n', P(r") =6 and

0 does not appear in the sequence v, n > 1
Uy = 14p(n)
T otherwise.

Q) =

Apparently the systems P and @) are <-equivalent. However, () is not closed
under multiple applications of modus ponens, because for each constant ¢ we
can find an n such that

Q |7Z§2p(n)+\1j)n\+c 'lpn
because the proof length of 1, in @ is exactly 4p(n). On the other hand we

have Q F<pn)+1 ©n and Q F<pn)41 Pn — ¥n, and hence closure under multiple
applications of modus ponens fails for Q. O

We will now examine the closure properties of our standard examples of
proof systems. We start with the extended Frege system which has very good
closure properties.
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Proposition 2.6.6 The Frege system F', the extended Frege system EF, and
the substitution Frege system SF are efficiently closed under multiple applica-
tions of modus ponens and under substitutions. Further, they are closed under
conjunctions and disjunctions.

Proof. Modus ponens is available as a rule in F, EF, and SF, hence we have
closure under multiple applications of modus ponens.

For closure under substitutions let 1, ..., @ be an F-proof of size < m. If
o is a substitution, then

(1), 0(ok)

is an F-proof of o(yy) of size < m|o(ypy)|. For SF closure under substitutions
is immediate, as the substitution rule is available in SF'. Finally, for EF this
follows from the equivalence SF =, EF.

Closure under conjunctions is achieved by applying the Frege axioms p; A
P2 — p1, p1 A p2 — p2 and p1 — py — p1 A pg together with modus ponens.
Closure under disjunctions follows analogously. O

The same proposition is also valid for extensions of EF + ® by polynomial
time computable sets of axioms & C TAUT.

For resolution the situation is a bit more delicate as resolution operates only
with clauses which means that it can only prove formulas in disjunctive normal
form. To obtain a proof system for all tautologies we combine resolution with
the truth-table system as explained in Sect. 2.2. Showing closure properties for
such hybrid proof systems requires an analysis of both components. In the next
proposition we do this for the truth-table method.

Proposition 2.6.7 The truth-table system is efficiently closed under substitu-
tions by constants and multiple applications of modus ponens. It is also closed
under conjunctions, but not under disjunctions and substitutions.

Proof. The truth-table system is closed under substitutions by constants, mul-
tiple applications of modus ponens and under conjunctions because the number
of variables and hence the proof size in the truth-table system does not increase
under these operations. This, however, is not the case for substitutions and
disjunctions. Let ¢, be a sequence of propositional formulas such that ¢,, uses
n different variables. If we choose substitutions o, such that o,(p,) has size
lon|®M) and n? variables, then the proof size increases from 2" for ¢, to 2"

for o, () which is super polynomial. Closure under disjunctions fails, for ex-
ample, if we go from ¢, to ¢, V o, (pn). O

For the resolution system we obtain the following closure properties:

Proposition 2.6.8 Resolution considered as a proof system for DNF-formulas
18 efficiently closed under substitutions by constants, disjunctions and multiple
applications of modus ponens.

The hybrid proof system Res formed from resolution and the truth-table
system is efficiently closed under substitutions by constants and multiple appli-
cations of modus ponens.



2.6. NATURAL PROPERTIES OF PROOF SYSTEMS 25

Proof. Let ¢ be a formula in disjunctive normal form and let ¢ be a substitution
by constants. Hitting each clause in a resolution refutation of —¢ by o we
can easily transform the resulting sequence of clauses into a correct resolution
refutation. Hence we obtain a refutation of the clauses corresponding to —o ().

For the case of modus ponens let I' and A be sets of clauses corresponding
to DNF-formulas ¢ and %, respectively. By hypothesis we have a resolution
proof of ¢, i.e. T" has a resolution refutation. Proving ¢ — ¢ means that we
have a resolution derivation of I" from the clauses of A. Combining these two
resolution proofs we refute the set A, i.e. 1 is proven.

For closure under disjunctions it is sufficient to observe that transforming ¢
into V1 for propositional formulas ¢ and 1) in DNF increases the corresponding
sets of clauses, hence the formula ¢ V ¥ has the same resolution proof as .

As efficient closure under substitutions by constants and multiple appli-
cations of modus ponens hold for the truth-table system as well as for the
resolution calculus we get them for the hybrid system defined from resolution
for the set of all tautologies. O
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Chapter 3

Arithmetic Theories and
Propositional Proof Systems

Die Kunst beschdftigt sich mit dem Schweren und
dem Guten.

Johann Wolfgang Goethe

Bounded arithmetic is closely related to propositional proof systems and dis-
joint NP-pairs. In this chapter we develop the general correspondence between
propositional proof systems and arithmetic theories as defined by Kraji¢ek and
Pudlak [KP90].

3.1 Theories of Bounded Arithmetic

There is a number of different languages for arithmetic theories of which a de-
tailed picture is given in [HP93]. Here we will only consider the language L in-
troduced by Buss [Bus86] which in addition to the usual ingredients 0, S, +, *, <
contains a number of technical symbols in order to simplify the formalization
of syntactic notions with arithmetic formulas.

The language L of arithmetic uses the symbols

0, S, +, %, |, L%J, fand <

0, S, +, *, L%j and < are interpreted in the usual way. The intended interpre-
tation of |x| is [logy(x+1)], i.e. the number of bits of the binary representation
of z, and the smash function zfy is interpreted by 2/*/*/¥l,
Quantifiers of the form
(Ve <t(y))...

abbreviating (Vz)x < t(y) — ... and

(Fx <t(y))...

abbreviating (3z) x < t(y) A ... with some L-term ¢ not containing the variable
x are called bounded quantifiers. Because the function symbol f is included in

27
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the language and in the intended interpretation the smash function § has super-
polynomial growth rate, that admits exactly polynomial growth in the length
of the number, these bounded quantifiers can range over numbers y of length
polynomial in the length of z, i.e. over exponentially large sets measured in
|z|. If the term ¢ is even of the form t(y) = |s(y)| for some term s(y), then the
quantifiers are called sharply bounded.

Bounded L-formulas are formulas in the language of L containing only
bounded quantifiers. As usual one defines a hierarchy of first-order formulas
by counting their quantifier alternations. Doing this for bounded formulas we
count the number of alternations of bounded quantifiers of bounded L-formulas
in prenex normal form but ignoring quantifiers which are sharply bounded.
The first level of this hierarchy is formed by L-formulas containing only sharply
bounded quantifiers. These formulas are denoted by 28. In the following we are
particularly interested in Hlf— and El{—formulas which are L-formulas in prenex
normal form with only bounded universal and bounded existential quantifiers
are allowed, respectively. Using a pairing function quantifiers of the same type
can be combined and hence a IT{-formula can be assumed to be of the form

(Vy < t(z)) p(z,9)

where ¢ contains only sharply bounded quantifiers. Similarly, $¢-formulas look
like
(Fy <t(z)) e(z,y)

The formula ¢(x,y) contains only sharply bounded quantifiers which range over
sets of numbers of polynomial size measured in the length of z. Furthermore
o can make use of all number theoretic functions available in L. As all these
functions are easy to compute ¢(z,y) can be evaluated in polynomial time for
given numbers = and y. Because the existential quantifier 3y < ¢(x) can be
thought of as a suitable polynomial size witness corresponding to the input x
a X4-formula describes an NP-set of natural numbers. But also all NP-sets can
be defined by ¥-formulas as the next theorem which is a variant of a result of
Wrathall [Wra78] (see e.g. [Kra95]) shows.

Theorem 3.1.1 Let N denote the standard model of natural numbers. The
subsets of N definable by X8-formulas are exactly the NP-sets. Similarly, the
subsets of N definable by I1-formulas equal the set of all coNP-sets of natural
numbers.

Actually, this correspondence extends to all bounded formulas and sets from
the polynomial hierarchy but we will only need it for X%- and IT¢-formulas.

Given an L-theory T we say that a formula ¢ is a Alf -formula with respect
to T if there exist a ¥5-formula 9 and a IT5-formula @ such that

THepe—yY and TF 0.

There is a long history of studying fragments of Peano arithmetic (see e.g.
[HP93]). The fragment we need here is the theory S3 introduced by Buss
[Bus86]. The theory is axiomatized by a finite set BASIC' of axioms describing
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the interplay of the interpretations of the function symbols S, +, *, |.|, L%J, 1,
the relation symbol < and the constant 0. Like usual a controlled amount of
induction is added to these basic axioms. In this case a version LIND of the
induction scheme for the length of numbers is added:

@(0) A (Vo) (p(z) = @z +1)) = (Vo)e(lz]) -

Instead of this LIND-scheme it is also possible to use the polynomial induction
scheme PIND which is defined as
x
p(0) A (V) (o(L5]) = e(x)) — (Va)p(z) -
The theory S3 is then defined as the axiom set BASIC augmented by the in-
duction scheme LIND for all ¥5-formulas. Equivalently, Si can be characterized

as
Sy = BASIC + I’ ~LIND

and
S} = BASIC +¥Y—PIND = BASIC +IIY—PIND .

The index 2 in S5 refers to the presence of the function symbol # in the language
which allows a smooth formalization of coding of sequences. This is needed for
the formalization of proof systems and polynomial time computations in S3.
The superscript 1 in S} indicates that LIND for %5-formulas is available in the
theory. Adding E?—LIND to BASIC' defines the theories S5.

A central result for the theory S3 is the witnessing theorem of Buss [Bus86].
It describes that the proof-theoretic strength of S3 corresponds to the polyno-
mial time computable functions.

Theorem 3.1.2 (Buss [Bus86]) Let (x,y) be a X4-formula and let

Sy B (Vo) (Fy)e(z,y) -

Then there exists a polynomial time computable function f which for every
natural number x computes a corresponding witness vy, i.e.

N E (Vz)e(x, f(z)) -

3.2 A Translation of Arithmetic Formulas into
Propositional Formulas

To explain the connection between bounded arithmetic and propositional proof
systems we have to translate first-order formulas into propositional formulas.
There are essentially two translations from arithmetic formulas into proposi-
tional formulas: one was introduced by Paris and Wilkie [PW85] to transform
bounded formulas in the language of IAg with one extra predicate into propo-
sitional logic. The other translation dates back to Cook [Coo75] and was later
adapted by Krajicek and Pudldk [KP90] to translate L-formulas into sequences
of quantified propositional formulas.
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We will now describe this second translation in detail. But because we do
not consider quantified propositional formulas we will only explain the part of
the translation which does not produce bounded quantifiers.

For L-terms t and bounded L-formulas ¢ we define inductively bounding
polynomials q; and g, such that when substituting numbers of length < n for
the free variables of t or ¢ the evaluation of ¢ and ¢ does not refer to numbers
of length > ¢;(n) or > q,(n), respectively. Bounding polynomials for L-terms
are inductively defined as follows:

1. go(n) =1 for all n,

2. gz(n) = n for a first-order variable z,
3. gs@) = qt +1 where t is an L-term,
4. qs+t = qs + q¢ for L-terms s,t,

5. qsgt = qsq¢ + 1 for L-terms s,t and

6. qle) = qL%J = q; for an L-term t.

Using these bounding polynomials for terms we define inductively bounding
polynomials for bounded L-formulas:

1. qs<t = qs=t = qs + q for L-terms s, 1,
2. g, = q, for a bounded L-formula ¢,

3. Gory = Qovp = Qo—ip = Qpesp = Qo + Gy for L-formulas ¢, and

4. qiz<t)p(n) = q@Ea<t)p(n) = qt(n) + qp(n+qi(n)) for a bounded L-formula
¢ and an L-term ¢.
Let || + [lm, || * llms [IL5-)llms | -] lm and [|#]lm be m-tupels of polynomial

size boolean formulas computing the first m bits of the corresponding functions
on inputs of length m.

For each L-term t we now define for m > ¢;(n) an m-tupel ||t||}, of propo-
sitional formulas. For every free variable x in ¢ we introduce a sequence
pr_q,...,p5 of propositional variables which represent the values of the bits
of x where pfj takes the value of the least significant bit. By induction on the
logical complexity of terms ¢ we define m-tupels of propositional formulas ||¢||},
which compute the first m bits of the value of ¢ for inputs of length < n:

L. |07, is the m-tupel (L,...,1).

2. For a variable z we set ||z||}}, = (L,..., L, ps_4,...,p§) with m—n leading
L.
3. s+t = 1| + lIm (s, [IE]|%) for L-terms s and ¢t and

4. analogously for the other L-functions.
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An L-formula ¢ is in negation implication normal form (NINF) if ¢ is in prenex
normal form and does not contain the connectives — or «, and negations
occur only directly before atomic formulas. To a formula ¢ in NINF we assign

special propositional variables v, v, ... called the universal variables of ¢ and
propositional variables £f, 7, ... called the existential variables of ¢.

For Y- and TI%-formulas ¢ in NINF we define by induction on the logical
complexity of ¢ propositional translations ||¢||y, for m > g,(n). The translation
can be extended to X3- and TI%-formulas which are not in NINF by transforming
these formulas into NINF. The translation is defined as follows.

L lls =ty = EQm (|Isllm. [1tl)
with EQm (P, 7) = NiZo pi < @i

2. |[s < tl7 = LEm ([Isll5, I1E]]7.)
with LEy, (5,3) = Vits' (AJShips < @) Api A ai) V EQu (5,0)

3. [|[=ellr, = el for atomic formulas .
4 Ml Al = llellm Al
5 MoV bllm = llelm Vvl
m—1

6. | (Vo < t)p(@)ll7, = I=(z < ) Vo(@)II7, (07 /v)isy
where the term ¢ is not of the form |s|. The suffix (p¥ /vy )?;Bl indicates

that the variables pf _,,...,p§ are replaced by the universal variables
v 1., v5. This is necessary for the case that ¢ contains several uni-

versal quantifications over .

m—1

7.1 Gz <) @)l = @ < t) Ap@)im ®F /)i
where the term ¢ is not of the form |s|. Again, the substitution (p{/ sf)?:ol
is necessary because the formula that we want to translate might contain
more than one existential quantification over x. But as these different
existential quantifiers are usually not witnessed by the same element we
need different propositional variables for each quantifier.

8. || (Vz < |t]) e(@)lm = APZo 1= (& < [t]) Vo () |I7,, where k is some dyadic
representation of the natural number k.

9. || Gz < |th (@)l = Viy Ik < [t A (k) I,

In the following we will omit the explicit reference to the bounding polyno-
mial and write simply [|¢||™ in place of HSOHZ(n)' Abbreviating further we will
also use [|¢(x)|| to denote the set {|[¢(x)||™ |n > 0}. We will also usually asso-
ciate first-order formulas ¢(z) with free variables with their universally closed
counterparts (VZ)p(z). Therefore the above translation is not only suitable for
13- but in fact for VII{-formulas.

The formula ||¢(x)||™ has n propositional variables p%_1,...,p§ correspond-
ing to the bits of z. If p(z) = (Vy < t)y(z,y) is a II}-formula, then additionally
the universal variables z/gj, V}f, ... occur in |jo(z)||*. If @ € N is a number of
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length < n we denote the bits of @ by a. Substituting p¥_,,...,p§ by the con-
stants a we arrive at formulas |[¢(z)||"(p"/a) with only the universal variables
vg, VY, ... remaining free. These formulas provide a precise description of the
truth value of ¢(a). We state this in the next theorem which is essentially due to

Cook [Coo75]. Its proof is immediate from the construction of the translations

I11]-

Theorem 3.2.1 (Cook [Coo75]) 1. For ¢ € I} or ¢ € X% the sequence
llel™ = H<p||2(n) consists of propositional formulas which have polynomial
size in n. Moreover, the sequence ||| is polynomial time constructible,
i.e. there exists a polynomial time computable algorithm that on input 1™
outputs the formula ||p||™.

2. The sequence ||¢||™ is a propositional description of the first-order formula
©, more precisely:

(a) If o(x) € 1Y, then for all a € N with |a] < n the formula
lo(@)]|™(p%/a) is a tautology if and only if N = (a). In partic-
ular, the formula ||o(z)||™ is a tautology if and only if p(a) holds for
all natural numbers a of length < n.

(b) If o(z) € X%, then for all a € N with |a| < n the formula
llo(@)]|™(p" /a) is satisfiable if and only if N = ¢(a).

3.3 Coding Propositional Proofs in Bounded Arith-
metic

In order to formalize concepts such as propositional proof systems in L-theories
it is necessary to define polynomial time computations with L-formulas. As
the language L was suitably chosen to include the technical symbols |.], L%J
and f it is relatively easy to define a pairing function and a coding of finite
sets and sequences. Using this it is possible to code descriptions of Turing
machine computations. In particular using the length induction scheme LIND
the theory Si can prove the uniqueness of suitably encoded polynomial time
computations, i.e. Si proves that for all polynomial time deterministic Turing
machines M and all inputs x there exists exactly one computation of M (z).
Expressed differently, polynomial time computations are A%-definable in S3.
This is described in detail in Chap. V of [HP93] and Chap. 6 of [Kra95].

Encoding propositional formulas as numbers in some straightforward way
we can in a theory T speak of propositional formulas, assignments and proofs.
Instead of giving the details of the encoding we will just introduce some notation
(similar as in [Kra95]). A more detailed description of these concepts can be
found in [Bus98b].

First we need to encode propositional formulas as numbers. Let

Form

be a ¥8-formula such that A’ |= Form(y) if and only if ¢ is the encoding of a
propositional formula. Let
Assign(a, @)
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be a Y-formula describing that « is the encoding of an assignment of the
variables of the propositional formula encoded by ¢. Similarly, let the 28—
formula

Eval(a, p,7)

describe that + is an evaluation of the propositional formula ¢ under the as-
signment . By

afg

we denote a first-order description for the fact that « is a satisfying assignment
for the formula . Using the earlier definitions « = ¢ can be expressed as

(F7)Eval(a, p,7) Np(y) =1 .

Since the length of v can be bounded by a polynomial in the length of ¢, this
is a Elf-formula. In the following we will always assume that quantifiers such
as Jdvy above are implicitly bounded by the quantified formulas. Because the
evaluation ~y of the formula ¢ is unique and this uniqueness is provable in S3,
ie.

S3 b Eval(e, @,71) A Bval(or,0,72) = 71 = 72

it follows that
(Vy)Eval(a, ¢,7) — o(v) =1

is a I-definition of a f= ¢ which is in S} provably equivalent to the above
Yb-definition, hence a |= ¢ is A% with respect to S3 (see [Kra95] Sect. 9.3 for
the details).

Now we are ready to formalize tautologies. For this let Taut(yp) be an L-
formula asserting that all assignments satisfy the formula ¢, i.e.

(Vo) Assign(a, ) — a =@ .

Because a |= ¢ has a I1%-definition and Assign is a $§-formula this definition
of Taut is a IT5-formula.
Finally we need to code propositional proofs. For a propositional proof
system P let
Prfp(m, @)

be an L-formula describing that 7 is the encoding of a correct P-proof of the
propositional formula encoded by ¢. Because P is a polynomial time com-
putable function Prfp is definable by a X¢-formula. But like all polynomial
time computable functions the predicate Prfp also has a Hlf—deﬁnition. More-
over, these definitions can be chosen in such a way that the theory Si proves
their equivalence, hence Prfp is A}-definable with respect to Si.

3.4 Consistency Statements

The consistency of a proof system is described by the consistency statement of
a proof system
Con(P) = (Vm)—-Prfp(m, L) .
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A somewhat stronger formulation of consistency is given by the reflection prin-
ciple of a propositional proof system P which is defined by the L-formula

RFN(P) = (Vr)(V)Prfp (7, ¢) — Taut(yp) .

From the remarks in the previous section it follows that Con(P) and RFN(P)
are VII¢-formulas.

These two consistency notions are compared by the following well known
observation, contained e.g. in [Kra95]:

Proposition 3.4.1 Let P be a proof system that is closed under substitutions
by constants and modus ponens and evaluates formulas without variables. As-
sume further that these properties are provable in Ss. Then

Si + RFN(P) < Con(P) .
Proof. Suppose S = RFN(P). This means in particular that
Sy = (Vm)Prfp(r, L) — Taut(L) .
Because Taut(L) is false in S this implies
S2 = (Vm)-Prfp(r, L)

which means S} + Con(P).
For the opposite implication assume that S3 I/ REN(P). Hence there exists
a model M of S} and a propositional formula ¢(p) such that

M |= (3m)Prip(m,o(p)) A ~Taut(e(p)) -

This means that there exists an assignment « such that

M |= (3m)Prip(m,¢(p)) Aa = (D) -

Let « map the variables p of ¢(p) to the tuple a. Hence ¢(a) is a false for-
mula without variables. By assumption Si proves that —¢(a) is provable in P.
Because P is provably closed under substitutions by constants we get

M = (3m)Prfp(m, ¢(a)) A G )Prip(r’, —p(a)) -
By closure of P under modus ponens in S} we obtain
M = (3n)Prfp(m, L) .

Hence Con(P) fails in M and as M = Si the theory Si does not prove the
consistency principle of P. O

Very often we will consider propositional descriptions of the reflection prin-
ciple. These can be simply obtained by translating RFN(P) to a sequence of
propositional formulas using the translation ||.|:
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Definition 3.4.2 A propositional proof system P has the reflection property if
PE, [[REN(P)||" .

At some places we need the more efficient version of this definition that
short P-proofs of ||[RFN(P)||™ are constructible.

Definition 3.4.3 We say that a propositional proof system P has the strong
reflection property if there exists a polynomial time algorithm that on input 1™
outputs a P-proof of ||[REN(P)||".

There is a subtle problem with Definitions 3.4.2 and 3.4.3 that is somewhat
hidden in the definitions. Namely, the formula Prfp describes the computation
of some Turing machine computing the function P. However, the provability of
the formulas [|[REN(P)||™ with polynomial size P-proofs might depend on the
actual choice of the Turing machine computing P. We will illustrate this by
an example which unfortunately has to be postponed until Sect. 3.8 (Proposi-
tion 3.8.3). Nevertheless, this observation tells us that we should understand
the meaning of Definition 3.4.2 in the following, more precise way: a proposi-
tional proof system P has the reflection property if there exists a deterministic
polynomial time Turing machine M computing the function P such that for a
suitable AY-formalization Prfp of the computation of M with respect to Si we
have

P By ||(Vr) (Vo) Prip(m, o) — Taut(o)||™ -

The same applies to Definition 3.4.3.

3.5 The Correspondence Between Arithmetic Theo-
ries and Propositional Proof Systems

Krajicek and Pudlak introduced in [KP90] a general correspondence between
L-theories T' and propositional proof systems P. Pairs (T, P) from this corre-
spondence possess in particular the following two properties:

1. For all (x) € I with T'F (V)¢(x) we have P F, |l¢o(z)|™.

2. T proves the correctness of P, i.e. T F RFN(P). Furthermore P
is the strongest proof system for which T proves the correctness, i.e.
T + RFN(Q) for a proof system @ implies Q < P.

Actually, [KP90] contains a stronger formulation, namely properties 1 and 2 are
required to be provable in Si. The properties 1 and 2 then take the following
form:

3. For all p(z) € I with T I (Vx)p(x) we have

Syt (Vn)(3ma)Prtp(my, o () I™)

4. T proves the correctness of P, i.e. T+ RFN(P).
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From Buss’ witnessing theorem for S3 (Theorem 3.1.2) it follows that a proof
of [|¢(x)|/" can be computed in polynomial time from the number n. Therefore
condition 3 implies condition 1.

It is then even possible to derive the second part of property 2 as a con-
sequence of 3 and 4 (cf. [Pud98]), i.e. if T and P fulfill the conditions 3 and
4, then every proof system @ with T'F RFN(Q) is p-simulated by P, and this
p-simulation is provable in 521. In contrast we only stated the weak simulation
@ < P in condition 2.

For our purpose conditions 1 and 2 are mostly sufficient. Therefore we make
the following definition:

Definition 3.5.1 A propositional proof system P is called regular if there exists
an L-theory T such that properties 1 and 2 are fulfilled for (T, P).

Occasionally, we will also need a strengthened version of regularity, but still
weaker than properties 3 and 4.

Definition 3.5.2 We call a propositional proof system P strongly regular if
there exists an L-theory T such that the following two properties are fulfilled for
(T, P).

5. Let p(z) be a T-formula such that T & (Yx)p(x). Then there exists a
polynomial time computable function f that on input 1™ outputs a P-proof

of [le(x)||".
6. THRFN(P) and if T = RFN(Q) for some proof system @, then Q <, P.

In comparison to regularity conditions 1 and 2 we gave these axioms a
constructive formulation: in 5 P-proofs are polynomial time constructible and
in 6 we have p-simulations instead of <. Clearly, conditions 3 and 4 imply
the strong regularity conditions 5 and 6 which in turn imply the regularity
conditions 1 and 2.

In Sect. 3.7 we will discuss sufficient conditions for the regularity and strong
regularity of propositional proof systems.

If T'is an L-theory such that there exists a regular proof system P satisfying
conditions 1 and 2, then P is unique up to <-equivalence by property 2. Con-
versely, if P is a proof system for which there exists an L-theory T satisfying
conditions 3 and 4, then the VHI{—consequences of T" are determined by P. This
is the contents of the next theorem which is essentially contained in [KP90].

Theorem 3.5.3 1. Let T be an L-theory and Py, Py be proof systems such
that both (T, P1) and (T, Py) satisfy conditions 1 and 2. Then P, = P;.

2. Let T 2 S} be an L-theory and P a proof system such that conditions 3
and 4 are satisfied for (T, P). Then the theories T and S3+RFN(P) have
the same set of VII4-consequences.

Proof. Part 1 follows immediately from condition 2 for (7, P;) and (7, P,).

For part 2 let T be an extension of S5 and P a proof system such that
conditions 3 and 4 hold. As S} C T and T+ RFN(P) all VII-consequences of
S3 + RFN(P) are also provable in 7.
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For the other inclusion let () be a IT¢-formula such that
T F (Vz)p(x) .

By condition 3 this implies

Sy b (V) (Fmn) Prep (ma, [l o(2) ™)
Using the reflection principle of P we infer

S3 + RFEN(P) + (Vn)Taut(|je(z)||™) .
By induction on the logical complexity of ¢ we can show
Sy (¥n)Taut(|(2)|I") — (V2)(j2| < n| — ¢(x))

and hence we obtain
S+ RFN(P)  (Vz)e(z) .

O

Before we continue the investigation of regular systems we will give an in-
formal discussion on the properties of the correspondence between arithmetic
theories and propositional proof systems.

Part 1 of the correspondence is called the simulation of T' by P. Its main
application is the uniform construction of P-proofs. We will explain this in some
more detail. If some Hl{—formula ¢ is T-provable, then as A is a model of T' we
have in particular N |= ¢. Hence by Theorem 3.2.1 the sequence ||p||™ contains
only tautologies. But moreover by part 1 of the correspondence the tautologies
of this sequence have polynomial size P-proofs. Usually these P-proofs are also
constructible in polynomial time as follows. The T-proof of ¢ is given in some
first-order sequent calculus suitable for the language L. The first-order sequent
calculus proof of ¢ is then translated to a sequence of propositional proofs in
some propositional sequent calculus which is a propositional counterpart of the
first-order calculus. The translation proceeds by replacing each application of
a first-order rule by an application of the corresponding propositional rule. As
the first-order rules are often more flexible than their propositional versions
it is necessary to fill in the gaps between the steps. If carefully done this
results in a sequence of propositional proofs of polynomial size in the respective
propositional calculus which then has to be transformed into a sequence of P-
proofs. We will sketch this procedure for the correspondence of S and EF in
Sect. 3.6.

If one replaces condition 1 by the stronger condition 3 then P-proofs for the
sequence ||p||™ are always constructible in polynomial time. This follows from
condition 3 because Buss’ witnessing theorem applied to

Sy F () (3ma)Prep(my, ()| ™)

yields a polynomial time computable function f that on input n produces the
P-proof .
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As it is mostly easier to show the validity of a first-order principle in some
theory than to explicitely construct sequences of propositional proofs the corre-
spondence provides an elegant method to construct short propositional proofs.
Therefore theories of bounded arithmetic and propositional proof systems are
often seen in analogy to the correspondence of Turing machines to Boolean
circuits as the uniform and respective non-uniform realization of the same con-
cept.

Additionally, the correspondence also allows to show lower bounds to the
length of propositional proofs. This requires some model-theoretic machinery
which we will describe next.

Let M be a model of Th(N) and let n € M be a non-standard element.
Then we define the cut M, in the model M as

M, ={be M| |b] <n* for some k € N'} .

The next theorem explained in [Kra0Olb] offers a model-theoretic way to show
lower bounds to the length of propositional proofs.

Theorem 3.5.4 Let P be a reqular proof system and let T be the theory cor-
responding to P. Assume further that P is closed under modus ponens and
substitutions by constants, and let p(x) be a Hlf-formula. Then the following
two conditions are equivalent:

1. For every model M |= Th(N') and every non-standard element a € M \N
there exists a model N such that
(a) N D M, where n = |al,
() NET,
(¢) N = ~pla) and
(d) If M,, = Prfp(m, 1) for some w1, then also N |= Prip(w, ).

2. There does not exist a sequence of pairwise distinct natural numbers a;,
i € N, of length n; = |a;| such that

P k. (@)™ (5% /a;) -

Proof. For the forward implication let a;, i € N be pairwise distinct natural
numbers and let n; = |a;|. Assume that ||p(z)]|™ (p*/a;) have P-proofs of length
< nF for some k € N, i.e.

N [ @m)la| < nf APrEp(m, ()| (8 /a;)) -

By compactness there exist a model M | Th(N) and non-standard element
a € M\ N, |a|] =n such that

M | (3m)ln| < n* APrp(m, [lo(2)" (6°/a)) -

Let now N be a model satisfying the conditions 1la to 1d. Because a, 7 € M,
and

My, |= Prip(m, [[o(2)]" (p%/a))
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we obtain with condition 1d also

N = Prp(m, o)™ (0% /a)) -

N =T and T + RFN(P) imply

N | Taut([je(z)[" (p"/a)) -

On the other hand N = —p(a) yields an assignment « such that

N = (aF ~le@)]"(0*/a)

which gives a contradiction.
For the reverse implication let M = Th(N) and a € M \ N with |a| = n.
Assume that for all N D M,,, N =T we have N = ¢(a). Then we infer

Diag(M,)UT + ¢(a) ,

and with compactness there exists a tupel b € M, and formula v¥(a,b) €
Diag(M,) such that

T + (a,b) — ¢(a) .
Hence
T+ (Va,9)¢(a,y) — »(a) .

As this is a VII}-formula there exist polynomial size P-proofs of the formulas

(2, 5) = (@)™ = [, DI™™ — lle@")" - (3.1)

Because b € M,, we have in particular |b| < |a|¥ for some k € N. Therefore the
P-proofs of the formulas (3.1) have proofs of size polynomial in n.

Because M = Th(N) and for non-standard elements a,b we have M k=
(a,b) there exists by underspill an infinite sequence of standard elements
N = 9¥(ai,b;). As the formulas t(a;,b;) are contained in Diag(M,) their
||.||-translations have polynomial size P-proofs. Because P is closed under
modus ponens and substitutions by constants we get by substituting a;, b; into
the P-proofs of the formulas (3.1) polynomial size P-proofs of the formulas

le(@)ll'! (5 /a). O

Part 2 of the correspondence expresses that from the knowledge of the theory
T the proof system P is an optimal proof system. This can be used to show
simulations between proof systems. Namely, to show ) < P for a regular proof
system P it suffices to prove REN(Q) in the theory T associated with P. In
this way it was shown for example that the substitution Frege system SF' is
simulated by the extended Frege system EF [Dow85, KP89]. For this it is
enough to verify that Sj - RFN(SF) which is considerably simpler than to
give a direct propositional simulation [KP89].
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3.6 The Correspondence Between S; and EF

In this section we will describe the correspondence between Si and EF. We
start with property 1 of the correspondence which states the simulation of S3 by
EF. We will only sketch the proof as a complete presentation is very tedious.
The theorem is essentially contained in [Coo75] but for the theory PV instead
of Si. A complete proof is contained in [Kra95].

Theorem 3.6.1 (Cook [Coo75], Buss [Bus86]) Let ¢ be a II%-formula.
Then
Stk (VE)p(z) implies EF k. |lo@)|" .

In fact, the EF-proofs of ||o(Z)||™ can be constructed in polynomial time.
Proof. The proof proceeds along the following lines.

First step. We fix a first-order sequent calculus LK B which extends the
propositional sequent calculus LK by rules for the introduction of quantifiers,
both bounded and unbounded. An example for such a rule is

A(t), T — A
t<s,(Vr<s)A(x), — A

for the introduction of a bounded universal quantifier on the left side of a
sequent. Additionally, for all axioms A from BASIC sequents

|

are introduced, and the polynomial induction scheme PIND is formalized by

the inference rule .
L, A(15]) — Ala), A

IA0) — A(t), A
where ¢ is an arbitrary term and the variable a does not occur in the lower

sequent.
The above sequent calculus is defined in such a way that for any formula B

Si+B

if and only if the sequent

- B

has an LKB + EI{—PIND—proof from the initial sequents corresponding to
BASIC.

Second step. Assume now that as in the hypothesis of this theorem ¢(Z) is
a TI%-formula such that
Sa - (VZ)e(z) .

By the first step above this means that there exists an LK B 4 X¢-PIND-proof
7 of
— (Vz)p(z)

from the sequents for BASIC.
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By Gentzen’s cut-elimination theorem [Gen35] adapted to the LK B-calculus
[Bus86] it follows that the proof 7 can be chosen in such a way that all formulas
occurring in 7 are X% or I1Y.

Third step. Now we want to transform the LK B-proof 7 from the second
step to a sequence of propositional EF-proofs. The idea of this simulation of
Si by EF is to choose a bounding polynomial ¢ that bounds all formulas in 7
and then translate every formula B occurring in 7 to || B||™ g(m)- This is possible
as all formulas B in 7 are ¥%- or II}-formulas. This itself might not produce
valid EF-proofs but filling the gaps by polynomial size FF-derivations results
in the desired EF-proofs of ||90||g%m). We will illustrate this process by some
examples. A complete presentation of this step is contained in Chapter 9 of
[Kra95s].

For the construction of the FF-proofs we show by induction on the number
of inferences before a sequent

r—A

from 7 that the propositional formulas
|-V Al

which is an abbreviation for

Ael BeA

have EF-proofs of size polynomial in m.

The first thing to verify is that translations of initial sequents have poly-
nomial size EF-proofs. This involves proving translations of logical axioms
like

B—B

and translations of the axioms of BASIC.
Most of the structural rules like

I — A
I —AB

are easy to prove even in the Frege system and therefore do not present any
difficulty.
For the contraction rule

' —B,B,A
I' — B,A
there is the problem that different occurrences of B use different existential
variables. Let the existential variables of the three occurrences of B in the

above rule be ¢g;, €, and £/, respectively. By induction hypothesis there exist
polynomial size EF proofs of

|-I'VBVBVA| .
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We extend these EF-proofs by using the extension rule in EF
ej < (IBlI(€) Agj) v (-IIBII(E) A )
and then derive from the hypothesis
I=Cl Vv IBIE) v IIBIE) VA

the conclusion

=TV AIBIET) VAL

Nontrivial technical difficulties arise by the rules for the introduction of the
quantifiers. We will not discuss this here but instead finish the induction proof
by explaining how to handle the ¥¢-PIND-rule

I A(L3)) — Ala), A
T, A0) — A1), A

By induction hypothesis we have polynomial size EF-proofs of the formulas
a
=Ll v lI=AS DIV lA@l v ITAT

As EF is efficiently closed under substitutions by constants we can construct
polynomial size FEF-proofs of all formulas

=L v HﬂA(LgJ)H(a/T) vV llA(a)ll(a/2) v 1A -

for all numbers i < g(m). Then we use a series of propositional cuts to obtain
EF-proofs of the ||.||-translations of the following formulas

T,A(0) — A(1),A  T,A(1) — A(2),A
T,A(0) — A(2),A ’

from this we derive

[,A®0) — A(2),A T, A(2) — A(4),A
T, A(0) — A(4),A

and so forth. Simulating this construction in EF results in polynomial size
EF-proofs of the ||.|-translations of

T, A(0) — A(t), A .
O

Examining the proof of this theorem it is apparent that the theorem is still
valid if both the theory Si and the proof system EF are enhanced by further
axioms. In particular, to add the reflection principle of a propositional proof
system will be of central interest for the following section. We formulate this
version of Theorem 3.6.1 in the following corollary.
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Corollary 3.6.2 Let @ be a polynomial time decidable set of true Hlf -formulas,
i.e. N |= @ for allp € ®. Then the proof system EF+||®|| simulates the theory
Si+ @, i.e. for all %-formulas

Sa+® - (VZ)p(z) implies EF +||®| . lw(@)|™ .

Additionally, the EF + ||®||-proofs of ||(Z)||" can be constructed in polynomial
time.

Proof. Adding the formulas ® as axioms to the theory Si corresponds to en-
hancing the first-order sequent calculus LK B from the first step of the previous
proof by the initial sequents

— (p
for all formulas ¢ € ®. The transformation of these sequents into EF + ||®||-

proofs in the third step of the last proof does not present any problem as the
||.||-translations of all formulas from & are available in the proof system. O

Before we come to part 6 of the correspondence between S and EF we need
a technical lemma which describes that EF can evaluate the |.||-translations
of the first-order formula Taut. The proof proceeds by induction on the logical
complexity of formulas.

Lemma 3.6.3 (Krajicek, Pudldk [KP90]) For all propositional formulas ¢
we have
EF b, ||[Taut(¢)]¥ — ¢ .

Moreover, the EF -proofs of these formulas are constructible in polynomial time.
We continue with property 6 of the correspondence.
Theorem 3.6.4 (Krajicek, Pudldk [KP90]) S} + RFN(EF).

Proof. We have to show
S2 = (V) (Vo)Prigr(m, ) — Taut(p) .

Assume that m = (¢1,92,...,0n = ) is an EF-proof of ¢ and S F
Prfpr(m, ). We have to show S3 - Taut(y) which is by definition

Sy (Va)Assign(a,p) — a k= .

Assume that in the proof 7 the propositional variables p occur together with
the extension variables g. Consider the formula

(i) = (38)Assign(B.9) AaUB = \ @,

J=1

expressing that the assignment a can be extended to an assignment to the

extension variables ¢ that satisfies the first ¢ formulas from the proof .
Formulas and proofs are coded by numbers using a pairing function which at

least doubles the numbers in each application. Therefore the PIND-induction
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scheme available in S5 enables us to use induction on the numbers coding the
proof steps ¢;, i.e. we can argue by induction on the number of steps. Hence
by verifying the correctness of the EF-axioms and rules in S we can prove the
formula 6(a, n) by induction on i in 6(«, ). Because the extension variables do
not occur in ¢, = ¢ we have shown

akEgp .

As this was shown for all assignments a we obtain Taut(y). O
In order to generalize this theorem to the extensions of E'F we need the

following lemma:

Lemma 3.6.5 Let o(z) be a I1%-formula. Then
Sy F (Va)p(w) — (vy)Taut(]|o(x)|)) .

Proof. The lemma can be proved by induction on the logical complexity of .
However, we can also derive it from the results proved so far. Namely, let ¢(z)
be a IT%-formula such that

St F (Vo)p(x) .
As the proof of Theorem 3.6.1 formalizes in the theory Si we get
Sy F (Vy)Bm)Prtpr(m, [lp()]¥) -
Using Theorem 3.6.4 we obtain
Sy (Va)p(x) — (Vy)Taut([o(x)][)
as claimed. 0

Examining the proof of Theorem 3.6.4 again for the extensions EF + ||®||
we get:

Corollary 3.6.6 Let ® be a polynomial time decidable set of true I14 -formulas.
Then S3 + ® - REN(EF + ||®|)).

Proof. The proof proceeds again by induction on ¢ in the formula 0(«, i) defined
in the proof of Theorem 3.6.4. The only difference is that in the induction step
for the case that ¢; is a formula of the form |[[¢)[|” with ¢ € ® we use the
formula 1 which is available as an axiom in S3 + ® to derive Taut(||¢||") by
Lemma 3.6.3. This suffices to prove 0(«, 7). 0

To check property 6 for Si and EF it remains to show that S4 cannot prove
the consistency of any proof system stronger than EF. This is stated in the
next theorem.

Theorem 3.6.7 (Krajicek, Pudlak [KP90]) Let P be a propositional proof
system such that
S FRFN(P) .

Then EF p-simulates P.
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As before we state the general result for extensions of EF. We postpone
the proof to the next section.

Theorem 3.6.8 Let ® be a polynomial time decidable set of true I1%-formulas
and let P be a propositional proof system such that

S} 4+ ®FRFN(P) .
Then EF + ||®| p-simulates P.
Combining the Corollaries 3.6.2 and 3.6.6 and Theorem 3.6.8 we obtain

Theorem 3.6.9 Let ® be a polynomial time decidable set of true Hlf -formulas.
Then the proof system EF + ||®| is strongly regular and corresponds to the
theory S3 + ®. In particular, the system EF + ||®| has the strong reflection
property.

3.7 Regular Proof Systems

Using the results from Buss [Bus86] and Krajicek and Pudlak [KP90] which
we explained in the previous section we will now exhibit sufficient conditions
for the regularity of a propositional proof system. From the definition of a
regular system as given in Sect. 3.5 it is clear that regular proof systems have
the reflection property. Furthermore, a combination of the properties of proof
systems introduced in Sect. 2.6 guarantees the regularity of the system, namely:

Theorem 3.7.1 1. Let P be a proof system such that EF < P and P has
the reflection property and is closed under substitutions and multiple ap-
plications of modus ponens. Then P is reqular and corresponds to the
theory S3 + RFN(P). In particular we have

EF + |REN(P)|| =P .

2. If P is a proof system such that EF' <, P and P has the strong reflection
property and is efficiently closed under substitutions and multiple applica-
tions of modus ponens, then P is strongly regular and corresponds to the
theory S3 + RFN(P). In particular we have

EF + |RFN(P)|| =, P .

The proof of Theorem 3.7.1 requires a series of lemmas which will also be
useful in later sections.

Lemma 3.7.2 Let P be a proof system such that EF < P and P is closed
under substitutions and multiple applications of modus ponens. Let ® be some
polynomial time set of tautologies such that P+, ®. Then

EF+®<P.
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Proof. Let EF + ® <, ¢. This means that there are substitution instances
Y1, ..., of formulas from ® such that

EFU{"L/}l,...,”l/}k} |—§mg0 .

Using the deduction theorem for EF we get

k
EF F<pm) (/\ Vi) = ¢

=1

where p is the polynomial from the deduction theorem. By induction on k it
can be shown that

EFFepmy (W1 — (b2 — ... = (Y — @) ...)

with some polynomial p’. The hypothesis P > EF gives us

for some polynomial p”. Since P, ® and P is closed under substitutions we
get polynomial size P-proofs of v; for ¢ = 1,...,k. Finally using the closure
of P under multiple applications of modus ponens we obtain polynomial size
P-proofs of . O

Making stronger assumptions we can improve the simulation of EF 4+ ® by
P from the last lemma to a p-simulation.

Lemma 3.7.3 Let P be a proof system such that EF <, P and P is efficiently
closed under substitutions and multiple applications of modus ponens. Let ® be
some polynomial time set of tautologies such that P-proofs of all formulas from
® can be constructed in polynomial time. Then

EF+®<,P .

Proof. As also the deduction property of E'F' holds in an efficient version (Theo-
rem 2.4.2) the assumptions guarantee that all steps in the proof of Lemma 3.7.2
can be efficiently executed. ]

We will mostly use Lemmas 3.7.2 and 3.7.3 in the following form:

Corollary 3.7.4 1. Let P be a proof system with the reflection property such
that EF < P and P is closed under substitutions and multiple applications
of modus ponens. Then

EF + |RFEN(P)|| < P .

2. If the proof system P >, EF has the strong reflection property and P is
efficiently closed under under substitutions and multiple applications of
modus ponens, then we get the p-simulation

EF +|RFN(P)|| <, P .



3.7. REGULAR PROOF SYSTEMS 47

Further comparing the proof systems EF + ||[RFN(P)|| and P we now come
to the reverse reduction shown in [KP89]. This reduction is even a <j,-reduction
and no assumptions on P are necessary.

Proposition 3.7.5 (Krajicek, Pudlak [KP89]) Let P be a proof system.
Then
P <, EF +||RFEN(P)| .

Proof. Let m be a P-proof of ¢. Because REN(P) is available as an axiom we
get by substitution a polynomial size EF + ||[RFN(P)||-proof of

[Prtp(z, y)|(p° /7, 0" /¢) — | Taut(y)||(p?/¢)

where the suffix (p”/7) indicates that the propositional variables for = are sub-
stituted by the bits of 7, and similarly for (p¥/@). ||Prfp(z,y)|(p*/7,pY/@) can
be evaluated in EF to T, giving a polynomial size proof of ||Taut(y)|[(p¥/@)
in the proof system EF + |[RFN(P)|. From this we get by Lemma 3.6.3 a
polynomial size EF-proof the tautology ¢. As these proofs can be constructed
in polynomial time we get the <,-reduction. O

The previous proposition can be seen as a propositional version of property 2
of the correspondence to arithmetic theories and documents the importance of
the proof systems EF + | REN(P)||.

For later use we now prove a lemma which is very similar to Proposi-
tion 3.7.5.

Lemma 3.7.6 Let P be a proof system and ® be some polynomial time set of
tautologies. Then

EF + &+, |REN(P)||” implies P<EF+® .

Proof. Let m be a P-proof of ¢. Because EF + ® I, [|[REN(P)||™ and EF + ®
is closed under substitutions we get a polynomial size FF + ®-proof of

[Prfp(z, y)|(p*/7, 0%/ @) — [ Taut(y)||(p”/) -

|IPrfp(z, y)||(p* /7, pY/p) can be evaluated in EF to T, giving a polynomial
size EF + ®-proof of ||Taut(y)||(p¥/®). From this we get again by Lemma 3.6.3
a polynomial size EF-proof of the tautology ¢. Combining these proofs by
modus ponens we get the EF + ®-proof of . O

Note that the reduction in the last lemma is only < as the E'F + ®-proofs of
|IRFN(P)||™ are not assumed to be constructible in polynomial time. However,
if we make this assumption we can draw the stronger conclusion P <, EF + &:

Lemma 3.7.7 Let P be a proof system and ® be some polynomial time set of
tautologies. If EF + ®-proofs of |[REN(P)||™ can be generated in polynomial
time, then P <, EF + ®.



48 CHAPTER 3. ARITHMETIC THEORIES AND PROOF SYSTEMS

Proof. Given a P-proof 7 of a formula ¢ we start by generating the EFF + ®-
proof of |[REN(P)||I"l1#l. Careful analysis of the proof of Lemma 3.7.6 then
shows that all transformations can be efficiently performed. Therefore we get
the <,-simulation. O

Lemma 3.7.7 enables us to give an easy proof of Theorem 3.6.8 from
Sect. 3.6.

Theorem 3.6.8 Let ® be a polynomial time decidable set of true I1%-formulas
and let P be a propositional proof system such that

S14+® F RFEN(P) .
Then EF + ||®| p-simulates P.
Proof. Let P be a proof system such that
S+ ® - RFEN(P) .
As RFN(P) is a VII}-formula we conclude with Corollary 3.6.2
EF+® F, |[REN(P)]| .

As these proofs can be constructed in polynomial time we infer with
Lemma 3.7.7 the simulation P <, EF + ||®||. O

Now we come to the proof of Theorem 3.7.1.

Proof of Theorem 3.7.1. To prove part 1 of the theorem let P be a proof
system such that FF < P and P has reflection and is closed under substitutions
and multiple applications of modus ponens. By Corollary 3.7.4 we have

EF + |RFN(P)| < P
and Proposition 3.7.5 gives
P <, EF + |REN(P)| .

Hence EF + |[REN(P)|| and P are <-equivalent.
Next we have to check the axioms of the correspondence for Si + RFN(P)
and P. Suppose ¢ is a VII’-formula such that

SY +RFN(P) + ¢ .
By Corollary 3.6.2 we get
EF + [REN(P)| . [lo]" -
As we already know that EF + |RFN(P)|| is simulated by P we obtain

Pralel™
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This proves part 1 of the correspondence.
It remains to check the second part. Clearly

S} + RFN(P) + RFN(P) .
Finally suppose

S3 + RFN(P) F RFN(Q)
for some proof system ). By Corollary 3.6.2 this implies

EF + |REN(P)|| F. [RFN(Q)] -
Now we can apply Lemma 3.7.6 and Corollary 3.7.4 to conclude
Q < EF+|RFN(P)| <P .

We now prove the second part of the theorem stating that all transfor-
mations carried out in the first part are actually polynomial time computable
under the stronger assumptions of part 2 of the theorem.

For this let P be a proof system such that FF <, P and P has strong
reflection and is efficiently closed under substitutions and multiple applications
of modus ponens. By Corollary 3.7.4 we have

EF +|REN(P)|| <, P
and Proposition 3.7.5 gives
P <, EF +|REN(P)| .

Hence EF + |RFN(P)|| and P are <,-equivalent.
We proceed by checking the axioms of strong regularity for Si + RFN(P)
and P. Suppose ¢ is a VII’-formula such that

S} +RFN(P) + ¢ .

By Corollary 3.6.2 we can construct EF + ||[RFN(P)||-proofs of ||¢|™ in poly-

nomial time. Because EF + ||[RFN(P)| <, P we can efficiently translate these

EF+||RFN(P)||-proofs into P-proofs. This proves part 5 of the correspondence.
For axiom 6 let us assume that

S1 4+ RFN(P) - RFN(Q)

for some proof system @. By Corollary 3.6.2 we can construct EF + ||[RFN(P)||-
proofs of |[REN(Q)||" in polynomial time. Now we can apply Lemma 3.7.7 and
Corollary 3.7.4 to conclude

Q <, EF + [REN(P)| <, P .

O

In [Kra95] a sequence of tautologies ¢, is called hard for a proof system

P if ¢, is constructible in polynomial time, i.e. there exists a polynomial

time computable function that produces ¢, on input 17, and P V, ¢,. The

next theorem from [Kra95] collects some of the most important information on
optimal proof systems.
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Theorem 3.7.8 (Krajicek [Kra95]) For all proof systems P > EF' that are
closed under substitutions and multiple applications of modus ponens the fol-
lowing conditions are equivalent:

1. There exists a sequence of tautologies hard for P.
2. The proof system P is not optimal.
3. There is a proof system @ such that P t/, |[RFN(Q)||™.

Proof. To prove the implication 1 = 2 let ¢, be a sequence of hard tautologies
for P. Consider the proof system Q = EF + {¢, |n > 0}. As Pt ¢, and
Q F« on we have P 2 @, hence P is not optimal.

For the implication 2 = 3 let P be a non-optimal proof system. Hence there
exists a proof system () such that @ £ P. Then ||[RFEN(Q)|" is a sequence
of tautologies hard for P. Assume on the contrary that P +, |[RFN(Q)|".
Since P > E'F is closed under substitutions and multiple applications of modus
ponens we get by Lemma 3.7.2 and Proposition 3.7.5

P> EF + |RFN(Q)|| > @

contradicting @) £ P.
As 3 = 1 is trivial the proof is complete. O

3.8 Comparing Properties of Proof Systems

The observations from the last section allow us to compare some of the proper-
ties of propositional proof systems that we introduced in Sect. 2.6. In particular
we want to know whether these properties are independent from each other. We
will start with the comparison of closure under substitutions and closure under
modus ponens.

Proposition 3.8.1 Assume that the extended Frege proof system is not opti-
mal. Then there exist proof systems which are closed under substitutions but
not under modus ponens.

Proof. We use the assumption that E'F' is not optimal to get by Theorem 3.7.8
a polynomial time constructible sequence of tautologies ¥, with EF t/, ¢,,. We
may assume that the formulas ¢,, do not contain implications.

Let ¢, be an arbitrary polynomial time constructible sequence of tautologies
with polynomially long EF-proofs. We define the system (@) as:

© if # = 07’ and 7’ is an EF-proof of ¢
Q(m) =13 ol(pn — ¥n) if 7 = 1010 for some substitution o
T otherwise.

Because EF' is closed under substitutions this is also true for @@ according to
the second line of its definition. From EF -, ¢, and EF' <, Q) we get Q F ¢y,.
We also have Q F, ¢, — ¥, according to the definition of (). By hypothesis
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we have EF £, 1,. Substitution instances of ¢, — 1, are different from
the formulas v,, because the former are implications whereas the latter do not
contain the connective —. Therefore also Q V. 1, and hence @ is not closed
under modus ponens. O

Candidates for proof systems that are closed under modus ponens but not
under substitutions by constants come from the extensions EF U ® of EF by
polynomial time computable sets & C TAUT as new axioms. Clearly the sys-
tems FF U ® are closed under modus ponens. In Sect. 4.13 (Theorem 4.13.10),
however, we will exhibit a suitable hypothesis that guarantees that EF U ® is
not closed under substitutions by constants for a suitable choice of ®.

Full independence of all properties from Sect. 2.6 is not available as the next
proposition demonstrates:

Proposition 3.8.2 Let P be a proof system such that EF < P and P has
reflection and is closed under substitutions and multiple applications of modus
ponens. Then P 1is also closed under conjunctions and disjunctions.

Proof. The assumptions guarantee that P = EF+||RFN(P)|| by Theorem 3.7.1.
The latter system is closed under conjunctions and disjunctions. Because these
closure properties are maintained inside a <-degree they are shared by the
system P. a

Most of the properties that we investigated in Sect. 2.6 are robust in the
sense that they are preserved inside a <-or <,-degree. As we have seen in
this chapter that the reflection property is of central importance for strong
systems it is natural to ask whether also the reflection property is robust. The
next proposition shows that this is indeed a delicate question as the reflection
property of a proof system P even depends on the choice of the Turing machines
which are used to evaluate the P-proofs (cf. Sect. 3.4).

Proposition 3.8.3 Assume that the extended Frege proof system is not p-
optimal. Then there exists a proof system Q =, EF such that

Sy Wt (V) (Vo)Prq(m, o) — Taut(yp)

for some suitable choice of the Turing machine that computes @) and is used for
the formula Prfg.

Proof. If EF' is not p-optimal, then there exists a proof system R such that
R £, EF. We define the system P as EF + ||RFN(R)||. By Proposition 3.7.5
we have R <, P and therefore also P £, EF'. We now define the system @ as

© if # = 07’ and 7’ is an EF-proof of ¢
Q(m) =< P(n') if m=17" and P(x") € {T, L}
T otherwise.

Then EF and @) are <,-equivalent because EF' <j,-reduces to @ via 7w > O
and the opposite reduction ) <, EF' is given by

. i if 7 = 0n’
T 0 if m=1x'
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where 7 is a fixed EF-proof of T. We have to show that S does not prove
the formula RFN(Q) where for the predicate Prfy we use the canonical Turing
machine M according to the above definition of @, i.e. on input 07’ the machine
M checks whether 7’ is a correct EF-proof and on input 17’ the machine M
evaluates P(7’). Assume on the contrary that S5 ., RFN(Q). Because of line
2 of the definition of @ this means that S3 can prove that there is no P-proof
of L, ie. Si proves the consistency statement of P. The system P is closed
under substitutions by constants and modus ponens. Therefore Con(P) and
RFN(P) are equivalent in S§ by Proposition 3.4.1. Together with S3 F Con(P)
this yields S3 = RFN(P), and hence by Theorem 3.6.7 we obtain P <, EF,
contradicting the choice of P. Thus S5 proves REN(EF) but not RFN(Q). O



Chapter 4

Disjoint NP-Pairs

Daher ist das schonste Zeichen der Originalitdt,
wenn man einen empfangenen Gedanken dergestalt
fruchtbar zu entwickeln weiff, daff niemand leicht,
wie viel in ihm verborgen liege, gefunden hdtte.

Johann Wolfgang Goethe

This chapter is devoted to the study of disjoint NP-pairs. We start with a com-
plexity theoretic analysis of the basic definitions and some observations about
the simulation order of disjoint NP-pairs. Our main objective, however, is to
explore the close connection between NP-pairs and propositional proof systems.
In particular, this also involves the correspondence to bounded arithmetic as
developed in the previous chapter.

4.1 Reductions Between NP-Pairs

Definition 4.1.1 A pair (A, B) is called a disjoint NP-pair (DNPP) if A, B €
NP and AN B = 0. To exclude trivial cases we additionally require A # 0 and
B # ).

The set of all disjoint NP-pairs can be considered as a promise complexity
class, denoted by DisjNP in [GSSZ04] and subsequent papers by these authors.
The machine model consists of pairs (M7, Ms) of nondeterministic polynomial
time Turing machines with the promise that there does not exist any input that
is accepted by both machines M7 and M.

The complexity theoretic investigation of disjoint NP-pairs began with the
work of Even, Selman and Yacobi [ESY84] and Grollmann and Selman [GS88].
Their main motivation was to provide a complexity theoretic framework for
the analysis of the security of public-key crypto systems. Security aspects of a
public-key cryptosystem can then be modeled by a disjoint NP-pair associated
with the crypto system. We will briefly describe this application of disjoint
NP-pairs in Sect. 5.1.

An important concept in the work of Grollmann and Selman [GS88] is the
notion of a separator of a disjoint NP-pair, defined as follows:

93
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Definition 4.1.2 A set S is a separator for the disjoint NP-pair (A, B) if
ACS and BCS.

Of central interest is the case where a given DNPP has a separator which
is computable in polynomial time. If this is the case, then the pair is called
p-separable, otherwise p-inseparable.

Formulated differently, a disjoint NP-pair (A, B) is p-separable if there exists
a polynomial time computable function f that outputs 1 on inputs from A and
0 on inputs from B and answers arbitrarily otherwise. This makes it clear that
disjoint NP-pairs are indeed promise problems [Gol05].

Whether or not all disjoint NP-pairs are p-separable is an open prob-
lem. Concrete candidates for p-inseparable pairs are provided by crypto-
graphic pairs (cf. Sect. 5.1) and pairs defined from propositional proof sys-
tems (cf. Sect. 4.4). It is known that p-inseparable pairs exist under suitable
assumptions. For example P % NP N coNP is such an assumption: take a set
A € (NPNcoNP) \ P. Then (4, A) is a p-inseparable disjoint NP-pair. Groll-
mann and Selman [GS88] showed that also P # UP is a sufficient condition for
the existence of p-inseparable DNPP. However, it is not known how to derive
the existence of p-inseparable disjoint NP-pairs from the assumption P # NP.
Homer and Selman [HS92] also constructed an oracle relative to which P # NP
but p-inseparable disjoint NP-pairs do not exist. Therefore the existence of
p-inseparable DNPP is a condition which currently appears to be in strength
intermediate between P % NP and P % NP N coNP.

If we aim to consider DisjNP as a complexity class we need reductions which
are suitable for pairs. Grollmann and Selman defined in [GS88] a variety of
these, the most common being the following kind of the many-one reduction:

Definition 4.1.3 (Grollmann, Selman [GS88]) A disjoint NP-pair (A, B)
is polynomially reducible to a DNPP (C,D), denoted by (A, B) <, (C,D), if
there exists a polynomial time computable function f such that f(A) C C and
f(B)C D.

As usual we define an equivalence relation =, as: (A,B) =, (C,D) if
(A,B) <, (C,D) and (C,D) <, (A, B). The equivalence classes of =, are
called degrees.

The reason why <, should be considered as a many-one reduction lies in
the following non-uniform characterization of <,, shown in [GSSZ04]:

Theorem 4.1.4 (Glaler, Selman, Sengupta, Zhang [GSSZ04])

Let (A, B) and (C, D) be disjoint NP-pairs. Then (A, B) <, (C, D) if and only
if for every separator T of (C, D) there exists a separator S of (A, B) such that
S<PT.

The characterization of <, in Theorem 4.1.4 is a natural notion of a reduction
in the context of promise problems (cf. [Gol05]). It expresses that for every sep-
arator T of (C, D) there is a separator of (A, B) that is not more complex than
T. However, the uniform version of this reduction as given in Definition 4.1.3
is much easier to work with.
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If f performs a <p-reduction from (A4, B) to (C, D), then f is also allowed to
map elements from the complement of AUB to C or D. Therefore f : (A, B) <,
(C, D) does not imply in general that f is a many-one reduction between A and
C or between B and D. This, however, is the case for the following stronger
reduction:

Definition 4.1.5 (K&bler, Messner, Toran [KMTO03]) A DNPP (A, B) is
strongly reducible to a DNPP (C, D), denoted by (A, B) <s (C,D), if there
exists a polynomial time computable function f such that f~1(C) = A and
f~Y(D)=B.

Analogously to =, we define =5 as the equivalence relation associated with
<.

Equivalently, we can view <; as a reduction between triples. In addition to
the two conditions f(A) C C and f(B) C D for <, we also require f(AU B) C
cCubD.

The reduction <; now has the property that if f realizes a <;-reduction from
(A, B) to (C, D), then f is simultaneously a many-one-reduction between A and
C as well as between B and D. Clearly, this also serves as a characterization
of <, namely:

Proposition 4.1.6 Let (A, B) and (C, D) be DNPP. Then (A, B) <s (C, D) if
and only if there exists a function f € FP such that f: A <P C and f: B <P,
D.

In contrast the reduction <, is more flexible because here a reduction f :
(A,B) <, (C, D) does not relate the complexity of A or B to the complexity of
C or D, respectively. We may express this differently as:

Proposition 4.1.7 For every DNPP (A, B) there exists a DNPP (A', B') such
that (A, B) =, (A, B") and A', B" are NP-complete.

Proof. Choose A = A x SAT and B’ = B x SAT. Then we have (A, B) <
(A", B') via x +— (z,¢o) with a fixed formula ¢y € SAT, and (A’, B") <, (A, B
via the projection (z,p) — x.

~_ 3

O

Obviously <, is a refinement of <,. It is indeed a proper refinement. For
this let (C, D) be a disjoint NP-pair that has an empty complement C'U D.
Let (A, B) be a second DNPP such that (A, B) <, (C, D) but with nonempty
complement AU B. Then it is obviously not possible to map (A, B) to (C, D)
with the stronger reduction <; as there are no elements for the image of AU B.
Examples for such pairs (4, B) and (C, D) are easy to find. Nevertheless this
separation is not very satisfactory as it only applies to pairs with empty com-
plement. But it is possible to achieve a separation which, although conditional,
only involves pairs where all three components are nonempty. This separation
was first observed in [GSS05]. Using Proposition 4.1.7 we can give an easy
proof.

Proposition 4.1.8 (Glafler, Selman, Sengupta [GSS05]) P # NP if and
only if there exist disjoint NP-pairs (A, B) and (C,D) such that AU B and
C'UD are nonempty and (A, B) <, (C,D), but (A, B) £s (C, D).
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Proof. Let C' and D be nonempty disjoint sets in P such that C U D is also
nonempty. By Proposition 4.1.7 there exist NP-complete sets A and B such
that (A, B) =, (C, D). But (A, B) is not strongly reducible to (C, D) because
(A, B) <, (C, D) would imply in particular A <P C and hence P = NP.

On the other hand if P = NP, then all DNPP (A, B) where all three com-
ponents A, B, AU B are nonempty are <;-equivalent. O

Alternatively, Proposition 4.1.8 can be formulated for pairs (A4, B) and
(C, D) with infinite components A,B, C', D, AUB and C' U D.

Apart from the many-one reductions <, and <, there is also a natural notion
of Turing reduction for pairs, defined already by Grollmann and Selman:

Definition 4.1.9 (Grollmann, Selman [GS88]) Let (A,B) and (C,D) be
DNPP. We say that (A, B) is Turing reducible to (C, D), denoted by (A, B) <r
(C, D), if there exists a polynomial time oracle Turing machine M such that
for every separator T of (C,D) L(MT) separates (A, B).

If for inputs from AU B the machine M makes only queries to C U D we
call the reduction performed by M a smart Turing reduction.

Again this uniform formulation of a Turing reduction has an equivalent
non-uniform counterpart:

Theorem 4.1.10 (Grollmann, Selman [GS88]) Let (A,B) and (C,D) be
disjoint NP-pairs. Then (A, B) <p (C, D) if and only if for every separator T
of (C, D) there exists a separator S of (A, B) such that S <} T.

In this characterization the Turing reduction S §1} T may be performed by
different Turing machines for different separators T', whereas in Definition 4.1.9
there is one fixed machine M that defines a separator S = L(MT) of (A, B) for
all separators T' of (C, D).

4.2 Some Remarks on the Simulation Order of Dis-
joint NP-Pairs

The set of all p-separable DNPP forms the minimal degree with respect to the
<p-reduction, namely:

Proposition 4.2.1 Let (A, B) be a p-separable DNPP. Then (A, B) is <,-
reducible to any other disjoint NP-pair. If on the other hand a pair (C,D) is
<p-reducible to (A, B) then also (C, D) is p-separable.

Proof. Let (A, B) be p-separable and let S € P be a separator of (A4, B). If
(C, D) is an arbitrary disjoint NP-pair and ¢y € C and dy € D are fixed elements
from its components, then

oy d €O ifxes
do otherwise

is a <p-reduction from (A, B) to (C, D).
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Assume now that the pair (A, B) is separated by the function f € FP, i.e.

reAd = fr)=1
r€B =  f(x)=0.

If (C, D) is a disjoint NP-pair that is <,-reducible to(A, B) via the polynomial
time computable reduction g, then f o g separates the pair (C, D). O

It is clear that this proposition is also valid for Turing reductions:

Proposition 4.2.2 The minimal <p-degree consists of all p-separable NP-
PaiTs.

Proof. Proposition 4.2.1 implies that every p-separable pair is <p-reducible to
any other pair. If on the other hand (C, D) is p-separable by a separator T € P
and (A, B) <7 (C, D), then by definition there exists a separator S of (A, B)
such that S <. T. Hence S € P and (4, B) is also p-separable. O

For the stronger <;-reduction this minimal degree shrinks to the set of all
p-separable pairs with empty complement, i.e. sets of the form (A4, A) with
AeP:

Proposition 4.2.3 Let A be a set in P. Then (A, A) is <-reducible to any
other disjoint NP-pair. If on the other hand a pair (C,D) is <s-reducible to
(A, A), then D =C and C € P.

But assuming P # NP also the set of all p-separable pairs with nonempty com-
plement splits into different =;-degrees. The precise picture of all p-separable
DNPP under <; is given in the next proposition.

Proposition 4.2.4 If P # NP, then there exist infinitely many distinct <;-
degrees of p-separable disjoint NP-pairs.

More precisely, if (A,<np) is the order of all <P -degrees of NP-sets, ex-
cluding the empty set, then (0UA x A, <pnpp) is the order of all <s-degrees of
p-separable disjoint NP-pairs, where 0 € A. The relation <pnpp is defined as:

e 0 <pnpp (X,Y) forall X, Y € A and
e (X1,Y1) <pnpp (X2,Y2) if X1 <np X2 and Y1 <np Y2.

Further, the minimal <g-degree 0 consists of all disjoint NP-pairs of the form
(A, A) with A € P, and a <s-degree (X,Y) € A x A is equal to

{(A,B)|ANB=0,Ae X, BeY, and (A, B) is p-separable} .

Proof. By a theorem of Ladner [Lad75] there exist infinitely many different
<P -degrees of NP-sets assuming P # NP. Therefore Ladner’s theorem together
with the following claim imply the proposition.

Claim: Let (A, B) and (C,D) be p-separable disjoint NP-pairs such that
CUD #0. Then (A,B) <, (C,D) if and only if A <P C and B <P, D.
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The first direction is clear from the definition of <j.

For the reverse implication let S,T" € P be separators of (A4, B) and (C, D),
respectively, and let xg be a fixed element from C'U D. Let further g; : A <P C
and g2 : B <P D compute the respective many-one reductions. Then the
polynomial time computable function

g1(x) ifxreSandg(r)eT
x =1 ga(x) ifx g Sandga(x) €T
T otherwise

is a <s-reduction from (A4, B) to (C, D). 0

Now we know that the minimal <,-degree splits into infinitely many <-
degrees if P = NP, and into two <;-degrees otherwise. This is essentially the
separation we proved in Proposition 4.1.8. But is <; also a proper refinement
of <, on other <,-degrees? This question is hard to answer as even under the
assumption P # NP we do not know whether there exist <,-degrees that are
different from the minimal one. At least we can make the following remark:

Proposition 4.2.5 If P # NP, then every <,-degree that contains a disjoint
NP-pair (A, B) such that A or B are not NP-complete splits into infinitely
many <s-degrees.

Proof. Let (A, B) be a DNPP such that A is not NP-complete. Let C' be an
NP-set such that A <P C but C' £¢ A. Consider the pair

(AxC,BxC) .

This pair is <,-equivalent to (A, B) because (A,B) <, (A x C,B x () via
x — (x,cp) with fixed ¢y € C and (A x C, B x C) <, (A, B) via the projection
(z,y) — x. But clearly (A x C,B x C) £5 (A, B) because A x C' £P A.

As by Ladner’s result [Lad75] there exist infinitely many such C' that are
pairwise < -inequivalent we get the proposition. O

Even assuming the existence of p-inseparable disjoint NP-pairs we do not
know if there are also p-inseparable pairs with components which are not NP-
complete. But the cryptographic pairs defined in Sect. 5.1 provide candidates
for such NP-pairs. Hence we conjecture that <; is indeed an interesting refine-
ment of <, on the whole class of disjoint NP-pairs.

Actually, under the assumption P # NP the <,-degrees do not only split into
infinitely many <,-degrees but also reductions between pairs from different <,,-
degrees are not necessarily preserved. We illustrate this for the p-separable
pairs in the next proposition.

Proposition 4.2.6 Assume that there exists a p-inseparable disjoint NP-pair
(C,D) such that C is not NP-complete. Then there exists a pair (A, B) that is
p-separable, but still (A, B) £ (C, D).
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Proof. We choose a p-separable pair (A, B) where both components A and B
are NP-complete. Because the existence of p-inseparable pairs implies P £ NP
it is impossible to <;-reduce (A, B) to (C, D). 0

Having good information on minimal degrees it is natural to ask about
maximal degrees under the reductions. Keeping with common terminology we
call a disjoint NP-pair <,-complete if every DNPP <,-reduces to it. Similarly,
we speak of <;- and <p-complete pairs. Razborov first raised the following
question:

Problem 4.2.7 (Razborov [Raz94]) Do there exist complete disjoint NP-
pairs?

This question is one of the most important in the field of disjoint NP-pairs
and has been intensively studied [Raz94, KMT03, GSSZ04, GSS05, Bey04a].
Nevertheless, so far we only have conditional results relating the existence of
optimal proof systems and the existence of complete disjoint NP-pairs. We will
describe these results in Sect. 4.11.

We continue with some remarks on the degree structure of disjoint NP-pairs.

Proposition 4.2.8 (Pudldk [Pud03]) The set of degrees of disjoint NP-pairs
with the order inherited from the reduction <, forms a lattice. The supremum
of the degrees of two pairs (A, B) and (C, D) is the degree of

(A,B)V (C,D)=(AUC,BUD)
where U is the marked union of two sets A,C over {0,1}, defined by
AUC ={0z| e Ayu{lz |z e C} ,
and the infimum is defined by
(A,B)AN(C,D)=(AxC,BxD) .

Proof. Two DNPP (A, B) and (C, D) reduce to their supremum (A U C, B U D)
via x — Oz and x — lx, respectively.

If (E,F) is some disjoint NP-pair such that f : (4,B) <, (E,F) and g :
(C,D) <, (E, F), then

s fly) ifz=0y
gly) ifx=1y

is a <,-reduction from (A U C,B U D) to (E,F).

The infimum (A x C, Bx D) reduces to (A, B) and (C, D) via the projections
on the first and second coordinate, respectively.

Finally, if for some pair (E,F) we have f : (E,F) <, (A,B) and
g:(E,F) <, (C,D), then (E,F) <, (Ax C,B x D) viax — (f(x),g9(x)). O

Analysing this situation for the stronger reduction <, we remark:
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Proposition 4.2.9 The set of degrees of disjoint NP-pairs with the order in-
herited from the reduction <g forms an upper semi-lattice. As in the case of
the weaker reduction <, the supremum of two degrees represented by the pairs
(A, B) and (C, D) is the degree of (AU C,B U D).

Proof. The proof is analogous to the proof of Proposition 4.2.8. O

Finally, we mention a recent result of Glaler, Selman, and Zhang, which
shows that the degree structure of all DNPP under Turing reductions is dense.

Theorem 4.2.10 (GlaBler, Selman, Zhang [GSZ05])
Let (A, B) and (C, D) be two disjoint NP-pairs with infinite components A, B,
C, and D such that

(A,B) <7 (C,D) but (C,D) %7 (A,B) .

Then there exist incomparable, strictly intermediate disjoint NP-pairs (E, F')
and (G, H) between (A, B) and (C,D) such that E,F,G, and H are infinite.
Precisely, the following properties hold:

1. (A,B) <, (E,F) <7 (C,D) and (C,D) £7 (E,F) £ (A, B);
2. (A,B) <m (G7 H) <r (07 D) and (07 D) ﬁT (G’ H) XT (A,B),‘
3. (E,F) 1 (G, H) and (G, H) 7 (E, F).

4.3 Examples for Combinatorially Defined Pairs

Let us consider a first example for a disjoint NP-pair. The Clique-Colouring
pair (CCy, CCh) is defined as follows:

CCy = {(G,k)|G is a graph containing a clique of size k}
CC; = {(G,k) |the graph G can be coloured by k — 1 colours} .

The pair (CCy,CCy) is even an example for a p-separable pair as shown by
Lovész [LovT79].

Another combinatorially defined pair is the Broken-Mosquito-Screen pair
BM S, introduced by Haken [CH99]:

BMSy = {(G,k) | G has k* — 2 vertices and contains k disjoint
cliques of which k — 1 are of size k
and 1 is of size k — 2}

BMS; = {(G,k) | G has k% — 2 vertices and contains k disjoint
independent sets of which k — 1 are of size k
and 1 is of size k — 2}

The name of the pair becomes apparent from its graphical representation
(Fig. 4.1). It is clear that both components are in NP. The disjointness of the
pair is also easy to see. Let (G, k) belong to BMSy. Searching for independent
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FT T . Y O > cliques of size k or k — 2

14
T
\,

) searching for independent

sets of size k

Figure 4.1: The Broken Mosquito Screen

sets of size k in G it is clear that each such set can contain at most one vertex
from each clique. But as one clique contains only k& — 2 vertices we can find
at most k — 2 independent sets of size k. Hence (G,k) ¢ BMS;. It is not so
clear that (BM Sy, BM S1) is also p-separable. In fact it was even proposed as
the basis of a bit commitment scheme. However, Pudldk [Pud03] gave a <,-
reduction from (BM Sy, BM S1) to the Clique-Colouring pair, thereby showing
that (BM Sy, BM S7) is p-separable.

Finding meaningful combinatorial disjoint NP-pairs does not seem to be
easy. It is even more complicated to come up with combinatorially defined
pairs that could serve as candidates for p-inseparable DNPP. Pudldk [Pud03]
discusses some pairs that have not been separated so far, but there is no par-
ticular evidence to support the believe in their p-inseparability.

4.4 Disjoint NP-Pairs Characterize Properties of
Propositional Proof Systems

In this section we will discuss disjoint NP-pairs which are defined from proposi-
tional proof systems. The link between NP-pairs and proof systems was estab-
lished by Razborov in [Raz94]. There he defined a canonical pair from a proof
system which corresponds to the reflection property of the system. Pudldk
[Pud03] showed that also the automatizability of the proof system and the fea-
sible interpolation property are expressible by disjoint NP-pairs. In this way
disjoint NP-pairs have substantially contributed to the understanding of propo-
sitional proof systems.

4.4.1 The Canonical Pair of a Proof System

Razborov [Raz94] was the first to associate a disjoint NP-pair (Ref(P), SAT™)
with a proof system P. This pair is called the canonical pair of P and is defined
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as follows:

Ref(P) = {(p,1") | Pl<m ¢}
SAT* = {(p,1™)|—~p € SAT} .

The first component Ref(P) contains tautologies together with information on
their proof length in P, whereas the second component SAT* is a modified
version of SAT that contains all formulas which are not tautological. Clearly,
both components are in NP and disjoint. It is also interesting to have a look at
the complement of Ref(P) U SAT*. It contains tautologies together with lower
bounds to the proof length of these formulas in the system P, i.e.

Ref(P) USAT* = {(¢,1™) | ¢ € TAUT and P /<., ¢} .

Hence, all information on proof length of P is coded in the canonical pair of P.

Originally, Razborov gave a slightly different definition of the canonical pair.
Namely, he considered proof systems as refutation systems that prove formulas
by refuting their negations. This is the case for a number of proof systems like
resolution or the cutting planes system. Therefore Razborov formalized the
canonical pair as

Ref(P) = {(p,1") | PlF<m ~¢}
SAT* = {(¢,1™)|p € SAT} .

Refutation systems gave their name to the first component whereas the second
component is now simply a padded version of SAT. Because the general defini-
tion of Cook and Reckhow (Definition 2.2.1) does not formalize proof systems
as refutation systems we decided to modify the content of the canonical pair
while keeping its name.

4.4.2 The Canonical Pair and Automatizability

The central question of propositional proof complexity can be stated as follows:
given a formula ¢ and a propositional proof system P, what is the minimal
length of a P-proof of 7 However, for many applications it is more important
to construct proofs than to merely estimate their length. But we immediately
find limitations to the goal of the efficient construction of proofs: constructing
proofs in time polynomial in the length of the input formula is not possible
unless the system is polynomially bounded. Therefore for the purpose of proof
search the notion of efficiency has to be formulated less restrictively, as is done
in the next definition:

Definition 4.4.1 (Bonet, Pitassi, Raz [BPRO00]) A proof system P is au-
tomatizable if there exists a deterministic procedure that takes as input a for-
mula ¢ and outputs a P-proof of ¢ in time polynomial in the length of the
shortest P-proof of ¢ if ¢ is a tautology. If ¢ & TAUT, then the behaviour of
the algorithm is unspecified.
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For practical purposes automatizable systems would be very desirable.
Searching for a proof we may not find the shortest one, but we are guaranteed
to find one that is only polynomially longer. Clearly, the truth-table method is
automatizable. Apart from this trivial example no other natural proof system
is known to be automatizable. Even worse, the information below suggests that
finding natural automatizable systems is a too ambitious enterprise.

The automatizability of a proof system P has the following easy character-
ization in terms of the set Ref(P):

Proposition 4.4.2 A proof system P is automatizable if and only if there ex-
ists a deterministic polynomial time algorithm that takes as input (p,1™) and
produces a P-proof of ¢ if (p,1™) € Ref(P). The algorithm might also output
proofs for tautologies ¢ with (p,1™) & Ref(P), but in case the proof search fails
the algorithm returns some fized output indicating that no P-proof was found.

Proof. Assume that P is automatizable via the algorithm A. By definition
there exists a polynomial p that bounds the running time of A for inputs ¢
with minimal proof size m in P. Running this algorithm A on input (¢, 1™) for
p(m) steps gives a polynomial time algorithm that returns P-proofs for inputs
from Ref(P).

If conversely B is an algorithm for Ref(P) as specified in the proposition,
then the following procedure certifies the automatizability of P:

1 Input: a formula @

2 m=1

3 REPEAT

4 simulate B(y,1™)

5 IF B(p,1™) returns a P-proof of ¢ THEN
6 output this P-proof

4 m=m+1

5 UNTIL m=0

For tautologies ¢ with minimal proof size m in P this algorithm executes the
REPEAT loop at most m times. Hence in this case the running time is bounded
by O(mp(|¢|+m)) where p is a polynomial for the running time of B. For inputs
i that are not tautological the above algorithm does not terminate. a

From this reformulation of automatizability it is clear that automatizable
proof systems have p-separable canonical pairs:

Proposition 4.4.3 (Pudldk [Pud03]) Let P be an automatizable proof sys-
tem. Then (Ref(P),SAT*) is p-separable.

The converse is probably not true as we will show with the following exam-
ple.

Proposition 4.4.4 There exists a proof system P that has a p-separable canon-
ical pair. But P is not automatizable unless P = NP.
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Proof. We define the proof system P as follows:

@ if 7= (¢,1™) and m > 2I¥|
P(r)=<% VT if = (¢, ) and « is a satisfying assignment for ¢
T otherwise .

The following algorithm separates the canonical pair of P:

1 Input: (¢,1™)

2 IF ¢p=¢%V T or ¢ =T THEN output 1
3 IF m > 2%l THEN

4 IF ¢ € TAUT THEN output 1

5 output O .

The test ¢ € TAUT in line 4 can be performed in polynomial time by checking
all assignments because the parameter m is big enough according to line 3.
Hence the algorithm is efficient.

Since formulas ¢ = ¥V T are always tautological the algorithm only outputs
1 if the formula ¢ is a tautology. Therefore (¢, 1) € SAT* always leads to the
answer (0 whereas inputs (¢, 1™) € Ref(P) are always answered by 1 according
to lines 2 and 4.

The proof system P is not automatizable because this would mean that
on input ¢ V T we would have to produce in polynomial time a satisfying
assignment of ¢ provided ¢ € SAT. This implies in particular the existence of
a deterministic polynomial time algorithm to decide SAT and hence P = NP.

|

This example is not entirely satisfactory as the proof system constructed
in the last proof is not very natural. But it might be hard to prove Propo-
sition 4.4.4 for natural proof systems as it is conjectured that the canonical
pairs of all studied proof systems are not p-separable (cf. [Pud03]). At least for
proof systems stronger than bounded-depth Frege systems we have good reason
to believe that their canonical pairs are not p-separable because cryptographic
pairs reduce to the canonical pairs of these systems [KP98, BPR00, BDG'04].

As we have seen the p-separability of the canonical pair might not imply
the automatizability of the system but at least it implies that there exists a
stronger automatizable system as the next theorem by Pudlak shows.

Theorem 4.4.5 (Pudldk [Pud03]) Let P be a propositional proof system.
Then (Ref(P),SAT*) is p-separable if and only if there exists an automatizable
proof system ) which p-simulates P.

Proof. Let (Ref(P),SAT*) be separated by the polynomial time computable
function f, i.e.

(0, 1) € Ref(P) = [f(p,17)

1
(p,1™) € SAT™ — flp, 1™y =0 .
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We define the system () by

o if 7= (p,1™) and f(p,1™) =1
Qm) = { T otherwise .

Let us first check that @ is a proof system. If f(p,1™) = 1, then (p,1™) ¢
SAT*. This means —¢ ¢ SAT and hence ¢ is a tautology. On the other hand
every formula ¢ has a Q-proof if we choose the parameter m big enough.
Clearly @ is automatizable because ) <, ¢ implies in particular that
(p,1™) is a Q-proof of p.
P-proofs are translated to @-proofs by the polynomial time computable
function

m i (P(m), 1)

hence () p-simulates P.
For the other direction let () >, P be an automatizable proof system. Then
(Ref(Q), SAT™) is p-separable. Because P <, ) we get

(Ref(P), SAT*) <, (Ref(Q), SAT*) .
Hence also (Ref(P),SAT*) is p-separable. 0

This theorem indicates that instead of concentrating on automatizability
it might be more important to investigate the p-separability of the canonical
pairs. Therefore proof systems which have automatizable extensions @ >, P
are called weakly automatizable (cf. [AB02]).

Although practical evidence seems to suggest that finding resolution
proofs is easy, Alekhnovich and Razborov established in [ARO1] the non-
automatizability of resolution under an assumption from parameterized com-
plexity (WI[P] is not tractable). The question whether resolution is weakly
automatizable is still open. Atserias and Bonet [AB02] show that this ques-
tion is equivalent to whether an extension of resolution Res(2) has the efficient
interpolation property (cf. Sect. 4.4.3).

Strong systems simulating Frege systems are known to be not automatizable
under cryptographic assumptions. We will return to this problem in Sect. 5.1.

4.4.3 The Interpolation Pair and Feasible Interpolation

In this section we describe how the feasible interpolation property of a proof
system can be modeled by a disjoint NP-pair. Feasible interpolation has been
successfully used to show lower bounds to the proof size of a number of proof
systems like resolution and cutting planes. It originates in the classical inter-
polation theorem of Craig of which we only need the propositional version.

Theorem 4.4.6 (Craig’s Interpolation Theorem [Cra57])
Let o(z,y) and ¥(Z,y) be propositional formulas with all variables displayed.
Let y and z be distinct tuples of variables such that T are the common variables

of p and . If
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is a tautology, then there exists a propositional formula 0(Z) using only the
common variables of  and ¥ such that

oz, y) — 0(z) and 0(zT) — Y(Z,2)
are tautologies.

Proof. Consider the Boolean function 3yp(z,y). This function interpolates
o(z,y) and ¥(Z,y) because

o(T,9) — Iye(T, )

is always a tautology and since ¢(Z,y) — ¥(Z, Z) is tautological this is also true
for

(Bye(z,9)) — »(z,2) .

Every Boolean function can be described by a propositional formula in the

same variables. Hence any formula expressing 3y¢(Z, ) is an interpolant of

o(Z,y) — (T, Z). Alternatively we could have taken a formula for Vzy(z, 2).
a

Next we define the feasible interpolation property.

Definition 4.4.7 (Krajicek [Kra97]) A proof system P has feasible interpo-
lation if there exists a polynomial time procedure that takes as input an impli-
cation o(Z,y) — ¥(Z,2) and a P-proof m of o(Z,y) — (T, Z2) and outputs a
Boolean circuit C(Z) such that for every propositional assignment a the follow-
ing holds:

1. If p(a,y) is satisfiable, then C(a) outputs 1.
2. If —(a, z) is satisfiable, then C(a) outputs 0.

Feasible interpolation has been shown for resolution [Kra97], the cutting
planes system [BPR97, Kra97, Pud97] and some algebraic proof systems [PS98].
Combined with lower bounds for the separation of the clique colouring pair by
monotone Boolean circuits [Raz85, AB87] these results yield lower bounds for
the proof lengths of the above proof systems. We refer to the survey [Pud98]
for a detailed presentation of this approach.

To capture the feasible interpolation property by disjoint NP-pairs Pudlak
defines in [Pud03] an interpolation pair (I%,1}) for a proof system P. To be
consistent with our notation of pairs we denote this pair by (I1(P), I2(P)). It
is defined as follows:

L(P) = {(¢,¢,7) ]| P(r) =9V, Var(p) N Var(yh) = 0 and ~p € SAT}
L(P) = {(¢,¥,7) | P(r)=¢ V1, Var(p) N Var(yh) = ) and —¢p € SAT} .

Whether or not a proof system admits feasible interpolation can be read off
from the interpolation pair, namely:
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Theorem 4.4.8 (Pudldk [Pud03]) Let P be a propositional proof system
that is efficiently closed under substitutions by constants. Likewise suppose
we can efficiently modify a P-proof of an implication ¢ — 1 to a P-proof of
—p V1 and vice versa.

Then (I1(P), I5(P)) is p-separable if and only if P has the feasible interpo-
lation property.

Proof. Suppose (I1(P), I2(P)) is separated by the polynomial time computable
function f, i.e.

(8071/1777) € Il(P) — f(gO,"L/J,?T) =1
(9071/%77) € 12(P) - f(gD,’(ZJ,TF) =0.

Let the implication ¢(Z,y) — ¥(Z,Z) be given together with a P-proof 7 of
this formula. We have to construct a circuit C' with inputs Z that interpolates
o and .

Because P can handle implications and is closed under substitutions by
constants in an effective manner we get from the P-proof 7 of ¢(z,y) — (Z, 2)
an at most polynomially longer P-proof ©’ of —¢(a, §) V (a, z) for constants a.
The circuit C' on input a first computes this proof 7’ from the proof 7 which is
hardwired into C and then evaluates the function

f(ﬁSO(@a Zj), 1[)((_1, 2)7 77,) :

If p(a,y) is satisfiable, then f outputs 1, hence

= v (@,9) = C(T)

If —(a, 2) is satisfiable, i.e. ¥(a, Z) is not tautological, then f outputs 0, hence
FC(x) — (T, 2) -

For the other direction suppose that P admits feasible interpolation. We
need to construct a function f that separates I;(P) and I3(P). On input
(o(g),9(z), ) we first check that ¢ and 1 have no common variables and that
7 is indeed a P-proof of ¢ V 1. Then we construct from 7w a P-proof 7’ of
—(y) — ¥(z). Now feasible interpolation for P gives us a circuit without free
inputs that interpolates —¢(y) and ¢(z). Evaluating this circuit we obtain the
answer to the desired function f. O

It is not difficult to show that for proof systems with suitable closure prop-
erties the interpolation pair is <j,-reducible to the canonical pair of the proof
system (cf. Proposition 4.8.1). Therefore automatizable proof systems also have
the feasible interpolation property. The converse is probably not true, as reso-
lution has feasible interpolation [Kra97] but is not believed to be automatizable
[ARO1].
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4.5 Representations of NP-Pairs

In the previous section we explained how properties of propositional proof sys-
tems can be captured by disjoint NP-pairs that are suitably defined from these
proof systems. Hence, exploring the theory of disjoint NP-pairs can help us to
solve problems from propositional proof complexity. In Sect. 5.2 we will discuss
another application of this kind.

Conversely, we now aim to transfer proof-theoretic knowledge to the theory
of NP-pairs to gain a more detailed understanding of the structure of the class of
disjoint NP-pairs and in particular of the NP-pairs defined from propositional
proof systems. For this we need to represent arbitrary disjoint NP-pairs in
propositional proof systems. This can be done uniformly in theories of bounded
arithmetic or non-uniformly in propositional proof systems. We will start with
the uniform concept which was first considered by Razborov [Raz94].

Definition 4.5.1 (Razborov [Raz94]) A X!-formula ¢ is an arithmetic rep-
resentation of an NP-set A if for all natural numbers a

NEgpa) < acA.

A DNPP (A, B) is representable in an L-theory T if there are X%-formulas ¢
and Y representing A and B, respectively, such that

T = (Vo) (-p(z) v =p(z)) .

By DNPP(T') we denote the class of all disjoint NP-pairs that are representable
m T.

Since (Vz)(=@(z) V =(x)) is a VII-formula we can also express the dis-
jointness of A and B propositionally by the sequence of tautologies ||—¢(z) V
—p(z)||™. Hence propositional representations of disjoint NP-pairs can be sim-
ply obtained by transforming Definition 4.5.1 with the translation .|| to the
propositional level. However, we will give a more general definition. For this
we first need to define a propositional encoding of NP-sets.

Definition 4.5.2 Let A be an NP-set over the alphabet {0,1}. A propositional
representation for A is a sequence of propositional formulas oy (Z,y) with the
following properties:

1. on(Z,y) has propositional variables T and y such that T is a vector of n
propositional variables.

2. There exists a polynomial time algorithm that on input 1™ outputs
on(Z, 7).

3. Leta € {0,1}". Then a € A if and only if v,(a,y) is satisfiable.

Once we have a propositional description of NP-sets we can also represent
disjoint NP-sets in propositional proof systems. This notion is captured by the
next definition.
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Definition 4.5.3 Let P be a propositional proof system. A disjoint NP-pair
(A, B) is representable in P if there are propositional representations o (Z,y)
of A and ¢y, (Z,Z) of B such that T are the common variables of p,(Z,y) and
Un(Z,2) and

P by —on(Z,§) V —bn(Z, 2) .

By DNPP(P) we denote the class of all disjoint NP-pairs which are repre-
sentable in P.

In the class DNPP(P) we collect those NP-pairs for which the disjointness is
efficiently provable in the proof system P. Clearly, considering stronger proof
systems we expect this class to grow, namely:

Proposition 4.5.4 Let P and Q be proof systems. If P < Q, then DNPP(P) C
DNPP(Q).

This simple observation also implies that the representability of a disjoint
NP-pair is a robust property, i.e. if P and ) are equivalent proof systems, then
a pair (A, B) is representable in P if and only if it is representable in Q.

We remark that the provability of the disjointness of a pair (A, B) in some

proof system depends crucially on the choice of the representations for A and
B.

Proposition 4.5.5 Let P be proof system such that the system EF +RFN(P)
is not optimal and let (A, B) € DNPP(P). Then there exist representations ¢,
of A and v, of B such that Pt/ —pn V —)y,.

Proof. Let (A, B) be representable in P via the representations ¢/, and ¢/, i.e.
P, =gl V=1l By Q we denote the proof system EF + RFN(P). Because
Q is not optimal and fulfills all conditions from Theorem 3.7.8 we can use this
theorem to get a sequence 7, of hard tautologies for Q). We define

) = &L(Z,9) V()
) = szalm(ng)\/_ﬂ—n(ﬁ)

N
IS

on (T,
Y (T,

9

N
S]]

9

where all tuples of variables z, y, z, u and v are pairwise disjoint. As —7,(u) is
not satisfiable ¢/, (z,y) V =7, (@) represents A. Similarly, ¢, is a propositional
representation for B. But () does not prove the disjointness of A and B with
respect to the representations ¢, and 1,,. Assume on the contrary that

Q Fs “Pn \/—Vl/}n .
By definition this means
Q Fv (e (@,9) V (@) V ~(¥r,(7,2) V =7 (0)) -

As () can perform basic operations with formulas we get polynomial size Q-
proofs of

(=00 (@, YV (T, 2)) A (2 (2, §)VTa (D)) A (200 (2, 2)V 70 () A (T (0) VTR (D))
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Because @ is closed under conjunctions we obtain
Q ki m(a) V1,(0) .

As these are two identical copies of the same formula with disjoint variables we
can prove in EF' the formula 7, (@) by substituting the variables © by u. Hence
we derive @ b, 7,(u), contradicting the choice of 7,, as hard tautologies for Q.
Thus we have shown

Q |71* PR V _‘wn

and because P < () we have also proven our claim P £, -, V —,. O

Clearly, if optimal systems do not exist, then we have hard tautologies for
all the systems EF + RFN(P). Hence we get:

Corollary 4.5.6 If optimal proof systems do not exist, then the following holds:
for every proof system P and for every disjoint NP-pair (A, B) there exist propo-
sitional representations p, for A and 1, for B such that P does not prove the
disjointness of (A, B) with respect to these representations, i.e. P I, =V =)y,

Let us give a concrete example for this situation. In [Pud99] Pudlék shows
that the disjointness of the Clique-Colouring pair is not provable with polyno-
mial size proofs in the cutting planes system C'P for some canonical represen-
tations of the components CCy and CC;. As C'P simulates resolution the dis-
jointness of (C'Cy, C'C) is also not provable in resolution with respect to these
representations. On the other hand, the Clique-Colouring pair is p-separable
as shown by Lovdsz [Lov79]. Hence (CCy,CC}) is contained in DNPP(Res)
as the following argument shows. We choose some simple p-separable pair
(A, B) that is representable in resolution. As all p-separable pairs are equiva-
lent we can reduce (CCyp, CC1) to (A, B). The class DNPP(Res) is closed under
<,-reductions (we will show this in Sect. 4.6, Corollary 4.6.2). Therefore we
get (CCy,CCy) € DNPP(Res) which means that there exist polynomial size
resolution proofs for the disjointness of the Clique-Colouring pair for suitable
representations of its components.

Now we will compare the uniform and non-uniform representations. We
first show that the NP-pairs representable in a strong proof system are also
representable in the corresponding theory.

Proposition 4.5.7 Let T 2 S} be an L-theory and let P be a proof system
that is closed under substitutions by constants. Then T = RFN(P) implies
DNPP(P) C DNPP(T).

Proof. Let (A, B) be a disjoint NP-pair in DNPP(P) and let ¢,(Z,y) and
1¥n(Z, Z) be propositional representations for A and B, respectively, such that

Pk, _‘Qon(j7g)\/_‘¢n(jaz) .

Because P is closed under substitutions by constants there exists a polynomial
p such that for all a € {0,1}"

P l_gp(n) _'QOn(C_Z, g) \% _'Q;Z)n(av 2) :
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Assume further that the polynomial time computable functions f and g generate
the formulas ¢,, and 1, i.e.

f(A") = pu(z,9) and g(1") = Yn(T,2) .
Consider the first-order formula
p(a) = Assign(a, ) A ~Taut(~f (1) (a(2),7)) .

As this notation is not completely precise let us explain how to understand the
definition of ¢. At input 1/* the function f outputs the formula ©10(Z, 7).
In ¢ the computation of f is expressed by a Elf—formula. Then we use again
the free variable o of ¢ to obtain a propositional assignment to the proposi-
tional variables Z. The formula —~Taut(—f(11%)(a(z), 7)) is a i-formulation
for the unsatisfiability of ¢|4((Z,¥), where the variables T are substituted by
the constants specified in « and only the variables § remain free.

The above explanation shows that ¢ is a Ell’—formula. Moreover, it is clear
that o represents A. Similarly, we define a representation for B as

Pla) = Assign(o, &) A ~Taut(~g(11%)(a(z), 2)) A
(@m)lr| < p(lal) APrEp(m, ~f (1) (a(@),5) vV ~g (1) (a(z), 2)) -

Let us first verify that ¢ € X%. The first line of the definition of ¢ is X¢
analogously as in the definition of . As Prfp has a Ab-definition in S3 and
T D S3 also the second line can be given a X}-formulation, and hence ¢ € 3.

Let a € {0, 1}‘0‘| be the tupel of constants specified by the assignment c.
Then the first line of the definition of 1) expresses a € B analogously as in the
definition of . Because

—f() (@), g) v ~g(1) (a(@), 2)
equals the formula
P10l (@, §) V g (@, 2)
which by assumption has a P-proof of length < p(]a|) also the second part of
1) is fulfilled for @ € B. Therefore 1 represents B.

It remains to verify that T can prove the disjointness of A and B with
respect to the above representations. For this assume that M is a model of T
and o € M is an element such that M = ¢(«). In particular this means that
there exists an element w € M such that

M |= Prtp(m,—f(1?)(a(z),9) v ~g(1*)(a(z),2)) .
Because 7' RFN(P) this implies
M = Taut(=f(1)((@),5) V ~g(1) (a(@), 2)) .

The theory T D S3 is strong enough to prove Tarski’s truth conditions for the
propositional satisfaction relation = (cf. [Kra95] Lemma 9.3.9). In particular
T proves

(Yo, v, ) Assign(e, p V) AN(a E o V) = (a = @) V(e E9) .
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Therefore T proves that a tautological disjunction of formulas without common
variables contains at least one tautological disjunct, and hence we get

M = Taut(=f(11)((@),)) Vv Taut(=g(1) ((2), 2)) -
But because M = () we also have
M | —Taut(~g(1*)(«(z),2))

implying
M | Taut(=f(1")(a(2),9)) |
and therefore M £ p(a). Hence we have shown T F (Vx)—p(x) V —)(z). 0

Next we prove that for regular proof systems also the other inclusion is
valid, yielding equality between the classes DNPP(P) and DNPP(T).

Theorem 4.5.8 Let P > EF be a regular proof system which is closed under
substitutions by constants and let T D Si be a theory corresponding to T. Then
DNPP(P) = DNPP(T).

Proof. The first inclusion was already proven in Proposition 4.5.7. To show
DNPP(T) C DNPP(P) let ¢ and 1 be ¥4-formulas representing A and B,
respectively, such that

T F (Va)—e(x) vV —p(z) . (4.1)

We define the propositional representations of A and B as the ||.||-translations
of ¢ and v, namely

on(T,7) = lle(@)["  and  ¢Pn(z,2) = [[¢(2)]"

where we choose the auxiliary variables g of ||p(z)||™ and Z of ||¢(z)||™ disjoint.
These sequences can be generated in polynomial time and hence represent A and
B by Theorem 3.2.1. Because the formula (Vz)-p(z) V —)(z) in equation (4.1)
is a VII5-formula we derive

Pt ep(e) V(@)

which implies
Pty Slle@)|™ vV ollo(@))™

O

At first sight Theorem 4.5.8 might come as a surprise as it states that the
non-uniform and uniform concepts equal when representing disjoint NP-pairs in
regular proof systems. The uniform representations of NP-pairs are translated
via ||.|| to non-uniform representations in a straightforward manner. For the
transformation of propositional representations into first-order formulas as in
Proposition 4.5.7 it is, however, necessary to essentially change the represen-
tation of one of the components (in the proof of Proposition 4.5.7 of that of
B).
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4.6 The Complexity Class DNPP(P)

The aim of this section is to show that the subclasses DNPP(P) of DisjNP
as defined in the last section are indeed examples for well defined complexity
classes. We will provide justification for this claim by demonstrating that the
classes DNPP(P) are closed under reductions and also posses hard or complete
pairs for well defined proof systems P.

We start by giving sufficient conditions for the closure of DNPP(P) under
<, (and hence also under <y). Translating the reductions to the propositional
level we have to work with uniform circuit families computing the reduction
functions. Since it is possible in resolution to prove the uniqueness of circuit
computations we can show the following:

Proposition 4.6.1 Let P be a proof system which simulates resolution and is
closed under disjunctions. Then DNPP(P) is closed under <.

Proof. Let (A, B) and (C, D) be disjoint NP-pairs. Let (C, D) be representable
in P, i.e. there exist representations ¢, (z,¥y) and ¥, (%, z) of C' and D, respec-
tively, such that

Pty =on(Z,§) V —tn(Z, Z) .

Assume further that (A, B) is <j,-reducible to (C, D) via the polynomial time
computable function f. We have to show that also (A, B) is representable in
P. For this we fix arbitrary representations x,(Z,7) and 60,(z,s) for A and
B, respectively. Without loss of generality we may assume that the reduction
function f generates on inputs of length n outputs of length exactly p(n) for
some fixed polynomial p. This can be achieved for example by adding leading
zeros to outputs of length < p(n). Let

Cy : {0,1}" — {0,1}7(™)

be a uniform circuit family which computes the function f. The computation
of the circuits C,, can be described by propositional formulas C,,(Z, p, @) which
state that on input corresponding to the propositional variables T the circuit
produces the output corresponding to p. The variables u are auxiliary variables
for the gates of the circuit.

Consider the sequence of propositional formulas

Xn(Z,7) N Co(Z, 5, 0) N @pn) (D> ) - (4.2)

These formulas provide a propositional representation of the set A because
they propositionally express that & € A and there exists a computation of C,,
on input T that outputs an element from the set C. Similarly, the sequence

Hn(.f,g) N Cn(fﬂjﬂj) /\wp(n)(@ 2) (43)

represents B. We have to check that P proves the disjointness of A and B with
respect to these representations. The P-proof proceeds along the following lines.
By hypothesis we have polynomial size P-proofs for the formulas

=0p(n) (D, U) V pm) (D, 2) (4.4)
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By induction on the number of gates of a circuit we can show that resolution
proves the uniqueness of computations of Boolean circuits in polynomial size
resolution proofs. Because P simulates resolution this means that we have
polynomial size P-proofs of the formulas

Cn(@,p,u) A Cn(Z,4,0) — (P q) - (4.5)
From (4.4) and (4.5) we obtain polynomial size P-proofs of
Cn (2, p,0) A Cn(F,4,0) — ~@pm)(:9) V 70p(n) (@, 2) - (4.6)

Because P is closed under disjunctions we get from (4.6) polynomial size P-
proofs of

“Xn(Z,7) V 205 (Z, 5) V 2Cn(Z, D, 1) V 2Cn (T, ¢, ) V ~@pn) (D, §) V ~p(n) (T, Z) -

But this exactly means that P proves the disjointness of A and B with respect
to the propositional representations (4.2) and (4.3). Hence (A, B) € DNPP(P).
O

We instantiate Proposition 4.6.1 for our standard examples of proof systems:

Corollary 4.6.2 The class DNPP(P) is closed under <, and <, for the fol-
lowing proof systems P: resolution, Frege systems and all systems EF + ® for
polynomial time computable sets & C TAUT.

Next we show the hardness of the canonical pair of a proof system P for the
class DNPP(P).

Theorem 4.6.3 Let P be a proof system that is closed under substitutions by
constants and modus ponens and can evaluate formulas without variables. Then
(Ref(P),SAT™) is <,-hard for DNPP(P).

Proof. Let (A, B) be a DNPP and let ¢, (Z,y) and 1, (Z, Z) be propositional
representations of A and B, respectively, such that

Py —on(Z,9) V ~n(Z,2)
We have to show that
(A,B) <, (Ref(P),SAT™) .
We claim that the reduction is given by
a — (=t (a,2), 170)

for some suitable polynomial p. To see the correctness of the reduction let
first be a € A. Then there exists a witness b such that |= |, (a,b). From
the P-proof of =, (Z,y) V =94 (Z,2) we get by substituting a for Z and b
for § a polynomially longer P-proof of =y, (a@,b) V =tq/(a, 2). —~pje(a,b) is a
false propositional formula without free variables and hence can be refuted with
polynomial size P-proofs. An application of modus ponens gives a P-proof of
—)4/(@, 2) as desired.

Assume now a € B. Then ——,(a, 2) = 14/(a, 2) is satisfiable and hence
(—|’(/J‘a|(C_L, zZ), 1p(\a|)) € SAT™. O
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4.7 The Canonical Pair and the Reflection Principle

In this section we turn to proof systems that have the reflection property. We
first show that the reflection property of a proof system corresponds to the
representability of the canonical pair in the proof system. This is another
example for the characterization of proof-theoretic properties by disjoint NP-
pairs. The link between the canonical pair and the reflection property is already
apparent from the definition of (Ref(P),SAT*) and is also discussed in [Pud03].
Using our terminology from Sect. 4.5 we may phrase this connection precisely
as:

Proposition 4.7.1 Let P be a proof system. Then P has the reflection property
if and only if the canonical pair of P is representable in P with respect to the
standard representations of Ref(P) and SAT™.

Proof. By the standard representations of Ref(P) and SAT* we mean the ||.|-
translations of the first-order formulas

(Fm) |7| < m A Prip(nm, o)

for Ref(P) and
(Ba) laf < fpl Na = —p

for SAT*. The representability of (Ref(P),SAT*) with respect to these repre-
sentations means

PE (0, 17) € Ref(P) V (¢, 1) & SATT)|™™

i.e.
P F, ||[2Prfp(m, ) Va = —p||™™ .

(Vo) |a| < |o| A a = —p is equivalent to Taut(p), hence
Pt || =Prfp(m, ) V Taut(p) "™

ie.

P [[Prfp(m, o) — Taut(e)[™™ ,
which is by definition Pk, |REN(P)]|. 0

Using Proposition 4.7.1 we conclude from Theorem 4.6.3 the following:

Corollary 4.7.2 Let P be a proof system that has the reflection property. As-
sume further that P is closed under substitutions by constants and modus po-
nens and can evaluate formulas without variables. Then (Ref(P),SAT*) is
<p-complete for DNPP(P).

By Theorem 3.6.9 this means for our standard examples of proof systems:

Corollary 4.7.3 Let ® be a polynomial time decidable set of true I14 -formulas.
Then (Ref(EF + ||®||), SAT™) is <,-complete for DNPP(EF + ||®]]).
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What is actually needed for Corollary 4.7.2 is not the reflection property of
P but the representability of (Ref(P), SAT™) in the proof system P. We already
remarked that reflection for P implies (Ref(P),SAT*) € DNPP(P). However,
the next proposition shows that the provability of the reflection principle of a
system and the representability of its canonical pair are different concepts.

Proposition 4.7.4 Let P be a proof system of the form EF +® for polynomial
time computable ® C TAUT. Let further Q be a proof system such that

QZLP but (Ref(Q),SAT*) <, (Ref(P),SAT") .
Then (Ref(Q),SAT™) is representable in P but Pt/ ||[RFN(Q)|".

Proof. Suppose the function f performs the <,-reduction from (Ref(Q), SAT™)
to (Ref(P), SAT™). From this we conclude with Propositions 4.6.1 and 4.7.1 the
representability of (Ref(Q),SAT*) in P. Going back to the proof of Proposi-
tion 4.6.1 we see that P proves the disjointness of (Ref(Q), SAT*) with respect
to the following representations:

Ref(Q) = {(¢,1") | (¢,1™) € Ref(Q) and f(p,1™) € Ref(P)}

and
SAT* = {(p,1™) | (p,1™) € SAT* and f(p,1™) € SAT*} .

But if P proves the disjointness of (Ref(Q),SAT™) with respect to the standard
representations

Ref(Q) = {(p, 1) | (3m) || < m A Prfp(m, @)}

and
SAT* = {(¢, 1) | Be) |a] < |o| A =~}

this means P F, |RFN(Q)|| and by Lemma 3.7.6 we get @ < P in contradiction
to the hypothesis Q £ P. O

In Sect. 4.13 we will show how to construct non-equivalent proof systems
P, ) with equivalent canonical pairs which are needed for the hypothesis of
Proposition 4.7.4.

In this context it is natural to ask whether the canonical pair of the reso-
lution calculus Res is <,-complete for DNPP(Res). In view of Corollary 4.7.2
and the above discussion knowing whether (Ref(Res),SAT™) is representable
in resolution would answer this question. Atserias and Bonet [AB02] proved
that resolution does not have the reflection property. By Proposition 4.7.1
this means that the disjointness of (Ref(Res), SAT*) is not provable in reso-
lution with respect to the standard representation. However, we cannot ex-
clude the possibility that we have short resolution proofs of the disjointness of
(Ref(Res), SAT*) with respect to some other representation. At least we can
remark that, unless the canonical pair of resolution is p-separable, these proofs
would have to be essentially non-uniform.
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Proposition 4.7.5 If the canonical pair of resolution is not p-separable, then
there do not exist proofs for the disjointness of (Ref(Res),SAT*) that can be
generated in polynomial time.

Proof. Assume on the contrary that ¢(Z,y) and ¢(Z, z) are representations of
Ref(Res) and SAT*, respectively, such that we can generate resolution proofs of
—(Z,y) V —1)(Z, Z) in polynomial time. Because resolution has the feasible in-
terpolation property [Kra97] this gives a polynomial time computable algorithm
that on input 1" produces a circuit Cy,(z) such that for all a € {0,1}"

v(a,y) is satisfiable = Cpla) =1
Y(a, z) is satisfiable = Cy(a) =0 .

As ¢ and v are representations for Ref(Res) and SAT*, respectively, this means
that by evaluating the circuit C, we get a separator for (Ref(Res), SAT*).
Hence the canonical pair of resolution is p-separable. O

4.8 The Class DNPP(P) Under the Strong <;-
Reduction

In this section we will analyse the class DNPP(P) under the strong reduction
<. This is interesting because we know that <; is indeed a proper refinement
of <, (cf. Sect. 4.1). We start by associating to every proof system P a disjoint
NP-pair (U (P), Us):

Ur(P) = {(p,¥,1™) | Var(p) N Var(y) =0, ~¢ € SAT and P <y ¢ V1b}
Uy = {(,¥,1™) | Var(p) N Var(y)) = 0 and —p € SAT} .

In the following we will simply refer to this pair as the U-pair. Let us first argue
that (U1(P),Us) is indeed a disjoint NP-pair. Clearly both components are in
NP. Let (¢,1,1™) € Uy(P). Since we have a P-proof of ¢ V ¢ the formula is
a tautology. Because ¢ and ¢ do not share variables one of ¢ or v is itself a
tautology. Because - is satisfiable 9 is a tautology. Therefore —¢ ¢ SAT and
hence (¢, 9,1™) &€ Us.

We could have defined the pair in a more symmetric way by requiring P <,
V1 also for the second component but for the following this is not important.

The pair (U;(P),Us) is reminiscent of the interpolation pair (I1(P), I2(P)),
the essential difference being that (I3 (P), I2(P)) contains actual P-proofs while
(U1(P),Usz) contains only information on their lengths. In the following we will
show that both these pairs have similar function for DNPP(P) under <; as the
canonical pairs have under the weaker reduction <,. But before we come to
this we need to compare (U;(P),Us) with the canonical pair of P.

Proposition 4.8.1 1. Let P be a proof system that is closed under disjunc-
tions. Then (Ref(P),SAT*) <, (U1(P),Us).
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2. Let P be a proof system that is closed under substitutions by con-
stants and modus ponens and evaluates formulas without variables. Then
(U1(P),Usz) <p (Ref(P),SAT™) and (I, (P), I2(P)) <, (Ref(P),SAT™).

Proof. The first reduction is given by

for a suitable polynomial p. To verify the correctness of the reduction let first
(p,1™) € Ref(P). This means that P F<,, ¢ and because P is closed under
disjunctions we infer P <.,y ¢ V L for the respective polynomial p. We
assume that the variables of ¢ and L are chosen disjoint and since =1 = T is
satisfiable we get (L, p, 170™)) € U (P).

If (¢, 1™) € SAT*, then — is satisfiable, hence (L, ¢, 17(™) € Us.

The reduction in part 2 of this proposition is performed by

(0,90, 1) = (,17m)

for some suitable polynomial p depending on the proof system P.

To verify the reduction let first (¢(z),9(y),1™) € Ui(P). Then P k<,
o(Z) V(y) and —p(z) € SAT. Choose a satisfying assignment a for —¢(Z).
Because P is closed under substitutions by constants we get polynomially long
P-proofs of p(a) V(7). ¢(a) is a false propositional formula without variables
which can be evaluated in P to L in polynomially long proofs. Using modus
ponens we obtain a P-proof of ¥(y).

If (p,1,1™) € Us, then —¢p € SAT and hence (1), 1) € SAT*.

The reduction from the interpolation pair to the canonical pair follows
from combining the reduction from (I1(P),I5(P)) to (Ui(P),Us), given by
(¢, 0, 7) — (p,2,171), with the previous reduction from (Uj(P),Us) to the
canonical pair of P. O

As the proof systems EF + ® for polynomial time computable & C TAUT
have all the properties listed in Proposition 4.8.1 we obtain:

Corollary 4.8.2 Let & C TAUT be computable in polynomial time. Then
(Ref(EF + ®),SAT*) =, (U1(EF + ®),Us) .

The following theorem is an analogon of Theorem 4.6.3 for the strong re-
duction <j.

Theorem 4.8.3 Let P be a proof system that is closed under substitutions by
constants. Then (Uy(P),Us) is <s-hard for DNPP(P).

Proof. Let (A, B) be a DNPP and let ¢,(Z,y) and 9, (Z, Z) be propositional
representations of A and B, respectively, such that

P k. _‘(pn(j7g) \% Wﬁn(f, 2) :
We claim that there exists a polynomial p such that

a = (_'90|a\ ((_I, g)a _'¢|a\ ((_1, 2)7 1p(|a\))
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realizes a <¢-reduction from (A, B) to (Uy(P),Us).

Let first a be an element from A of length n. Because ¢, (Z,y) represents
A the formula ¢,(a,y) is satisfiable. As P is closed under substitutions by
constants we have

P Fopmy ~¢n(@,§) V —hn(a, 2)
for the appropriate polynomial p. This confirms that

(= (@, 9), ~bn(a, 2),17™) € Uy(P) .

If a € B, then 1, (a, z) is satisfiable and hence

(_'90|a\ ((_I, g)a _'sz)|a\ (C_L, 2)7 1p(\a|)) el .

If a ¢ AU B, then neither ¢, (a,y) nor 9, (a, z) is satisfiable and hence
(_'90\a|(av 2)7 _'w\a|(av 2)7 1p(|a\)) ¢ Ul(P) U Us. U

As in the case of <, we can improve this hardness result to a completeness
result for proof systems which have the reflection property.

Corollary 4.8.4 Let P be a proof system that has the reflection property. As-
sume further that P is closed under substitutions by constants, modus ponens
and disjunctions and can evaluate formulas without variables. Then (U1 (P),Us)
is <s-complete for DNPP(P).

Proof. We use the reduction from (Uy(P),Us;) to (Ref(P),SAT*) as given by
Proposition 4.8.1 to infer with Propositions 4.6.1 and 4.7.1 that (Ui(P),Us)
is representable in P. Together with Theorem 4.8.3 this yields the <,-
completeness of (U;(P),Us) for DNPP(P). 0

For proof systems P corresponding to theories of bounded arithmetic we
can also prove the <g-completeness of the interpolation pair of P for DNPP(P).
We first need to show that for regular proof systems P the pairs (Ui (P),Us)
and (I1(P), I2(P)) are contained in DNPP(P).

Lemma 4.8.5 Let P > EF be a regular proof system. Then (Uy(P),Us) and
(I1(P),I2(P)) are representable in P.

Proof. Let T D S} be the theory corresponding to P. We first show that
(U1(P),Us) is representable in T via some standard representations using the
formulas Prfp and Taut. From this the representability of (U;(P),Us) in P
follows by Theorem 4.5.8.

Consider the first-order formulas

0(z,y,z) = Form(x) A Form(y) A Var(zx)NVar(y) =0A
(3m)|7| < |z| APrfp(m,z V y) A =Taut(x)

and

x(z,y,2) = Form(x) A Form(y) A Var(x) N Var(y) =0 A
—Taut(y)



80 CHAPTER 4. DISJOINT NP-PAIRS

These formulas are straightforward first-order formalizations of Uy (P) and Us,
respectively. As 6 and y are ¥5-formulas they represent the sets Uy (P) and Us.
We have to verify that

T F (Vo)(Vy)(Vz2)-0(x,y, 2) V - x(z,y,2) .

For this let M be a model of T' and let (¢, 1, 1™) be a triple of elements from
M such that M | 0(p,1,1™). Then in the model M there exists a proof 7 of
¢ V1. Because T+ RFN(P) we get M = Taut(p V¢)). As M = S3 we get

M | Var(p)NVar(y) =0 A Taut(e V ¢) — Taut(p) V Taut(y) .

But since M = 0(p,%,1™) we also have M = —Taut(p) and hence M |=
Taut(¢)). This implies M = —x(¢,¥,1™).
The representability of (I;(P), I2(P)) in P is shown analogously. 0

Combining this lemma with the <g-hardness of (Ui(P),Usz) for DNPP(P)
as shown in Theorem 4.8.3 we obtain:

Theorem 4.8.6 Let P > EF be a regular proof system that is closed under
substitutions by constants. Then (Uy(P),Us) is <s-complete for DNPP(P).

For strongly regular systems P we can additionally show the <,-
completeness of the interpolation pair for DNPP(P):

Theorem 4.8.7 Let P > EF be a strongly reqular proof system that is
efficiently closed under substitutions by constants. Then (Ui(P),Us) and
(I1(P),I2(P)) are <s-complete for DNPP(P). In particular we have

(U1(P),Uz) =5 (I1(P), I2(P)) .

Proof. The <,-completeness of (U (P),Us) was already stated in Theorem 4.8.6.

As by Lemma 4.8.5 also (I;(P), I2(P)) is representable in P it remains to
show that (I1(P),I5(P)) is <s-hard for DNPP(P). For this let (A, B) be a
disjoint NP-pair that is representable in P. By Theorem 4.5.8 we know that
(A, B) is also representable in the theory T' corresponding to P. Let ¢(z) and
1 (x) be representations of A and B, respectively, such that

T F (Va)—p(z) V—1(x) .

Because P is strongly regular there exists a polynomial time computable func-
tion f that on input 1™ produces a P-proof of

=) v =p(z)[["

Further, because by assumption P is efficiently closed under substitutions by
constants we can use f to obtain a polynomial time computable function g that
on input a € {0,1}" outputs a P-proof of

= (@) v —p()[|* (5% /a) -
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We claim that the <;-reduction from (A, B) to (I1(P), I2(P)) is given by
a = (|-~p(@)]“\(p* /a), |~ ()] (p* /a), g(a))

where the auxiliary variables of ||=¢(z)||l% and |- (x)|/|% are chosen disjoint.
Verifying the correctness of the reduction proceeds as in Theorem 4.8.3. O

As a corollary we get from Proposition 4.6.1 and Theorem 4.8.7 for our
standard examples for strong proof systems:

Corollary 4.8.8 Let ® be a polynomial time set of true I1-formulas. Then
for every disjoint NP-pair (A, B) we have

(A,B) € DNPP(EF + ||®|) <= (A,B) <, (Ui (EF +|?®|),Us) .
Additionally, we have
(UL(EF + [|®])), Uz) = (IL(EF + [|@])), L(EF + || ®]])) -

The equivalence of the interpolation pair and the U-pair for strong systems
as stated in the last corollary might come unexpected as the first idea for a
reduction from the U-pair to the I-pair probably is to generate proofs for ¢ V¢
at input (p, 1, 1™). This, however, is not possible for extensions of EF', because
a reduction from (Uy(P),Us) to (I1(P),I2(P)) of the form

(0, 9,1") = (g, 9, )

implies the automatizability of the system P. But it is known that automatiz-
ability fails for strong systems P > EF under cryptographic assumptions (cf.
Section 5.1).

Clearly, for all proof systems (p,9,7) — (p, 1, 1|7r‘) computes a <p-
reduction from (I1(P), I;(P)) to (U1 (P),Us). For weak systems like resolution
or cutting planes the opposite reduction is not possible unless the system is
weakly automatizable. This is the content of the next proposition.

Proposition 4.8.9 Let P be a proof system that has the feasible interpolation
property and is closed under disjunctions. Then (Ui(P),Us) <, (I1(P),12(P))
implies that P is weakly automatizable.

Proof. By Theorem 4.4.8 feasible interpolation for P means that (I1(P), I2(P))
is p-separable. Therefore (Uy(P),Uz) <, ([1(P),I2(P)) implies that also
(U1(P),Us) is p-separable. Closure of P under disjunctions together with
Proposition 4.8.1 guarantees

(Ref(P),SAT") <, (U1 (P),U2) ,

hence also (Ref(P),SAT™) is p-separable and therefore P is weakly automatiz-
able. O

Of course we can use part 2 of Proposition 4.8.1 together with an analogous
argument as above to infer that weak automatizability of P is also a sufficient
condition to reduce (Uj(P),Us) to ([1(P),I2(P)). Instead we just state the
reduction for automatizable proof systems.
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Proposition 4.8.10 Let P be an automatizable proof system. Then
(U1(P),Uz) <p (I1(P), I2(P)) -

Proof. Let P be automatizable. Hence there exists a polynomial time com-
putable function f that on input (¢,1™) produces a P-proof of ¢ provided
(p,1™) € Ref(P). If (¢,1™) & Ref(P) the behaviour of f is unspecified. The
desired reduction is given by

(o, 1) { (b, e v 1m) i P(fpV 6. 1) = oV o

(w0, %0, m0) otherwise

where (¢g, Y0, m) is a fixed triple from Iy(P). 0

4.9 Canonical Candidates for <,-Complete Pairs

The definition of the canonical pair (Ref(P),SAT*) was motivated by the re-
flection principle (cf. Sect. 4.7). Additionally, the canonical pair is tightly
connected to the automatizability of the proof system (cf. Sect. 4.4.2). In the
same way the interpolation pair captures the feasible interpolation property (cf.
Sect. 4.4.3). It is therefore natural to ask what is the meaning of the U-pair
which we introduced in the previous section. We will argue that the U-pair is
in fact the natural choice for a <;-complete pair for the classes DNPP(P).

Complexity classes are usually defined by a machine model to which resource
bounds are imposed. A complexity class is syntactic if the machines can be
appropriately standardized such that there exists an easy test which verifies that
all these standardized machines define indeed languages from the complexity
class (cf. [Pap94]). For syntactic classes there is a canonical way how to define
complete languages. Namely, if M denotes the set of all standardized machines
with implicit resource bounds, then

{(M,z) | M € M and M (x) accepts}

is complete for the respective complexity class. For example the syntactic class
NP has the following canonical <P -complete language

{(M,z,1™) | M is a nondeterministic Turing machine

that accepts z in < m steps} .

The machine model for disjoint NP-pairs consists of pairs of nondeterministic
polynomial time bounded Turing machines that do not accept any element in
common. This, however, is not a syntactic definition as we cannot test whether
two given nondeterministic Turing machines indeed accept disjoint languages.
In fact, by the theorem of Rice [Rich3] the set

{(My,Ms) | M; and My are nondeterministic Turing machines
such that L(My) N L(Ms) = 0}
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is undecidable. Therefore, constructing complete disjoint NP-pairs via the above
method fails.

If we restrict the class of all DNPP to those disjoint NP-pairs that are repre-
sentable in some fixed proof system P, then the situation is different. The ma-
chine model now consists of pairs (M7, Ms) of polynomial time nondeterministic
Turing machines such that the disjointness of L(M;) and L(Ms) has polyno-
mial size P-proofs for suitable propositional descriptions of M; and Ms. These
propositional descriptions are computable in polynomial time from the machines
M, and Ms. As further the polynomial size P-proofs of L(M;)NL(Msy) = 0 can
be guessed and verified in polynomial time the process of checking that (M7, M)
defines a pair in DNPP(P) can be performed in nondeterministic polynomial
time. Hence DNPP(P) is a syntactic class with hard languages defined in the
canonical way. Translating this canonical hard language to the propositional
level we arrive at a pair (W1 (P), Wa(P)) with

Wi(P) = {(¢(,9), (T, 2),a,1™) | Var(e) N Var(y) = {z},
v(a,y) € SAT and
Pl<m ~(Z,5) V (7, 2)}
Wa(P) = {(¢(,9), (%, 2),a,1™) | Var(e) N Var(y) = {7},
Y(a,z) € SAT and
Pl<m —(z,5) V b(2,2)}

In the components Wi (P) and Ws(P) the propositional formulas ¢(z,y) and
¥(Z, z) describe the Turing machines M; and My for inputs of length |Z|. The
variables T are reserved for the input whereas the variables 4y and z take the
witness and auxiliary information necessary for the computation of the machines
M and M. The P-proofs of length < m certify the disjointness of L(M;) and
L(M>). Finally, the satisfiability conditions on ¢(a, y) and ¢ (a, z) describe that
M7 and My, respectively, accept the input a.

The W-pair and the U-pair are very similar. The essential difference is that
in the U-pair the input is already substituted into the formulas describing the
machines. This makes the definition of the pair somewhat simpler and displays
the similarity of the pair to the interpolation pair. On the other hand closure
of the proof system P under substitutions by constants is no more necessary
to show the hardness of (W7 (P), Wa(P)) for DNPP(P). However, like in the
case of the canonical pair and the U-pair it is not clear that the W-pair itself is
representable in P, unless the system P is regular. We collect these observations
in the next theorem.

Theorem 4.9.1 1. For any proof system P the pair (W1 (P), Wa(P)) is <s-
hard for the class DNPP(P).

2. For any regular proof system P the pair (W1(P), Wy (P)) is <s-complete
for DNPP(P).
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4.10 Symmetry of Disjoint NP-Pairs

An interesting property of disjoint NP-pairs is the symmetry as defined by
Pudlak:

Definition 4.10.1 (Pudldk [Pud03]) A disjoint NP-pair is symmetric if
(A,B) <, (B, A).

Apparently, the symmetry of a pair (A, B) implies that (A, B) =, (B, A).
Symmetry of a pair means that both components look very similar, hence the
pair can be given a robust definition. It is clear that all p-separable pairs
are symmetric. Therefore Glafler et al. [GSSZ04] suggest to search for non-
symmetric pairs in order to establish the existence of p-inseparable pairs. One
result in this direction is the following:

Theorem 4.10.2 (Glaler, Selman, Sengupta, Zhang [GSSZ04])
If E # NEN coNE, then there is a set A € NP N coNP such that (A, A) is not
symmetric.

If we look at the property of symmetry of pairs under the other reductions,
then different pictures emerge. For the strong reduction <; it is clear that a
DNPP (A, B) cannot be symmetric if we choose A from P and B NP-complete.
In other words:

Proposition 4.10.3 P # NP if and only if there exist non-symmetric pairs
with respect to <.

A similar result for <, is not known as <,-non-symmetric pairs are p-
inseparable and it is not clear how to derive the existence of p-inseparable pairs
from the assumption P # NP.

In contrast, under the Turing reduction <7 all disjoint NP-pairs are sym-
metric:

Proposition 4.10.4 All disjoint NP-pairs are symmetric with respect to Tur-
ing and smart Turing reductions.

Proof. Let the pair (A, B) be separated by the set S. Then S is a separator for
(B,A). The set S is Turing reducible to its complement by asking the input
string as an oracle query and negating the answer. Hence the reduction is even
a smart Turing reduction. O

The NP-pairs associated with propositional proof systems are usually sym-
metric. For the interpolation pair this is already apparent from its definition.
For the canonical pair and the U-pair we get symmetry at least for sufficiently
strong proof systems.

Proposition 4.10.5 Let @ be a polynomial time set of true Hlf -formulas. Then
the canonical pair of EF + ||®| is symmetric with respect to <,. Further
(UL (EF + ||®|)),Uz) is symmetric with respect to <s.
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Proof. Let ® be a polynomial time set of true II¢-formulas and let P denote the
system EF +|/®|. By Corollary 4.7.3 and Theorem 4.8.6 the canonical pair and
the U-pair of P are <,- and < -complete for DNPP(P), respectively. Clearly the
notion of representability is symmetric, hence (SAT*, Ref(P)) and (Us, U1 (P))
are contained in DNPP(P). Therefore these pairs reduce to (Ref(P),SAT*) and
(U1(P), Us), respectively. 0

The first part of Proposition 4.10.5 also holds for the Frege system and its
bounded depths versions as already remarked by Razborov [Raz94]. The de-
cisive property for the symmetry of the canonical pair and the U-pair is the
reflection property of the proof system. But also weaker systems without reflec-
tion have symmetric pairs. For resolution this was shown by Pudldk [Pud03].

4.11 NP-Pairs and the Simulation Order of Proof
Systems

Now we use the results of the last sections to make some observations about
the connection between the simulation order of proof systems and disjoint NP-
pairs. As this analysis frequently involves proof systems with suitable closure
properties which we want to avoid to list at each occasion we make the following
definition:

Definition 4.11.1 We call a proof system P strong if P > EF s a reqular
proof system that is closed under modus ponens, disjunctions and substitutions
by constants.

For instance, all extensions of E'F by translations of true arithmetic formulas
are strong in this sense, and therefore every proof system is simulated by some
strong system. If we are interested in exploring optimal proof systems, then it
is anyway legitimate to make as many assumptions on the systems as necessary:

Proposition 4.11.2 If P is an optimal proof system, then P is strong.

Proof. By Proposition 3.7.5 we have P <, EF'+|[RFN(P)|| and by the optimal-
ity of P also EF + ||RFN(P)|| < P. Hence the systems P and EF + ||[RFN(P)]|
are <-equivalent. Therefore, by Proposition 2.6.5 the system P has all the
required closure properties. The sequence |REN(P)||" is polynomial time con-
structible and hence has polynomial size P-proofs. This means that P has
reflection and therefore by Theorem 3.7.1 the system P is regular. O

We start our analysis with an easy but very useful observation from [Pud03]
expressing that the simulation order of propositional proof systems is reflected
in reductions between the canonical pairs.

Proposition 4.11.3 (Pudldk [Pud03]) If P and S are proof systems with
P < S, then we have

(Ref(P), SAT*) <, (Ref(S), SAT*) .
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Proof. By assumption there is a polynomial p, such that for all formulas ¢ and
P-proofs 7 of ¢ there is a S-proof " of length < p(|r|). Therefore the mapping

(0, 1™) = (p, 17(m)

is a <p-reduction from (Ref(P), SAT*) to (Ref(S),SAT™). 0

Probably not unexpected, this link between simulations of propositional
proof systems and reductions between disjoint NP-pairs extends to the question
of the existence of maximal elements in the respective orders. The following
theorem which is usually attributed to Razborov [Raz94] expresses this for the
reduction <,,. Actually, the result as such is not stated in [Raz94], but it easily
follows from the results proven there.

Theorem 4.11.4 If P is an optimal proof system, then the canonical pair of
P is a <,-complete disjoint NP-pair.

Proof. Let the proof system P be optimal and let (A, B) be some disjoint NP-
pair. We choose arbitrary representations ¢, and 1, for A and B, respectively.
Now we construct some strong proof system that admits polynomial size proofs
of =, V —1),. For example,

Q=EF +{~¢nV 2y |n >0}
is such a proof system. By Theorem 4.6.3 we get
(A, B) <, (Ref(Q),SAT™) .
Because P is optimal we have () < P and hence by Proposition 4.11.3 we get
(Ref(Q), SAT™) <, (Ref(P),SAT™) .

Combining these reductions we get the reduction from (A, B) to the canonical
pair of P as claimed. O

Even without assuming the existence of optimal proof systems we can say
that candidates for <,-complete NP-pairs come from canonical pairs of strong
proof systems:

Proposition 4.11.5 Let (A, B) be <j,-complete for the class of all DNPP.
Then we have (A, B) =, (Ref(P),SAT*) for some strong proof system P.

Proof. As in the last proof we choose some strong proof system () such that
(A, B) is representable in Q). Then (4, B) <, (Ref(Q),SAT*) and by assump-
tion (Ref(Q),SAT™) <, (4, B). O

We now analyse how the simulation order of proof systems is reflected in
the more refined reduction <. In Sect. 4.1 it was shown that the reductions
<p and <, are different under the assumption P # NP. Still we have:
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Proposition 4.11.6 Let P be a strong proof system. Then for all disjoint
NP-pairs (A, B) it holds

(A,B) <, (Ui1(P),U) <= (A,B)<s(Ui(P),Us) .
Proof. Let (A, B) <, (U1(P),Us). By Lemma 4.8.5 (U (P), Us) is representable

in P. Hence with Proposition 4.6.1 also (A, B) is representable in P, from which
we conclude with Theorem 4.8.3

(A,B) <s (U1(P),Us) .
The opposite implication holds by definition. O

Corollary 4.11.7 Let P and S be strong proof systems. Then we have:
(Ref(P),SAT™) <, (Ref(S),SAT*) <<= (Ui(P),Uz) <, (Ui(S),Us) .
Proof. For the first direction we get from
(U1(P),Usz) <p (Ref(P),SAT™) <, (Ref(S),SAT*) <, (U1(S5),U2)
together with the last proposition
(Ui(P),Uz) <5 (U1(5),U2) .
The other implication follows from

(Ref(P),SAT*) <, (U1(P), Us) <, (U1(S), Us) <p (Ref(S), SAT*) .

O

Proposition 4.11.3 and Corollary 4.11.7 yield an analogon of Proposi-
tion 4.11.3 for strong proof systems:

Corollary 4.11.8 If P and S are strong proof systems with P < S, then we
have

(U1(P),Us) <s (U1(5),U2)

Kébler, Messner and Torén proved in [KMTO03] that the existence of an
optimal proof system implies the existence of <;-complete NP-pairs. This result
also follows from our observations here. Additionally, we can exhibit a complete
pair in this case:

Theorem 4.11.9 If P is an optimal proof system, then (Ui(P),Us) is <s-
complete for the class of all DNPP.

Proof. Let P be an optimal proof system and (A, B) a DNPP. We choose arbi-
trary propositional representations ,, and v, for A and B, respectively. As the
sequence -, V 1), is constructible in polynomial time there exists some proof
system with polynomial size proofs of these tautologies. Because P is optimal we
also have polynomial size P-proofs of -, V=1, hence (A, B) is representable in
P. The system P is optimal, so in particular it is strong by Proposition 4.11.2.
Therefore we can apply Theorem 4.8.6 to conclude (A, B) <, (U1(P),Us).
Therefore the pair (U;(P),Us) is <s-complete for all DNPP. 0

In the same way as Proposition 4.11.5 we get:
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Proposition 4.11.10 Let (A, B) be <s-complete for the class of all DNPP.
Then we have (A, B) =5 (U1(P),Us) for some strong proof system P.

We now turn again to the question whether complete pairs exists, but with-
out assuming the existence of optimal proof systems. Glaler, Selman and Sen-
gupta [GSS05] proved that the answer to the problem does not depend on the
strength of the reductions used. In [GSS05] the following result is proved by
elementary, but involved simulation techniques. Here we give an easy proof
based on our results from this chapter.

Theorem 4.11.11 (Glafler, Selman, Sengupta [GSS05]) The class of all
disjoint NP-pairs contains a <,-complete pair if and only if it contains a <g-
complete pair.

Proof. For the first direction we can assume with Proposition 4.11.5 that the <,-
complete DNPP has the form (Ref(P), SAT™) for some strong proof system P.
Then all disjoint NP-pairs are representable in P and therefore by Theorem 4.8.3
all DNPP are <;-reducible to (U1(P),Us).

The other direction holds by definition. O

In [GSS05] Glafler et al. prove that the existence of a complete DNPP under
smart Turing reductions already implies the existence of a <,-complete DNPP
(and hence by Theorem 4.11.11 also of a <s-complete pair). We can easily
reprove their result in our framework by noticing:

Lemma 4.11.12 Let T O Si be an L-theory. Then the class DNPP(T) is
closed under smart Turing reductions.

Proof. Let the pair (A, B) be smartly Turing reducible to (C, D) via the de-
terministic oracle Turing machine M, and let (C,D) be representable in 7.
Consider the NP-sets

A" = {z]|z € Aand M(z) accepts}
B' = {z]x € B and M(z) rejects} .

By "M (x) accepts” we mean that M accepts the input x by a computation
where all oracle queries that are positively answered are verified by a compu-
tation of a nondeterministic machine for C' and all negative answers are ver-
ified by D. Since the reduction is smart we have A = A’ and B = B’. For
T+ A'Nn B = (it suffices to show in T the uniqueness of the computation
of M at inputs = from AU B. Because T is an extension of S it can prove
the uniqueness of computations of the deterministic machine M, and the pos-
sibility to answer an oracle query both positively and negatively is excluded by
THCND=0. O

From this we conclude:

Proposition 4.11.13 Suppose (A, B) is a smart <p-complete pair. Let T' D
Si be an arithmetic theory in which (A, B) is representable. Then the pair
(U1(P),Us) is <s-complete for all DNPP where P is the proof system corre-
sponding to T.
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Proof. We choose arithmetic representations ¢ and ¢ of A and B, respectively,
and define the theory T as Si + = V —1). Then by the last lemma all DNPP
are representable in T'. By Theorem 4.5.8 this implies that all pairs are rep-
resentable in the proof system P = EF + ||~¢ V —1)|| and therefore the pair
(U1(P),Us) is <s-complete by Theorem 4.8.3. 0

It is not clear whether the class of pairs representable in some theory T is
also closed under <p-reductions. This corresponds to the open problem from
[GSS05] whether the existence of a <p-complete pair implies the existence of a
<p-complete DNPP.

We will continue the investigation of complete NP-pairs in Sect. 6.5 where we
provide further characterizations for their existence in the more general context
of disjoint k-tuples of NP-sets.

4.12 A Weak Reduction Between Proof Systems

This section is devoted to the analysis of a weak notion of simulation for proof
systems introduced in [KP89] but not much studied elsewhere. This simulation
is provably weaker than the ordinary reduction between proof systems but is
equivalent with respect to the existence of optimal proof systems. In the next
section we will relate the simulation order of proof systems under this weaker
reduction with the reductions between canonical pairs.

The reduction is defined as follows:

Definition 4.12.1 (Krajicek, Pudldk [KP89]) Let P and Q be proposi-
tional proof systems. Then P <' Q holds if for all polynomials p there exists a
polynomial q such that

Plepep ¢ tmplies  Q F<q(gl) ¢
for all tautologies .

Using the notation -, which hides the actual polynomials we can also express
the reduction <’ more compactly as: P <’ @ if and only if for all sets ® of
tautologies

P, ® implies QF, P .

Let us try to motivate the above definition. If we express combinatorial
principles in propositional logic or if we translate true arithmetic formulas into
propositional formulas we arrive at collections ® of tautologies that typically
contain one tautology per input length. We say that a proof system P proves
a combinatorial principle or an arithmetic formula if there exist polynomially
long P-proofs of the corresponding collection of tautologies. If P < @, then
every principle that is provable in P is also provable in ). The @Q-proofs are
allowed to be longer than the P-proofs but only up to fixed polynomial amount
independent of the principle proven. The reduction <’ is more flexible as it
allows a different polynomial increase for each principle.

To prove P £ @ one typically shows super-polynomial lower bounds on
the length of Q-proofs of some principle like e.g. the pigeon hole principle
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whereas the principle is provable in P. As basically all separations between
proof systems are achieved in this manner all these results also separate the
corresponding proof systems with respect to the weaker <’-reduction.

To further motivate the definition we remark that we can characterize an
ordinary <-simulation of P by @ by

(3¢ € Poly)(Vp € Poly) (Vo) P F<po) ¢ = Q@F<qp(le) ¢

where Poly denotes the set of all polynomials. On the other hand it is easily
seen that P <’ @ holds if and only if

(Vp € POly)(Hq € Poly)(Vgo) P l_gp(\cp\) p = Q '_Sq(p(\cp\)) © .

Hence we get the definition of <’ by changing the order of the quantifiers from
dq¥p to VYpdq in the above characterization of <.

It is clear from the above explanation that < is a refinement of <’. We first
observe that it is indeed a proper refinement, i.e. we can separate < and <’. It
is, however, not possible to achieve this separation with regular proof systems.

Proposition 4.12.2 1. Let P be a proof system that is not polynomially
bounded. Then there exists a proof system @Q such that P <" Q but P £ Q.

2. Let ® and ¥ be polynomial time sets of tautologies. Then EF + & <’
EF + VU implies FF +® < EF + V.

Proof. To prove part 1 let P be a proof system that is not polynomially bounded.
We define the system (). Q-proofs consist of multiple copies of P-proofs where
the number of copies depends on the length of the P-proof, more precisely
Q(m) = ¢ if there exists a P-proof 7' of ¢ such that 7 = (7')! where the
number [ of the copies of 7’ is determined as follows. Let k be a number such
that |p|*~! < |7'| < |¢|*. Then I is chosen as [ = |@|*~D*. Hence we have

_ _ 2_ _ 2
P o DR = [ |F" 71 < | < ool Flp BTDR = [

P is <'-simulated by @ because for each polynomial p majorized by n* we can
choose ¢ as nkQ, ie.

P|_§|60|k Y = Ql_g\cp\kQ @ .

But if P is not polynomially bounded, then there is apparently no polynomial
q such that

ie. P<LQ.

Now we prove part 2. Let & and ¥ be polynomial time sets of tautologies.
Let us denote the systems FF 4+ & and EF + ¥ by P and @, respectively.
The regularity of P implies P F, |[RFN(P)||™. Because P <’ @ we also have
Q k. |RFN(P)||"™. Using Lemma 3.7.6 we infer P < @ as claimed. O

We call a proof system <’-optimal if it <’-simulates all proof systems.
Krajicek and Pudldk [KP89] proved that the existence of a <’-optimal proof
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system already implies the existence of an optimal proof system. Comparing
< and <, it is interesting to mention that it is neither known how to separate
these reductions nor how to infer from the existence of an optimal proof system
the existence of a p-optimal proof system.

Theorem 4.12.3 (Krajicek, Pudldk [KP89]) Optimal proof systems exist
if and only if <'-optimal proof systems exist.

Proof. The forward direction is immediate as < is a refinement of <’.
For the reverse implication let P be a <’-optimal proof system. We claim
that the proof system
P' = EF + |RFN(P)||

is optimal. To see this let ) be a proof system. Consider the proof system
Q' = EF + |RFN(Q)||. Obviously Q' k. [[RFN(Q)||". Because P is <’-optimal
we have Q' <’ P and hence P F, |[RFN(Q)||". From the definition of P’ and
Proposition 3.7.5 we get P <, P’ and therefore also P’ I, |[RFN(Q)||". Since
P’ is regular we infer with Lemma 3.7.6 Q < P’ as desired. O

As we already know that the existence of optimal proof systems implies the
existence of complete DNPP we can formulate the following corollary:

Corollary 4.12.4 If there exists a <'-optimal proof system, then there exist
disjoint NP-pairs which are <,- and <,-complete for the class of all DNPP.

4.13 Proof Systems with Equivalent Canonical Pairs

Already in Sect. 4.11 we have used the close relation between the simulation
order of proof systems and the reductions between canonical pairs. Essentially,
this connection rests upon the fact that DNPP(P) is a subclass of DNPP(Q)
if the proof systems P is simulated by the system (). For the canonical pairs
this is expressed by the following observation (already stated earlier as Propo-
sition 4.11.3):

Proposition 4.13.1 (Pudldk [Pud03]) If P and Q are proof systems with
P < Q, then the canonical pair of P is <p-reducible to the canonical pair of Q.

Proof. The reduction is given by (¢, 1™) — (¢, 1p(m)) where p is the polynomial
from P < Q. O

We will now explore how tight the connection between the simulation order
of proof systems and reductions in the lattice of pairs really is, i.e. to what
extend the opposite implication of Proposition 4.13.1 is valid. If P £ @, then
we cannot hope to reduce (Ref(P),SAT*) to (Ref(Q), SAT*) by a reduction of
the form (p,1™) — (p,1") that changes only the proof length but leaves the
formula unchanged. However, unlike in the case of simulations between proof
systems the reductions between canonical pairs have the flexibility to change
the formula.

The aim of this section is to provide different techniques for the construc-
tion of non-equivalent proof systems with equivalent pairs. One such example
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is given by Pudldk in [Pud03] where he shows that two versions of the cutting
planes proof system C'P which do not <-simulate each other have <,-equivalent
canonical pairs. Here we search for general conditions on proof systems which
imply the equivalence of the canonical pairs. The first condition will be the
<’-equivalence of the proof systems. For this we show an analogue of Proposi-
tion 4.13.1 for <.

Proposition 4.13.2 Let P be a proof system that is closed under disjunctions
and let @ be a proof system such that P <" Q. Then (Ref(P),SAT*) <,
(Ref(Q), SAT™).

Proof. We claim that for some suitable polynomial ¢ the mapping
(@, 1) = (o v L™, 1907)

performs the desired <,-reduction where 1™ stands for LV...V_L (m disjuncts).
To see this let first (p,1™) € Ref(P). Because P is closed under disjunctions
there exists a polynomial p such that P F<,, ¢ implies P F<pin) ¢ V L™
Because of P <’ @ there is a polynomial ¢ such that Q F<gim) @V L™, ie
(o Vv L™ 190M) ¢ Ref(Q).

If (p,1™) € SAT*, then the satisfiability of -y is transferred to =(pVv L™) =
o ATA...AT. O

Combining Propositions 4.12.2 and 4.13.2 we get the afore mentioned coun-
terexamples to the converse of Proposition 4.13.1.

Corollary 4.13.3 Let P be a proof system that is closed under disjunctions
and is not polynomially bounded. Then there exists a proof system Q) such that

P#Q and (Ref(P),SAT") =, (Ref(Q),SAT™) .

Proof. The proof system @ constructed from P in Proposition 4.12.2 fulfills
P<'Q<Pand P«£Q. Hence P # Q.

By Proposition 4.13.1 we have (Ref(Q), SAT*) <, (Ref(P),SAT™) and ap-
plying Proposition 4.13.2 we conclude (Ref(P), SAT*) <, (Ref(Q),SAT*). O

The proof systems P and () from the last corollary have equivalent canonical
pairs and are also <’-equivalent. Moreover it follows from Proposition 4.13.2
that the canonical pair of a disjunctively closed proof system is already deter-
mined by the <’-degree of the system. More precisely:

Proposition 4.13.4 Let P and Q be <'-equivalent proof systems that are
closed under disjunctions. Then (Ref(P),SAT*) =, (Ref(Q), SAT™).

Nevertheless we can also construct proof systems that have equivalent
canonical pairs but are not <’-equivalent. We show this in the next propo-
sition.

Proposition 4.13.5 Let P be a proof system such that the system EF +
IREN(P)|| is not optimal. Then there exists a proof system @ such that

Q# P and (Ref(P),SAT*) =, (Ref(Q),SAT*) .
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Proof. Because EF + ||[RFN(P)]| is not optimal there exists by Theorem 3.7.8
a sequence of polynomial time constructible tautologies ¢,, such that

EF + |RFN(P)|| s ©n -

As P is simulated by EF + ||[REN(P)|| the sequence ¢, is also hard for P, i.e.
Pt/ ¢,. We define Q as

P(r') if 7= 0n'
Q(m) =<2 vn if ™ = 1¢, for some n
T otherwise.

Clearly, P < Q and therefore (Ref(P),SAT*) <, (Ref(Q),SAT*). The converse
reduction from (Ref(Q), SAT*) to (Ref(P),SAT") is given by
m (1, 1%) if o =, for some nor p =T
(p,17) = { (p, 1M1 otherwise

where 9 is some fixed tautology with a P-proof of length k.
Finally, since P t/, ¢, and Q 4 ¢, we have Q €' P. O

The proof systems @) constructed in Proposition 4.13.5 have the drawback
that they do not satisfy the normality conditions from Sect. 2.6. In the next
theorem we will construct proof systems with somewhat better properties.

Theorem 4.13.6 Let P be a line based proof system that allows efficient deduc-
tion and let ® be a sparse set of tautologies which can be generated in polynomial
time. Then

(Ref(P), SAT*) =, (Ref(P U ®),SAT") .
Proof. As P is simulated by P U ® we get
(Ref(P), SAT™) <, (Ref(P U @), SAT™) .

Now we describe the converse reduction. Let p be the polynomial from
the efficient deduction property of P. Because ® is a sparse set there exists
a polynomial ¢ such that for each number m the set ® contains at most g(m)
tautologies of length < m. Let ®,, = ® N X" be the set of these tautologies.

Then (Ref(P U ®), SAT*) reduces to (Ref(P),SAT™*) via the function

@ 17) = (N @) = g, 1P0matmTmy

weP),

To verify the claim assume that (1, 1™) € Ref(P U ®). Let m be a P U ®-proof
of ¢ of length < m. This proof 7w can use only formulas of length < m from ®
of which there are only < ¢(m) many. Hence the tautologies used in the proof
7 are contained in A\ cg,, - Therefore we know that  is also a proof for ¢ in
the proof system P U ®,,. Using the efficient deduction property of P we get a
P-proof of size < p(mg(m) +m) of (A,cq,, ) — ¥
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Now assume (1, 1™) € SAT*. Then —) is satisfiable and therefore

(A ©—=v) = (N o)A

D, D,

is also satisfiable because (A cq,, ) is a tautology. O

By Theorem 3.7.8 we know that for any non-optimal proof system we can
find a sequence of hard tautologies. Hence we get:

Corollary 4.13.7 Let P be a line based proof system admitting efficient deduc-
tion and such that EF + |REN(P)|| is not optimal. Then there exists a sparse
set @ of tautologies which can be generated in polynomial time such that

PU® ' P and (Ref(P),SAT*) =, (Ref(P U ®),SAT*) .

Because Frege systems admit efficient deduction (Theorem 2.4.2) we can
formulate the following corollary:

Corollary 4.13.8 Let ® be a sparse set of tautologies which can be generated
in polynomial time. Then we have

(Ref (F'), SAT*) =, (Ref(F U ®),SAT™) .

Every NP-pair (A, B) is representable in an extension of F' where the dis-
jointness of (A, B) is added to F as extra axioms. Clearly, this disjointness is
expressible by a sparse polynomial time set of tautologies. From this informa-
tion together with Corollary 4.13.8 it might be tempting to deduce that the
canonical pair of F'is <,-complete for the class of all disjoint NP-pairs. The
problem, however, is that Corollary 4.13.8 only holds for the system F U ®
whereas to show the <,-completeness of (Ref(F"),SAT*) we would need it for
F 4+ ®&. We can formulate this observation somewhat differently as:

Theorem 4.13.9 At least one of the following is true:
1. The canonical pair of F' is complete for the class of all disjoint NP-pairs.

2. There exists a sequence of tautologies ® = {p1,p2,...} that can be gen-
erated in polynomial time such that

F <, FU® <, F+ @
s a chain of pairwise non-equivalent proof systems.

Proof. Assume that 2 fails. We will show that (Ref(F'), SAT*) is complete for
the class of all DNPP. To prove this let (A, B) be a disjoint NP-pair. Choose
some representations v, of A and 6, of B and let ¢, = =, V —6,. Then
(A, B) is representable in F'+ ®. As this system is closed under substitutions
by constants and modus ponens and can evaluate formulas without variables
we can use Theorem 4.6.3 to infer that

(A,B) <, (Ref(F + ®), SAT*) .
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Since condition 2 fails for P we have F' = FU® or FU® = F4+®. If F = FUQ,
then (A, B) is also representable in F', yielding

(A, B) <, (Ref(F),SAT*) .

Now assume that FFU® = F' 4 ® is satisfied. Then Proposition 4.13.1 and
Corollary 4.13.8 give us

(Ref (F' + @), SAT™) <, (Ref(F U ®),SAT*) <, (Ref(F'), SAT) .
Combining all these reductions we arrive at
(A,B) <, (Ref(F),SAT") ,
as desired. O

Both assertions of Theorem 4.13.9 contain important information. The first
alternative would solve the open problem, posed by Razborov [Raz94], on the
existence of complete pairs. But also part 2 is interesting as there is only very
limited knowledge about strong proof systems P > F'.

To determine which of the alternatives from Theorem 4.13.9 is true it seems
to be necessary to find out if the systems F'U ® and F + ® can be different
for some polynomial time computable set ® of tautologies. As F'U ® is closed
under modus ponens this essentially means to decide whether F' U @ is also
closed under substitutions. However, if complete NP-pairs do not exist, then
the system F'U® is not even closed under substitutions by constants for suitably
chosen ® C TAUT. This is the content of the next theorem.

Theorem 4.13.10 If for all polynomial time computable sets & C TAUT
the proof system F U ® is closed under substitutions by constants, then
(Ref(F),SAT™) is complete for all disjoint NP-pairs.

Proof. Let (A, B) be a disjoint NP-pair and let ¢, and 1, be propositional
representations for A and B, respectively. Consider the proof system

P=FU{-p,V—t,|n>0}.

Clearly, (A, B) is representable in P and hence by Theorem 4.6.3 the pair (A, B)
is <p-reducible to the canonical pair of P. By Corollary 4.13.8 this implies that
(A, B) is also <j,-reducible to the canonical pair of F. 0

4.14 Different Scenarios for DNPP(P)

In Sect. 4.6 we showed that the canonical pair of a proof system P is <,-hard
for DNPP(P) provided that the system P has sufficient closure properties. In
the next theorem we give examples for proof systems P where the canonical
pair of P is not hard for DNPP(P). Proving such a result requires a suitable
hypothesis as P = NP for example implies that all pairs with nonempty compo-
nents are <,-complete for the class of all DNPP. Here the assumption is that the
canonical pair of F' is not <,-complete, and this assumption even characterizes
the assertion.
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Theorem 4.14.1 There exists a sparse polynomial time constructible set ® of
tautologies such that the canonical pair of F'U ® is not <,-hard for the class
DNPP(F U ®) if and only if (Ref(F'), SAT™) is not <,-complete for all pairs.

Proof. For the first direction assume that for some sparse polynomial time
constructible set ® C TAUT the canonical pair of F'U @ is not <,-hard for
DNPP(F U ®). Then there exists a disjoint NP-pair (A, B) such that

(A, B) %, (Ref(F U @), SAT") .

By Corollary 4.13.8 we know that the canonical pairs of F' and F'U ® are <,-
equivalent. Therefore (A, B) £, (Ref(F'),SAT*) and hence the canonical pair
of F'is not <,-complete.

For the opposite direction assume that F'is not <,-complete. Then there
exists a disjoint NP-pair (A, B) such that

(A, B) %, (Ref(F),SAT*") .

We choose some representations ,, and ¥, of A and B, respectively, and define
the system P as
P=FU{=ppV -1y, |n>0}.

By definition we have P F, =, V =, hence (A, B) is representable in P. By
Corollary 4.13.8 we have (Ref(F'),SAT*) =, (Ref(P),SAT"). Hence (A, B) <,
(Ref(P),SAT*) would imply (4, B) <, (Ref(F'), SAT*) in contradiction to our
assumption. O

In Theorem 4.6.3 we proved that the canonical pair of a proof system P
is <,-hard for DNPP(P) provided that P is closed under modus ponens and
substitutions by constants and can evaluate formulas without variables. The
counterexamples F'U ® from the last theorem are closed under modus ponens
and evaluate formulas without variables. Therefore the hypothesis that P is
closed under substitutions by constants seems indeed to be necessary.

In the next table we summarize some of the results for the class DNPP(P)
for some typical proof systems P. This comparison demonstrates that proof
systems P with different properties give rise to different scenarios for DNPP(P)
and the reductions between the NP-pairs associated with P.

4.15 On the Complexity of Ref(P)

In the last table we summarized our knowledge about the reductions between
the pairs associated with a proof system. One question that is left open in this
connection is how (Ref(P),SAT*) and (U;1(P), Us) compare with respect to the
strong reduction <. At least for regular systems with sufficient closure proper-
ties we know that (Ref(P), SAT*) <, (U1(P),Us). Since Uy (P) is NP-complete
the NP-completeness of Ref(P) is a necessary condition for the opposite reduc-
tion to exist. To determine the complexity of Ref(P) for natural proof systems
seems to be an interesting open problem. Approaching this question we note
the following:
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weak systems P

(Ref(P), SAT")
(Ur(P),Us)
(I1(P), I2(P))

reductions

properties

resolution, cutting planes

<,-hard for DNPP(P)
<s-hard for DNPP(P)
p-separable [Pud03]

(1.(P), Io(P)) <, (U1(P), Us) =, (Ref (P), SAT")

(Ui(P),Us) £p (I1(P), I2(P)) unless P is weakly
automatizable

closure of DNPP(P) under <, and <,

closed under modus ponens and substitutions by
constants

feasible interpolation [Kra97, BPR97, Pud97]

no reflection for resolution [AB02]

strong systems P

(Ref(P), SAT*)
(Ur(P),Us)
(I1(P), I2(P))

reductions

properties

extensions EF + ||®|| of EF by translations of
polynomial time computable sets of
true TI%-formulas &

<,-complete for DNPP(P)
<s-complete for DNPP(P)
<s-complete for DNPP(P)

(1(P), 1(P)) =, (U1(P), Us) =, (Ref(P), SAT")
closure of DNPP(P) under smart <r, <, and <,

closed under modus ponens and substitutions

no feasible interpolation under cryptographic
assumptions [KP9S§]

strong reflection

strongly regular

other systems P
(Ref(P), SAT™)

reductions

properties

extensions F'U @ of Frege systems by suitable choices
of polynomial time constructible sets ® C TAUT

not <,-hard for DNPP(P)
unless (Ref(F"),SAT™) is <,-hard for all DNPP

(11(P), Io(P)) <p (U1(P), U2)
(Ref(P),SAT*) <, (U1(P), Us)

DNPP(P) is not closed under <,
unless (Ref(F"),SAT*) is <,-hard for all DNPP

closed under modus ponens
not closed under substitutions by constants
unless (Ref(F"),SAT*) is <,-hard for all DNPP

Table 4.1: The class DNPP(P) for different types of proof systems
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Proposition 4.15.1 1. For every proof system P that is closed under dis-
junctions there is a proof system P’ with P' =, P such that Ref(P') is
NP-complete.

2. On the other hand there are proof systems P and P' such that P =, P’
and Ref (P) is decidable in polynomial time while Ref(P") is NP-complete.

Proof. To show part 1 of the proposition let P be a proof system that is
closed under disjunctions. Closure under disjunctions implies in particular the
existence of polynomial size proofs of all formulas of the form ¢V T for arbitrary
formulas ¢. We define P’ as

P(x')  if = 0d0PE)D 10
P'(m)=X oV T if = (¢, ) and « is a satisfying assignment for ¢
T otherwise

with some polynomial ¢ such that

q(n) = max{|(p,a)| [lpV T|=n} .

Obviously P’ is a correct proof system with P =, P’. Furthermore Ref(P’) is
NP-complete because SAT reduces to Ref(P’) via

o (p Vv T,190eVTDy

For part 2 we define the proof system P as follows: (7, ¢) is a P-proof of
p, if either 7 is a correct truth-table evaluation of ¢ with all entries 1, or ¢ is
of the form ) V T for some formula ) and 7 = 1/Var@)ll,

The proof system P satisfies the condition P F, ¢ V T for all formulas .
Hence by the proof of part 1 of this proposition there is a proof system P’ with
P =, P’ and NP-complete Ref(P’). On the other hand the set

Ref(P) = {(¢,1™) | € TAUT, m > 2Var@ll 1 ||} U
{(p v T,1™) [ 4 is a formula, m > |[Var(¢) || + [}

is decidable in polynomial time. O

The second part of the above proposition tells us that the complexity of
Ref(P) is not a robust property, i.e. it is not determined by the <,-degree of
the proof system P.

For strong systems P simulating bounded-depth Frege systems we know
that the set Ref(P) cannot be decided in polynomial time unless for instance
the RSA system is insecure (cf. Sect. 5.1). Hence the exact characterization
of the complexity of Ref(P) seems to be an interesting open problem. Are
those sets candidates for languages with complexity intermediate between P
and NP-complete?
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4.16 Are Canonical Pairs Something Special?

At this point it is the right time to discuss a recent result of Glafler, Selman
and Zhang [GSZ05]. The last sections were devoted to a detailed analysis of
canonical pairs, in particular of reductions between these pairs and their role for
the subclasses DNPP(P). It is therefore natural to inquire whether canonical
pairs enjoy special properties that distinguish them from other NP-pairs. The
answer is given in a very general way by the following theorem:

Theorem 4.16.1 (Glaler, Selman, Zhang [GSZ05]) Every disjoint NP-
pair is <p-equivalent to the canonical pair of some propositional proof system.

Before we describe the construction let us discuss two possible interpretations
of this result. A first interpretation could be that canonical pairs do not seem
to be anything special because every disjoint NP-pair essentially is a canonical
pair. Therefore, for further investigation into NP-pairs we can dispense with
the analysis of canonical pairs altogether and rather concentrate on the general
concept of disjoint NP-pairs. Naturally, given the number of pages that we
already devoted to canonical pairs in this dissertation this is not our favourite
interpretation.

However, the result can also be understood as confirmation for the fact
that propositional proof systems in the general definition of Cook and Reckhow
[CR79] and disjoint NP-pairs are closely connected concepts from the same level
of abstraction. So far, we have mostly used this connection to transfer infor-
mation from proof systems to NP-pairs by associating various disjoint NP-pairs
with a propositional proof system. The result of Glafler et al. demonstrates
that this transfer also works in the opposite direction in a very tight way: for
every NP-pair there exists a proof system that captures the pair in the precise
meaning of Theorem 4.16.1. The proof systems constructed for this purpose are
just variants of the truth-table system. More precisely, for a given pair (A, B)
a description of this pair is coded into the truth-table system. The drawback of
this construction is that the proof systems obtained in this way are rather arti-
ficial and in particular do not satisfy any of the natural closure properties that
we have considered. However, proof systems that are used in practice and that
are investigated in proof complexity usually satisfy these properties. Further,
in the previous sections we illustrated that the canonical pairs of sufficiently
well defined proof systems like regular proof systems are meaningful as com-
plete pairs for some class of DNPP but that this property is lost for canonical
pairs defined from arbitrary proof systems. These observations indicate that the
Cook-Reckhow framework for propositional proof systems might be too broad
for the study of naturally defined classes of disjoint NP-pairs (and in fact for
other topics in proof complexity as well). It therefore seems to be natural to
make additional assumptions on the properties of proof systems. Consequently,
in our opinion, the canonical pairs of these natural proof systems deserve special
attention.

We are now going to describe the construction of the proof system P from
a given pair (A, B) as in the proof of Theorem 4.16.1. Because we are also
interested in the stronger <;-reduction we will analyse the construction under
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<s. We note that we cannot expect a similar result as Theorem 4.16.1 for
<s because (Ref(P),SAT*) <, (A, B) would imply a many-one-reduction from
SAT* to B and hence the NP-completeness of B which we did not assume. The
opposite reduction, however, is <;. Concerning the problem of the complexity
of the set Ref(P) which we already addressed in Sect. 4.15 it is interesting to
mention that the complexity of Ref(P) is determined by A, i.e. Ref(P) and A
are many-one-equivalent. We combine this refined analysis in the next theorem.
Its proof is essentially due to GlaBler, Selman and Zhang [GSZ05].

Theorem 4.16.2 For every disjoint NP-pair (A, B) there exists a propositional
proof system P such that the following holds:

1. (A, B) <5 (Ref(P),SAT™).
2. (Ref(P),SAT™) <, (A, B).
3. A =P Ref(P).

Proof. Let (A, B) be a disjoint NP-pair and let g be a polynomial time com-
putable and polynomial time invertible many-one reduction from B to SAT. Let
M be a nondeterministic Turing machine accepting A which runs in polynomial
time specified by the polynomial p.

We define a proof system P as follows:

—g(x) |lw| = p(|z|) and M (z,w) accepts
P((z,w)) = x lw| # p(|z]), |w| > 21*l &z € TAUT
T otherwise

Let us first argue that P is indeed a proof system. If w is of the correct length
and M (x,w) accepts, then z € A, hence x ¢ B and therefore g(x) ¢ SAT.
Consequently —g(z) is a tautology.

If w > 2I*I then we can check in polynomial time whether z is a tautology
or not.

Hence P is computable in polynomial time and outputs only tautologies.
But every tautology also has a P-proof of exponential size according to line 2
of the definition of P, so P is a proof system.

Let q(|x|) be the precise length of (x,w) for inputs x,w satisfying |w| =
p(|z]). The function ¢ is a polynomial for some suitable choice of the pairing
function (.,.). We now claim that (A, B) is <s-reducible to (Ref(P), SAT*) via
the reduction

— (—g(z), 1q(lr|)) )

To see this let first x € A. Then there exists a witness w of length p(|x|) such
that M (z,w) accepts. Hence (—g(z),190%1)) € Ref(P).

If z € B, then g(z) is satisfiable and therefore (—g(z), 190D) e SAT*.

Now let z ¢ AUB. Since « € A there is no witness w for  and —g(x) cannot
have a P-proof according to line 1 of the definition of P. A P-proof according
to line 2 has length 2/*| > ¢(|z|) and therefore (—g(z),190#)) & Ref(P). From
x ¢ B it follows that g(z) & SAT. Hence (—g(x),190#D) ¢ SAT*.
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Thus we have proved
(A, B) <, (Ref(P),SAT™) .
Now we prove the reverse reduction
(Ref(P),SAT™) <, (A,B) .

Fix some elements a € A and b € B. The reduction is performed by the
following algorithm:

Input: (z,1™)
IF x =T THEN output a
IF m > 21*l THEN
IF x € TAUT THEN output a ELSE output b
ELSE
IF g_l(—m;) exists THEN output g_l(—m;) ELSE output b

O WN -

Let us argue that the reduction is correct. If x is a tautology different from
T, then there are two possibilities for proof lengths of x. Namely we have
polynomial size proofs of size q(|g~!(—z)|) for formulas x where g~!(—x) exists
and ¢~ (—z) € A, and proofs of exponential size > 21l for all other tautologies.

If > 2%l then the input (z,1™) is correctly mapped according to line 4.

Consider now inputs (x,17) with m < 2*l. Let first (z,1™) € Ref(P).
Then z can only have a P-proof of size m if g~1(—z) exists in which case we
output ¢g~!(-x) € A according to line 6. Tautologies which do not have this
kind of proof are mapped to b. Therefore the reduction fails to be <.

Now suppose (z,1™) € SAT*. Then —z is satisfiable and the output is
either g~1(—x) € B or b € B according to line 6.

Finally, we will prove part 3 of the theorem. We have established already
that (A, B) is <s-reducible to (Ref(P),SAT*). Hence A <P Ref(P) is given by
the same reduction function z — (—g(z), 19(2D).

Ref(P) reduces to A by the following algorithm:

1 Input: (z,1™)

2 IF x =T THEN output a

3 IF m > 2"l THEN

4 IF x € TAUT THEN output a ELSE output b

5 ELSE

6 IF g~ !(—z) exists and m > q(]g~(—x)|) THEN output g '(-x)
-

ELSE output b
g

We already remarked that in essence the construction in the last proof codes
the pair (A, B) into the truth-table system. Actually, we have frequently used
a similar construction in previous sections. Namely, if (A, B) is a disjoint NP-
pair and ¢, and v, are propositional representations for A and B, respectively,
then we can easily code (A, B) into a proof system P by augmenting P with
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polynomial size proofs of =, V —1,. For example, for the system EF' this
would result in
EF + {—pp V1, |n >0} .

Clearly, we then have
(A, B) <, (Ref(EF + {—¢n V =1, | n > 0}), SAT™) .

However, whether the other reduction also holds is not clear, because the system
EF +{-¢, V=1, |n > 0} is a very strong system with good closure properties
(cf. Proposition 2.6.6).



Chapter 5

Two Applications

Wissenschaften enfernen sich im Ganzen immer vom
Leben und kehren nur durch einen Umweg wieder
dahin zurick.

Johann Wolfgang Goethe

In this chapter we will describe two applications of the theory of disjoint NP-
pairs. In the first application disjoint NP-pairs are used to model security
aspects of crypto systems. As mentioned earlier this was the first motivation
for the study of disjoint NP-pairs [ESY84, GS88, HS92].

The second application connects to a more recent line of research which aims
to utilize pseudorandom generators for the construction of lower bounds to the
lengths of proofs in strong propositional proof systems [Kra0lb, ABSRW04].

5.1 Security of Public-Key Crypto Systems

This section contains a brief description of some aspects of the relationship be-
tween public-key cryptosystems and disjoint NP-pairs. In fact, this connection
was the starting point for the development of the theory of disjoint NP-pairs
by Grollmann and Selman [GS88]. We will not explain their results but only
illustrate how disjoint NP-pairs can be defined from public-key cryptosystems.

One of the most common public-key cryptosystems is the RSA system de-
veloped by Rivest, Shamir and Adleman [RSAT78]. Let us briefly recall this
cryptosystem. The public key consists of a number n which is the product of
two primes together with an element e that is invertible modulo ¢(n). The
private key is the inverse d of e modulo ¢(n). Encryption proceeds by rais-
ing the plaintext = to the e-th power modulo n. Decryption of the ciphertext
y = 2° mod n is accomplished by z = 3¢ mod n.

Based on this cryptosystem Krajicek and Pudldk [KP98] defined a disjoint
NP-pair (RSAg, RSA;) as follows:

RSAy ={(n,e,y,i)| (n,e)is a valid RSA key, 3z ¢ = y mod n
and the i-th bit of = is 0}
RSA; ={(n,e,y,i)| ... is1l}

103
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By the phrase (n,e) is a valid RSA key we mean that n is the product of
two primes p and ¢, and the public key e has a multiplicative inverse modulo
©(n). By guessing the prime factorization n = pq and determining ¢(n) = (p —
1)(g — 1) the validity of the public key (n, e) can be verified in nondeterministic
polynomial time. Guessing further the plaintext x corresponding to the given
ciphertext y and checking that x properly encrypts to y yields the value of the
i-th bit of . This shows that the components RSAy and RSA; are in NP. As
their intersection is obviously empty we have defined a disjoint NP-pair.

The pair (RSAp, RSA;) has the additional property that also the comple-
ment of RSAgU RSA; is an NP-set. The complement contains all those inputs
(n,e,y,i) where n,e does not form a valid RSA key. Again this can be verified
by guessing the factorization of n and, in case n has exactly two prime factors,
checking whether e is invertible modulo ¢(n).

Properties of this RSA pair model the security of the RSA system. Namely,
if the pair (RSAp, RSA;) is p-separable, then we can break the RSA by com-
puting all ciphertext bits for a given plaintext. But also the converse is true,
i.e. the pair (RSAp, RSA,) is p-separable if and only if we can compute to each
ciphertext the corresponding plaintext in deterministic polynomial time with-
out knowing the private key. But as already Grollmann and Selman discussed
in their paper [GS88] worst-case complexity is not an appropriate measure for
the security of cryptosystems. Namely, the p-inseparability of (RSAy, RSA;)
might rest only on some hard instances while most ciphertexts are easy to de-
crypt. Therefore the p-separability of the RSA pair does not characterize the
security of RSA. But of course the p-inseparability of (RS Ay, RSA;) constitutes
a necessary condition for the security of the RSA cryptosystem. This provides
strong evidence that p-inseparable disjoint NP-pairs exist. Not only the RSA
cryptosystem but in fact any one-way function gives rise to a disjoint NP-pair
which is presumably not p-separable.

The link of such cryptographic pairs to propositional proof systems was
established by Krajicek and Pudldk [KP98]. In particular they demonstrated
that the theory S is sufficiently strong to prove the disjointness of the RSA
pair with respect to some natural representations of the components derived
from the above definition of the pair.

Theorem 5.1.1 (Krajicek, Pudldk [KP98]) The theory S proves the dis-
jointness of the pair (RSAg, RSA1).

The proof which we skip involves verifying that the number-theoretic argu-
ments used in the straightforward proof of the disjointness of (RSAg, RSA;)
formalize in S3.

Using our terminology from the previous chapter we may rephrase this the-
orem as follows:

Corollary 5.1.2 The pair (RSAg, RSAy) is representable in EF.

In particular, this implies that the RS A-pair is <;-reducible to the canonical
pair of EF. Therefore, assuming the security of RSA, no proof system P > EF
can have a p-separable canonical pair. By Proposition 4.4.3 this also implies
that none of these strong systems is automatizable.
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As by Theorem 4.8.7 also the interpolation pair of EF is <,;-hard for
DNPP(EF) we get the reduction

(RSAg, RSA1) <, (I (EF), I,(EF)) .

Therefore security of RSA implies that the interpolation pair of EFF' is not p-
separable. By Theorem 4.4.8 this means that FF’ does not have feasible interpo-
lation. In fact, this was the original motivation for Theorem 5.1.1. Subsequently
it was shown that also Frege systems and bounded-depth Frege systems do not
admit feasible interpolation under plausible assumptions [BPR00, BDG104].

5.2 Pseudorandom Generators in Propositional
Proof Complexity

This section is devoted to a potential application of the results of the previous
chapter for the construction of hard tautologies from pseudorandom genera-
tors (called 7-formulas). To employ pseudorandom generators as the basis for
proving lower bounds to the proof size in propositional proof systems was inde-
pendently suggested by Krajicek [Kra0la, Kra0Olb, Kra04] and by Alekhnovich,
Ben-Sasson, Razborov and Wigderson [ABSRWO04]. These 7-formulas are can-
didates for tautologies without polynomially long proofs in strong proof systems
like E'F and their extensions. Proving super-polynomial lower bounds for strong
proof systems constitutes a major open problem in propositional proof complex-
ity. The aim of this section is to illustrate that the hardness of 7-formulas can
be expressed by properties of disjoint NP-sets .

We recall some terminology from [Kra04]. Let C' = (C),)nen be a family
of polynomial size boolean circuits such that C), is a circuit with n input and
m(n) > n output bits with some polynomial m. Functions f computed by such
families C' are called polynomially stretching (p-stretching).

For b € {0,1}"™ we consider propositional formulas 7(C),. The formula
7(C)p has propositional variables pq,...,p, for the bits of the input of C,,
1, - - s Gm(n) for the bits of the output of C, and 71, ..., 7,001) for the inner nodes
of Cy,. The formula 7(C);, expresses that if 7 are correctly computed according
to C,, from the input variables p, then the values of the output variables q are
different from the bits of b. The formula 7(C); is a tautology if and only if
b & rng(f). But apparently 7(C');, does not only depend on rng(f) but also on
the particular circuits C,, used for the computation of f.

The formulas 7(C) from a circuit family C,, are called hard for a proof
system P, if there does not exist a sequence of pairwise different numbers b,, €
{0,1}™™) n e N, such that

P f—* T(C)bn .

The intuition is that for functions having pseudorandom properties it should
be hard to prove that a given element lies outside the range of the function.
The hardness of a p-stretching function can be characterized by a hitting set
property for NP/poly-sets. For this we need the following definition of the
resultant of a p-stretching map.
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Definition 5.2.1 (Krajicek [Kra04]) Let f be a p-stretching map computed
by the circuit family C = (Cy)nen and let P be a propositional proof system.
The resultant of C with respect to P, denoted by Resg, consists of all NP /poly-
sets A for which there exists a propositional representation ¢, (Z,y) of A such
that

P b u(@,g) — C(2) #a .

In [Kra04] this definition is formulated slightly differently, but as already
here the close connection to disjoint NP-pairs becomes visible we have used
similar terminology as in the previous chapters. The following theorem charac-
terizes the hardness of 7-formulas by a condition on the resultant of P.

Theorem 5.2.2 (Krajicek [Kra04]) Let P be a proof system of the form
EF + ® for some polynomial time computable set ® C TAUT. Let f be a p-
stretching function and C' a polynomial size circuit family computing f. Then
the following are equivalent:

1. The formulas 7(C) are hard for P.
2. The resultant Resg contains only finite sets.

Proof. For the first direction assume that the resultant contains an infinite
NP /poly-set A that is represented by the propositional formulas ¢, (Z, 7). We
choose a sequence of pairwise distinct elements a; in A with |a;| = n;. By
assumption we have

Pt on,(2,9) = C2) #

For a; € A we now choose witnesses b; with |b;| < |a;|¥ such that

': (Pni(dia bi) .

Because P is closed under substitutions by constants we obtain

P o o (a;,b;) — C(z) #a; .

Evaluating ¢, (a;,b;) to T and applying modus ponens we arrive at
Pt Cz)#a; .

Hence the formulas 7(C'),, have polynomial size proofs in P and therefore 7(C')
is not hard for P.

For the opposite direction let us assume that the formulas 7(C') are not hard
for P. Then there exists a polynomial p such that the NP /poly-set

A= {(I € {0, 1}* | P '_Sp(|a\) T(C)a}
is infinite. As a propositional representation for A we can choose the formulas

1Pt p (7, 7(C)a) [P1D
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Using the reflection principle of P and modus ponens we obtain P-proofs of
I Taut (7(C),)|*

from which we conclude with Lemma 3.6.3 that 7(C), has polynomial size P-
proofs for all a € A. O

In fact the hardness of the function f should not depend on the particular
circuits used for the computation of f. For functions f computed by non-
uniform circuit families it is, however, not possible to get hard formulas 7(C)
for all circuit families C' computing f.

While this is not difficult to prove formally it is also intuitively clear. If
a function f is computed by the circuits C' which might yield hard formulas
7(C), then we can modify these circuits to a circuit family C” as follows. To
the output gates of C' we attach a circuit of polynomial size which compares
the output produced by C with polynomially many fixed elements from the
complement of rng(f). If this test is positive, then we output a fixed element
from rng( f), otherwise we return the original output of C. Obviously, C and C’
compute the same function f. But intuitively the formulas 7(C’) are not hard
for sufficiently strong proof systems P. By inspecting the extra gates attached
to the circuits C' we can devise short P-proofs for the disjointness of rng(f) and
the set of those elements which are excluded in the extra gates of C".

However, the situation is different for the functions f € FP which are com-
puted by uniform circuit families. Focusing therefore on the case where the
circuit families are uniformly given we say that a polynomial time computable
p-stretching function f yields representationally independent hard T-formulas
for P, if for every uniformly given circuit family C' computing f the resulting
formulas 7(C) are hard for P.

In this case also the resultant Resg has to be defined efficiently and contains
just NP-sets which are disjoint with rng(f) and where this disjointness is prov-
able with short P-proofs. We can therefore use our terminology about disjoint
NP-pairs to rephrase condition 2 of the theorem by the following condition 2’:

2. All sets A € NP with (A,rng(C)) € DNPP(P) are finite.

We point out that in condition 2’ the disjointness of A and rng(f) has to be
proven with respect to the circuit family used for the computation of f, while
the representation of A can be chosen arbitrarily.

Using the <;-completeness of the U-pair for DNPP(P) (Theorem 4.8.6) we
can restate Theorem 5.2.2 in the following form:

Corollary 5.2.3 Let P be a proof system of the form EF +® for some polyno-
mial time computable set ® C TAUT. For every p-stretching function f € FP
the following are equivalent:

1. f yields representationally independent hard T-formulas for P.

2. Every set A € NP with ANrng(f) =0 and (A,rng(f)) <s (U1(P),Us) is
finite.
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The difference between Corollary 5.2.3 and Theorem 5.2.2 is that condition 2
of the corollary only speaks about rng(f) whereas condition 2 of the above
theorem involves the particular circuits used for the computation of f.

Dropping the condition (A,rng(f)) <s (Ui(P),Us) from condition 2 of the
corollary we arrive at an NP-set B = rng(f) containing no infinite NP-set in its
complement B. Such sets B are called NP-simple (see [BDG8S8] or [SY04]). By
Corollary 5.2.3 NP-simple sets would yield representationally independent hard
7-formulas for all proof systems, but their existence is open.

Simplicity is a concept originating in recursion theory that can be defined
for any complexity class.

Definition 5.2.4 Let C be a complexity class.
1. A set A is called C-immune if every subset B C A with B € C is finite.
2. A is called C-simple, if A € C and A is C-immune.

Here we are interested in the cases C = P and C = NP. As mentioned the
question whether NP-simple sets exist is open. Obviously NP # coNP is a nec-
essary condition for the existence of NP-simple sets, other necessary or sufficient
conditions are, however, not known. Vereshchagin proved that NP-simple sets
exist relative to a random oracle [Ver95].

What we actually need for the hardness of 7-formulas is not the existence
of NP-simple sets, but a weaker condition which could be formalized as:

Definition 5.2.5 Let (C, D) be a disjoint NP-pair. We call a set A NP-simple
relative to (C, D) if A € NP and for all infinite sets B € NP with AN B = ()
we have (A, B) £5 (C, D).

With this definition Corollary 5.2.3 takes the following form:

Corollary 5.2.6 For all proof systems P = EF + ® with polynomial time
computable ® C TAUT and all p-stretching functions f € FP the following are
equivalent:

1. f yields representationally independent hard T-formulas for P.
2. tng(f) is NP-simple relative to (U1 (P),Us).

The following easy proposition gives a characterization of the relative sim-
plicity of an NP-set.

Proposition 5.2.7 Let A € NP and let (C, D) be a disjoint NP-pair. Then A
is NP-simple relative to (C, D) if and only if for all <P -reductions g : A <P C
the set g~ (D) is finite.

Proof. Let A be NP-simple relative to (C, D). Let us assume that g—!(D)
is infinite for some reduction g : A <P, C. We have g~ !(D) € NP and AN
g 1(D) = 0. Therefore g reduces the disjoint NP-pair (A,g~1(D)) to (C, D),
i.e. A is not NP-simple relative to (C, D).
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If on the contrary A is not NP-simple relative to (C, D), then there exists an
infinite set B € NP with AN B =0 and g : (A, B) <, (C, D) via some function
g € FP. Then g~—!(D) contains B and is therefore infinite. 0

The proof of Proposition 5.2.7 also makes it clear that the relative NP-
simplicity of a set does not depend on the strength of the reduction used, i.e.
using the weaker reduction <, instead of <, in Definition 5.2.5 results in the
same concept.

In view of the above proposition the NP-simplicity of A relative to (C, D)
can also come from the fact that A is not <P -reducible to C. But for the
case where (C, D) = (Uy(P),Us) this cannot happen as Uy (P) and Us are NP-
complete. In this case we can give the following necessary condition for the
relative NP-simplicity of A.

Proposition 5.2.8 Let A be NP-simple relative to (C,D) and let A be <P -
reducible to C. Then A is P-immune.

Proof. Let g: A <P, C. If A is not P-immune, then there exists an infinite set
B € P with AN B = {). Then the disjoint NP-pair (A, B) is <s-reducible to
(C,D) via
x ite ¢ B
J(2) = { 9(x) ¢

ro €D ifx e B,

i.e. A is not NP-simple relative to (C, D). O

Therefore the relative NP-simplicity of a set A is a notion which lies in
strength between the P-immunity of the complement A and the NP-simplicity
of A. Whether disjoint NP-pairs will indeed prove to be helpful in establishing
lower bounds to the proof size in strong proof systems must remain open. The
characterization of these difficult proof-theoretic problems in terms of disjoint
NP-pair as given in Corollary 5.2.3 shows, however, that investigation into the
structure of NP-pairs will remain a demanding and potentially rewarding task.
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Chapter 6

Disjoint Tuples of NP-Sets

Aus vielen Skizzen endlich ein Ganzes hervorbringen
gelingt selbst den Besten nicht immer.

Johann Wolfgang Goethe

In the previous chapters we have seen that disjoint NP-pairs are a natural
concept with meaningful applications to cryptography and the theory of propo-
sitional proof systems. At this point it is a natural question for the enquiring
mathematical mind to ask: can we generalize this to k-tuples and develop a
corresponding theory of disjoint k-tuples of NP-sets? But also in many applica-
tions we find situations where not only two but a greater number of different,
mutually exclusive conditions is of interest.

Hence this chapter is devoted to a generalization of the results from Chap. 4
to disjoint k-tuples of NP-sets. As many definitions and results are generalized
in a straightforward manner we will explain the material in a more condensed
form.

6.1 Basic Definitions and Properties

Definition 6.1.1 Let k > 2 be a natural number. A tupel (Aq,...,Ax) is a
disjoint k-tuple of NP-sets if all components Aq, ..., Ay are nonempty languages
in NP which are pairwise disjoint.

We generalize the notion of a separator of a disjoint NP-pair in the following
way:

Definition 6.1.2 A function f : {0,1}* — {1,...,k} is a separator for a
disjoint k-tuple (A1, ..., Ar) of NP-sets if for all a € {0,1}*
acd;, = fla)=i fori=1,...,k .

For inputs from the complement A1 U...U Ay the function f may answer ar-
bitrarily.

If (Ay,..., Ag) is a disjoint k-tuple of NP-sets that has a polynomial time
computable separator we call the tuple p-separable, otherwise p-inseparable.

111
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Whether there exist p-inseparable disjoint k-tuples of NP-sets is a certainly a
hard problem that cannot be answered with our current techniques. At least we
can show that this question is not harder than the previously studied question
whether there exist p-inseparable disjoint NP-pairs.

Theorem 6.1.3 The following are equivalent:

1. For all natural numbers k > 2 there exist p-inseparable disjoint k-tuples
of NP-sets.

2. There exists a natural number k > 2 such that there exist p-inseparable
disjoint k-tuples of NP-sets.

3. There exist p-inseparable disjoint NP-pairs.

Proof. Trivially, 1 implies 2. We will show 2 = 3 and 3 = 1.

In order to prove 2 = 3 let us assume that all disjoint NP-pairs are p-
separable. Let k > 2 be some number and (A1, ..., A;) be a disjoint k-tuple of
NP-sets. By assumption we have separators f; ; for all disjoint NP-pairs (A4;, A;)
with 4,7 € {1,...,k}, i # j. We devise a separator for (Ay,..., Ax) as follows:
at input a we first evaluate all functions f; j(a). If there exists a number ¢
such that we received 1 at all evaluations f; j(a) for j € {1,...,k}\ {4}, then
we output this number i. If no such i exists, then we know that a is outside
A1U...UAg, and we can answer arbitrarily. If on the other hand a € A;, then
we always get f; j(a) =1 for j € {1,...,k}\ {i}. As only one such i can exist
we produce the correct answer.

To show the remaining implication 3 = 1 let us assume that the disjoint
NP-pair (A, B) is p-inseparable. Without loss of generality we may assume that
AU B is infinite because otherwise the pair (4, B) can be trivially modified to a

p-inseparable pair that meets this condition. For a given number k let as, ..., ag
be distinct elements from A U B. Then (4, B,{as},...,{ar}) is a p-inseparable
disjoint k-tuple of NP-sets. O

Let us pause to give an example of a disjoint k-tuple of NP-sets that is
derived from the Clique-Colouring pair. The tuple (Cy, ..., C}) has components
of the following form:

C; = {G| G is an i + 1-colourable graph with a clique of size i} .

Clearly, the components C; are NP-sets which are pairwise disjoint. The tuple
(C1,...,Cy) is also p-separable, but to devise a separator for (Ci,...,Cy) is
considerably simpler than to separate the Clique-Colouring pair: given a graph
G we output the maximal number ¢ between 1 and k such that G contains a
clique of size ¢. For graphs with n vertices this number ¢ can be computed in
time O(n¥). It would be nicer to define the components C; by the requirement
that the chromatic number of the graph G should be exactly ¢ + 1. This,
however, would increase the complexity of C; to NP U coNP. The situation is
similar for asking for the exact value of other graph parameters that are not
easily computable in polynomial time.
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Candidates for p-inseparable tuples arise from one-way functions. Let ¥ =
{ai1,...,ax} be an alphabet of size k > 2. To a one-way function f : X* — X*
we assign a disjoint k-tuple (A1(f),..., Ax(f)) of NP-sets with components

Ai(f) ={(y,5) | G2) f(z) = y and z; = a;}

where x; is the j-th letter of x. This tuple is p-inseparable if f has indeed the
one-way property.

Next we define reductions for k-tuples. We will only consider variants of
many-one reductions which are easily obtained from the reductions <, and <;
for pairs. As there is no danger of confusion we will use the same symbols <,
and < for the generalized versions.

Definition 6.1.4 Let (Ay,...,Ax) and (B1,..., By) be disjoint k-tuples of NP-
sets. We say that (A1, ..., Ag) is polynomially reducible to (Bi,...,By), de-
noted by

(A1,...,Ay) <p (B1,...,By) ,

if there exists a polynomial time computable function f such that f(A;) C B;
foralli=1,... k.
The tuple (A, ..., Ag) is strongly reducible to (By,...,By), denoted by

(A1,...,Ay) <s (B1,...,By) |

if there exists a polynomial time computable function f such that f per-
forms a <,-reduction from (Ai,...,A;) to (B1,...,B) and additionally
f(Alu...UAk) C BiU...UBg.

As before we define from <, and <, equivalence relations =, and =, and
call their equivalence classes degrees.

We call a disjoint k-tuple of NP-sets <,-complete or <,-complete if all disjoint
k-tuples of NP-sets are <,- or <,-reducible to it.

As for pairs we observe that the complexity of the components of a k-tuple
inside a <,-degree can change while this is not possible for <,-degrees.

Proposition 6.1.5 1. For every disjoint k-tuple (Ai,...,Ar) of NP-sets
there exists a disjoint k-tuple (Bu, ..., By) of NP-sets such that

(At A) = (Bi,.... By)
and By, ..., By are NP-complete.

2. If f is a <s-reduction between the disjoint k-tuples (A1,...,Ar) and
(B1,...,Bxk), then f is a many-one reduction from A; to B; for every
i=1,...,k.

Proof. For part 1 choose B; = A; x SAT. Part 2 follows immediately from the
definition of <. O

The difference between <, and <, as expressed in Proposition 6.1.5 allows
us to separate the reductions <, and < on the domain of all p-separable disjoint
k-tuples of NP-sets:
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Theorem 6.1.6 For all natural numbers k > 2 the following holds:
1. All p-separable disjoint k-tuples of NP-sets are <,-equivalent.

2. If P # NP, then there exist infinitely many <s-degrees of p-separable dis-
joint k-tuples of NP-sets.

3. P # NP if and only if there exist disjoint k-tuples of NP-sets (A, ..., Ax)
and (Bu, ..., By) such that A1 U...U A and By U...U By are nonempty
and (Al, ‘o ,Ak) Sp (Bl, ey Bk), but (Al, PN ,Ak) ﬁs (Bl, PN ,Bk).

Proof. Parts 1 and 2 are proved analogously as Propositions 4.2.1 and 4.2.4.
Part 3 is a consequence of parts 1 and 2. O

6.2 Representable Disjoint Tuples of NP-Sets

Definition 6.2.1 Let P be a propositional proof system. A disjoint k-tuple
(A1,..., Ax) of NP-sets is representable in P if there exist propositional repre-
sentations ! (z,7') of A; for i = 1,....k such that for each 1 < i < j < k
the formulas ¢! (Z,9") and @) (Z,9’) have only the variables T in common, and
further
Pro N\ @) v-eh@y) .
1<i<j<k

By DNPP(P) we denote the class of all disjoint k-tuples of NP-sets which

are representable in P.

Because the classes DNPP(P) provide natural generalizations of DNPP(P)
we have chosen the same notation for the classes of k-tuples.

As in Sect. 4.5 we can show that the class DNPPy(P) is closed under reduc-
tions.

Proposition 6.2.2 Let P be a proof system that is closed under conjunctions
and disjunctions and that simulates resolution. Then for all numbers k > 2 the
class DNPPy(P) is closed under <,,.

Proof. Let (Aj,...,A;) and (Bi,...,By) be disjoint k-tuples of NP-sets
such that f is a <,-reduction from (Aj,...,Ax) to (Biy,...,Bg). Let fur-
ther P be a propositional proof system satisfying the above conditions and
let (By,...,By) € DNPPg(P).

Closure of P under conjunctions implies that for all 1 < i < j < k each
of the disjoint NP-pairs (B;, B;) is contained in DNPP(P). As f is also a <,-
reduction between the disjoint NP-pairs (A;, A;) and (B;, Bj) we infer with
Proposition 4.6.1 that all pairs (A;, A;) are in DNPP(P). Going back to the
proof of Proposition 4.6.1 we see that P proves the disjointness of these pairs
with respect to the representations

Al ={x|xz € A; and f(z) € B;} .
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In particular, the representation of A; is always the same when proving the
disjointness of A; and A; for different j. Therefore we can combine these proofs
of disjointness by conjunctions and obtain a P-proof of a suitable propositional
description of

N ANA=0.

1<i<j<k

This shows (Ay,...,Ar) € DNPPy(P). 0

6.3 Disjoint Tuples of NP-Sets from Propositional
Proof Systems

In this section we want to associate tuples of NP-sets with proof systems. It is
not clear how the canonical pair could be modified for k-tuples but the interpo-
lation pair as well as the U-pair can be stretched to more than two components.
We start with the generalization of the U-pair.

For a propositional proof system P we define a k-tuple (Uy(P),...,Uk(P))
with the components

Ui(P) ={(e1,...,¢k,1™) | Var(e;)NVar(g) =0foralll <j <<k,

;€ SAT and P l_Sm /\ ©j V gol}
1<) <1<k

for i = 1,...,k. It is clear that all components U;(P) are in NP. To see
their pairwise disjointness assume that (¢1,...,¢%,1™) € U;(P) and let j €
{1,...,k}\ {i}. Because we have a P-proof of

/\ P4 \% "2
1<j<i<k

this formula is a tautology. Therefore in particular ¢; V ¢; is a tautology and
because ¢; and ¢; have no common variables either of these formulas must be
tautological. As in the definition of U;(P) this is excluded for ¢; the formula
; is a tautology. But this implies (¢1, ..., ¢, 1) & U;(P).

Similarly, we can expand the interpolation pair (I (P),I2(P)) to a k-tuple
(I1(P),...,Ix(P)) by setting

L(P)={(¢1,...,06,m) | Var(p;)NVar(y) =0forall 1 <j<il<k,
—p; € SAT and P(n) = /\ ©;i Vo)

1<5<I<k

for i =1,...,k. The same argument as above shows that (I1(P),...,Ix(P)) is
indeed a disjoint k-tuple of NP-sets. Further, this tuple still captures the feasible
interpolation property of the proof system P as the next theorem shows.

Theorem 6.3.1 Let P be a propositional proof system that is efficiently closed
under substitutions by constants and conjunctions. Likewise suppose we can
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efficiently modify a P-proof of an implication o — 1 to a P-proof of —p V
and vice versa.

Then (I (P),...,Ix(P)) is p-separable if and only if P has the feasible in-
terpolation property.

Proof. Because we assumed that P is efficiently closed under substitutions by
constants and can handle implications we know by Theorem 4.4.8 that feasible
interpolation of P is equivalent to the p-separability of (I1(P),I2(P)). It is
therefore sufficient to show that for every k > 2 the pair ([;(P),I3(P)) is p-
separable if and only if (I1(P),...,Ix(P)) is p-separable.

For the first direction assume that (I;(P), I5(P)) is separated by the poly-
nomial time computable function f, i.e.

(p,,m) € L(P) = flp,h,m) =1
(9071/%77) € 12(P) = f(gD,’(ZJ,TF) =0 .

We separate the tuple (I1(P),...,Ix(P)) by the following algorithm: at input
(¢1,..., 9k, ™) we test whether 7 is indeed a P-proof of

/\ wiVgj .
1<i<j<k

If this is the case we can use the assumption that P is efficiently closed under
conjunctions to compute P-proofs m; ; of ¢; V p; for all i,j € {1,...,k}, i #
j. We then test whether there exists an ¢ € {1,...,k} such that for all j €
{1,...,k}\ {i} we have f(p;,¢;,m; ;) =1. If such ¢ exists, then we output this
number 1.

It is clear that this algorithm runs in polynomial time. To see the correctness
of the algorithm assume that (¢1,...,¢k, ) € L;(P). Then —p; is satisfiable
and hence ¢1,...,9i—1,Qi+1,..., ¢k are tautologies. Therefore f(y;, ), ;)
always outputs 1. As this can happen for at most one 7 we give the correct
answer.

For the converse direction assume that (I1(P),...,I;(P)) is separated by
the polynomial time computable function f, i.e.

(1, 0k,m) € Li(P) = flo,..., 0k m) =1

fori =1,...,k. Let (¢,1¢,m) be given. We first check whether P(7w) = ¢ V 1.
If this is fulfilled we expand (¢, %) to the k-tuple

(9017---7S0k):(8071/17T7---7T) .

We then use the assumption that P is efficiently closed under conjunctions
to generate a P-proof 7’ of Ni<icj<k i V @j from 7. Finally, we evaluate
flo,b, Ty, T,7"). We use this answer to decide (p,%, ), i.e. on output 1
we also answer with 1 and on output 2 we answer with 0. O

The next theorem is a generalization of Theorem 4.8.3 to k-tuples.
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Theorem 6.3.2 Let P be a proof system that is closed under substitutions by
constants. Then for every k > 2 the k-tuple (U1 (P),...,Ux(P)) is <s-hard for
DNPPy(P).

Proof. Let (Aj,...,Ax) be a disjoint k-tuple of NP-sets and let ¢ (Z, ") be
propositional representations of A; for i = 1,...,k such that

Pre N —eh(@y) Vel y)
1<i<j<k

We claim that there exists a polynomial p such that

a = (_‘Cﬂ\la|(@,§1),...,ﬂgpfa‘(a7gk)71p(\al))

realizes a <g-reduction from (Ay,...,Ag) to (U1 (P),...,Ux(P)).
Verifying this claim proceeds similarly as in the proof of Theorem 4.8.3. O

For technical reasons we now introduce a modification (Vi (P),..., Vi (P))
of the U-tuple for which we will also show the hardness for DNPP(P). Instead
of k-tuples the components V,.(P) now consist of sequences of (k— 1)k formulas
together with an unary coded parameter m. For a propositional proof system
P we define the k-tuple (V1 (P),...,Vi(P)) as:

Vi(P) = {((pij |1 <4, <k,i#7),1")]
Var(g; ;) N Var(g;,) =0 for all 4,5,1,n € {1,...,k},i #1,
—ri € SAT for i € {1,...,k} \ {r} and

k k
Prem NN i Vil
i=1 j=i+1

for r = 1,...,k. Let us verify that we have defined a disjoint k-tuple of NP-
sets. It is clear that all components V,.(P) are in NP. To prove their disjointness
assume that the tuple ((p; ;|1 <i,5 < k,i # j),1™) is contained both in V,.(P)
and V5(P) for r,s € {1,...,k}, r < s. The definition of V; guarantees that

k k
AN N e Ve

i=1j=i+1

is a tautology. Therefore in particular ¢, sV ¢, is a tautology and because ¢, s
and ¢, have no common variables either of these formulas must be tautological.
In the definition of V,.(P) this is excluded for ¢, s and in the definition of V;(P)
this is excluded for ¢, , which gives a contradiction.

As this V-tuple is a generalization of the previously defined U-tuple we can
reduce the U-tuple to the V-tuple, thereby showing the hardness result for the
V-tuple:

Proposition 6.3.3 Let P be a proof system that is closed under substitutions
by constants. Then for every k > 2 the pair (Vi(P),...,Vi(P)) is <s-hard for
DNPPy(P).
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Proof. By Theorem 6.3.2 we know that (Ui(P),...,U(P)) is <s-hard for
DNPP(P) for proof systems P that are closed under substitutions by constants.
Therefore, to prove the result it is sufficient to <g-reduce (Ui(P),...,Ux(P))
to (Vi(P),...,Vix(P)). The reduction is given by

f:(solw"agpk’?lm) = (9017"'>9017S027"'>9027"'7§0k7"'780k71m) .
—_———
k—1 k—1 k—1

To prove the correctness of the reduction it is enough to observe that for each
i=1...,k we have (p1,...,pk,1™) € U;(P) if and only if f(¢1,..., ¢k, 1) €
Vi(P). This is true because the conditions on the satisfiability and the disjoint-
ness of the variables of the formulas are trivially preserved, and the formulas

k k
N eiva=N\ N ¢Ve

1<j<I<k j=11=j+1

which should be P-provable in size < m are equal. O

6.4 Arithmetic Representations

As for disjoint NP-pairs we can also generalize the notion of arithmetic repre-
sentations to disjoint k-tuples of NP-sets.

Definition 6.4.1 A disjoint k-tuple (A1, ..., Ar) of NP-sets is representable in
an L-theory T if there are ¥4 -formulas ¢1(x), . . ., or(x) representing Ay, . .., Ay
such that

TE V) A —ei@)V-p)

1<i<j<k

By DNPP(T) we denote the class of all disjoint k-tuples of NP-sets that are
representable in T.

Similarly as in Theorem 4.5.8 we can show that also for k-tuples these
uniformly defined classes coincide with the non-uniformly defined classes
DNPP(P) for regular proof systems P corresponding to the theory T

Theorem 6.4.2 Let P > EF be a reqular proof system which is closed un-
der substitutions by constants and conjunctions and let T D Si be a theory
corresponding to T. Then we have DNPPy(P) = DNPP(T) for all k > 2.

Proof. To show DNPPy(P) C DNPPy(T) let (A4,..., Ag) be a disjoint k-tuple
of NP-sets in DNPP;(P) and let ¢! be propositional representations of the sets
A; fori=1,...,k, such that

P+, /\ ﬂgoqi\/ﬂgof1 . (6.1)
1<i<j<k

Because P is closed under conjunctions this in particular means

Pk, _‘%Z’z v _‘%jm
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for all 1 < i < j < k, ie. all disjoint NP-pairs (A4;, A;) are contained in
DNPP(P). By Proposition 4.5.7 this implies that for all 1 < i < j < k we
have (A;, Aj) € DNPP(T) where the disjointness of (A;, A;) is T-provable via
arithmetic representations ;(x) for A; depending only on the set A; and the
polynomial in (6.1). Hence we get

T+ (Vo) N () V() (6.2)

1<i<j<k

and therefore (Ay,...,Ar) € DNPPy(T)
For the other inclusion let 1 (x),..., ¢, (x) be arithmetic representations

of Aj,..., A such that (6.2) holds. Then the translations |[1;(z)||™ of the
arithmetic representations ; provide propositional representations of A; for
i =1,...,k. In these translations we choose the auxiliary variables disjoint.
Because A\j<;j< 7i(®) V () is a I15-formula we get from (6.2)

Pl A @) V@)l .

1<i<j<k
By definition of the translation ||.|| this is equivalent to
Pro N @IV =l @)
1<i<j<k
and therefore (Ay,...,Ar) € DNPPg(P). 0

As for the case k = 2 we now observe that the k-tuples (U1 (P),...,Uk(P))
and (I1(P),...,Ix(P)) are representable in P.

Lemma 6.4.3 Let P be a regular proof system. Then for all numbers k > 2
the k-tuples (U1 (P),...,Ux(P)), Vi(P),...,Vi(P)) and (I1(P),...,Ix(P)) are
representable in P.

Proof. Let P be regular and T be a theory associated with P. We show the rep-
resentability of (U (P),...,Ux(P)), Vi(P),...,Vix(P)) and (I1(P),...,Ix(P))
in T'.

As arithmetic representations for the components U;(P), V;(P) and I;(P) we
choose straightforward first-order formalizations which use the formulas Taut
and Prfp. Using the reflection principle of P which is available in T" we can
devise T-proofs of the arithmetic formalizations of U;(P) NU;(P) =0, Vi(P) N
Vi(P) = 0 and L;(P)NI;(P) = 0 for all 1 < i < j < k. Combining these
proofs we get the representability of (Ui(P),...,Ur(P)), (Vi(P),...,Vi(P))
and (I1(P),...,Ix(P))inT.

Because the inclusion DNPPy (7)) € DNPP(P) in Theorem 6.4.2 follows
alone from the regularity of P we infer that these tuples are also representable
in the proof system P. a

Combining Theorem 6.3.2 and Lemma 6.4.3 we conclude:

Corollary 6.4.4 Let P be a reqular proof system that is closed under substi-
tutions by constants. Then for every k > 2 the pair (Ui (P),...,Ux(P)) is
<s-complete for DNPP(P).
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For strongly regular proof systems P we can additionally show the <-
completeness of the k-tuple (I1(P),...,Ix(P)) for DNPPg(P), thereby extend-
ing Theorem 4.8.7 to k-tuples:

Theorem 6.4.5 Let P > EF be a strongly reqular proof system that is effi-
ciently closed under substitutions by constants. Then for all k > 2 the tuples
(U1(P),...,Ux(P)) and (I1(P),...,Ix(P)) are <s-complete for DNPPy(P). In
particular we have

(UL(P), ..., Up(P)) =5 (I(P),... . Ix(P)) .
Proof. The <s-completeness of (U1(P),...,Ui(P)) was already stated in Corol-
lary 6.4.4.

As by Lemma 6.4.3 also (I1(P), ..., Ir(P)) is representable in P it remains to
show that (I1(P),. .., Ix(P)) is <s-hard for DNPP(P). For thislet (Aqy,..., Ax)
be a disjoint k-tuple of NP-sets that is representable in P. By Theorem 6.4.2
we know that (Aq,..., Ax) is also representable in the theory T' corresponding
to P. Let ¢;(z) be arithmetic representations of A; for i =1,...,k such that

Th (¥2) N\ —eile) Vg .
1<i<j<k
Because this is a VIIS-formula and P is strongly regular there exists a polynomial
time computable function f that on input 1" produces a P-proof of
I A i) Vg™
1<i<j<k

Further, because by assumption P is efficiently closed under substitutions by
constants we can use f to obtain a polynomial time computable function g that
on input a € {0,1}" outputs a P-proof of

I A —eil@) Vv —e@))" (3 /a)

1<i<j<k

where the propositional variables p* for x are substituted by the bits of a.
We claim that the <,-reduction from (Ay,...,A) to (I1(P),...,Ix(P)) is
given by
a = (([=¢i(@)1 (0" /a) |1 <i < k), g(a))
where the auxiliary variables of ||~;(x)||l*! are all chosen disjoint. Verifying the
correctness of the reduction then proceeds as in the proof of Theorem 4.8.3. O

As a corollary we get from Proposition 6.2.2 and Theorem 6.4.5 for the
extended Frege system EF"

Corollary 6.4.6 For every number k > 2 and every k-tuple (Aq,...,Ax) of
NP-sets we have (Ai,...,Ar) € DNPPL(EF) if and only if (A1,...,Ar) <s
(U1(EF),...,Ux(EF)).

Additionally, we have

(UL(EF), ..., Uy(EF)) =5 (I.(EF), ..., I.(EF)) .

The corollary is also true for all extensions EF + ||®|| of the extended Frege
systems for polynomial time sets ® of true I1%-formulas.
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6.5 On Complete Disjoint Tuples of NP-Sets

In this section we will study the question whether there exist complete disjoint
k-tuples of NP-sets under the reductions <, and <. We will not be able to
answer this question but we will relate it to the previously studied questions
whether there exist complete disjoint NP-pairs or optimal propositional proof
systems. The following is the main theorem of this section:

Theorem 6.5.1 The following conditions are equivalent:

1. For all numbers k > 2 there exists a <s-complete disjoint k-tuple of NP-
sets.

2. For all numbers k > 2 there exists a <,-complete disjoint k-tuple of NP-
sets.

3. There exists a <,-complete disjoint NP-pair.

4. There exists a number k > 2 such that there ewists a <p,-complete disjoint
k-tuple of NP-sets.

5. There exists a propositional proof system P such that for all numbers
k > 2 all disjoint k-tuples of NP-sets are representable in P.

6. There exists a propositional proof system P such that all disjoint NP -pairs
are representable in P.

7. There exists a propositional proof system P and a number k > 2 such that
all disjoint k-tuples of NP-sets are representable in P.

Proof. To show the equivalence of 1 to 7 we will prove the following implications:
1=2= 3= 6= 1 and the equivalences 3 < 4,5 < 6 and 6 < 7.

As the implications 1 = 2 = 3 = 4 and 5 = 6 = 7 are trivial it remains
toproved =6 =1,4= 3,6 = 5and 7 = 6.

To prove the implication 3 = 6 assume that (A, B) is a <,-complete disjoint
NP-pair. We choose some representations ,, and 1, for A and B, respectively.
Let P be a proof system such that (A, B) is representable in P, and P simulates
resolution and is closed under disjunctions. For instance the proof system

EF + {~¢, V —b, | n > 0}

fulfills these conditions. Because (A, B) is representable in P and DNPP(P) is
closed under <, by Proposition 4.6.1, it follows that all disjoint NP-pairs are
representable in the system P.

Next we prove the implication 6 = 1. Let P be a propositional proof
system such that all disjoint NP-pairs are representable in P. We choose a
proof system @) > P that is closed under conjunctions and substitutions by
constants. As ) simulates P also the class DNPP(Q) contains all disjoint NP-
pairs. We claim that for all £ > 2 the pair (V1(Q), ..., Vi(Q)) is <s-complete for
the class of all disjoint k-tuples of NP-sets. To verify the claim let (Aq,..., Ag)
be a disjoint k-tuple of NP-sets. In particular, for all 1 <4 < j < k the pair
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(A, Aj) is a disjoint NP-pair. By assumption all these pairs are representable
in (). However, we might need different representations for the sets A; to
prove the disjointness of all these pairs. For example proving A; N Ay = () and
A1 N Az = () might require two different propositional representations for Aj.
For this reason we cannot simply reduce (Aj,...,A) to (U1(Q),...,Ur(Q)).
But we can reduce (41,...,Ax) to (Vi(Q),...,Vi(Q)) which was designed for
this particular purpose.

For 1 <i < j < klet ¢4 (z,4"7) and phi(z,y’") be propositional repre-
sentations of A; and A;, respectively, such that all tuples of variables g*J are
chosen distinct and

Q Fu —@ (2, y")V =Lz, 57"

Because @ is closed under conjunctions we can combine all these proofs to
obtain

ko k
Q. N N~ @y) V-l @y . (6.3)
i=1j=i+1
The reduction from (A, ..., Ag) to (Vi(Q),...,Vi(Q)) is given by

a v ((~% (@, g9) |1 <i,j < k,i # j), 1P(m)

for some appropriate polynomial p which comes from (6.3) and the closure of @
under substitutions by constants. To prove the correctness of the reduction let a
be an element from A, for somer € {1,...,k}. Asforall j € {1,...,k}\{r} the
sequences @/ are representations for A, all formulas ¢/ (a,y™) are satisfiable.
By substituting the bits a of a for the variables  we get from (6.3) polynomial
size Q-proofs of

k k
AN N e @y”?)v-eliaiyb") .

i=1j=i+1
This shows ((=@};/ (@,57) |1 < i, < k,i # ), 170) € V,(Q).
If a is in the complement of A; U ... U Ag, then none of the formulas

@bi(a,y™7) is satisfiable and hence a is mapped to a tuple from the comple-
ment of V1(Q)U...UVi(Q).

We proceed with the proof of the implication 4 = 3. Assume that the
tuple (Aq,. .., Ag) is <,-complete for all disjoint k-tuples of NP-sets. We claim
that (A1, Az) is a <,-complete disjoint NP-pair. To prove this let (B1, B2) be
an arbitrary disjoint NP-pair. Without loss of generality we may assume that
the complement of B; U By contains at least k — 2 distinct elements b, ..., b,
because otherwise we can change from (Bj, Bz) to a <p-equivalent pair with
this property. Since (Ap,...,Ax) is <,-complete for all k-tuples there exists
a reduction f from (Bi, Bo,{b3},...,{bx}) to (A1,..., Ag). In particular f is
then a reduction from (Bj, B2) to (A1, A2).

Next we prove the implication 6 = 5. Let P be a proof system such that
all disjoint NP-pairs are representable in P. We choose a regular proof sys-
tem ) that simulates P and is closed under conjunctions, disjunctions and
substitutions by constants, for example @ = EF + ||[REN(P)|| is such a sys-
tem. Clearly, every disjoint NP-pair is also representable in ). Going back
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to the proof of 6 = 1 we see that condition 6 implies that for all £ > 2 the
k-tuple (V1(Q),...,Vi(Q)) is <s-complete for the class of all disjoint k-tuples
of NP-sets. By Lemma 6.4.3 (V1(Q),...,Vix(Q)) is representable in @ and by
Proposition 6.2.2 the class DNPP(Q) is closed under <;. Hence for all k > 2
all disjoint k-tuples of NP-sets are representable in Q.

The last part of the proof is the implication 7 = 6. For this let P be a
proof system and k be a number such that all disjoint k-tuples of NP-sets are
representable in P. We choose some proof system () that simulates P and
is closed under conjunctions. As ) > P all disjoint k-tuples of NP-sets are
representable in (). To show that also all disjoint NP-pairs are representable in
the system @ let (Bj, By) be a disjoint NP-pair. As in the proof of 4 = 3 we
stretch (B1, Bs) to a disjoint k-tuple (By, Ba, {b3},...,{bx}) with some elements
bs,...,bx € By U By. By assumption (B, By, {bs},...,{bx}) is representable in
Q via some representations @k, ..., oF. Because @ is closed under conjunctions
this implies that @ proves the disjointness of B; and By with respect to ¢! and
@2, hence (By, Bs) is representable in Q. O

We can also characterize the existence of complete disjoint k-tuples of NP-
sets by conditions on arithmetic theories, thereby extending the list of charac-
terizations from Theorem 6.5.1 by the items listed in the next theorem:

Theorem 6.5.2 The following conditions are equivalent:

1. For all numbers k > 2 there exists a <s-complete disjoint k-tuple of NP-
sets.

2. There exists a finitely axiomatized arithmetic theory T such that for all
numbers k > 2 all disjoint k-tuples of NP-sets are representable in T .

3. There exists an arithmetic theory T with a polynomial time set of axioms
such that for some number k > 2 all disjoint k-tuples of NP-sets are
representable in T.

Proof. We start with the proof of the implication 1 = 2. By Theorem 6.5.1
we know already that condition 1 implies the existence of a proof system P in
which all disjoint k-tuples of NP-sets are representable. Because by Proposi-
tion 3.7.5 P is simulated by the proof system EF + || RFN(P)|| all k-tuples are
also representable in EF' + || RFN(P)||. By Theorem 3.6.9 this system is regular
and corresponds to the theory S} + RFN(P). Therefore all disjoint k-tuples of
NP-sets are representable in S5 + RFN(P) by Theorem 6.4.2. As the theory S3
is finitely axiomatizable (cf. [Kra95]) we have proven condition 2.

As condition 3 obviously is a weakening of condition 2 it remains to prove
3 = 1. For this let k > 2 be a natural number and 7" be an arithmetic theory
such that DNPP(T) contains all disjoint k-tuples of NP-sets. Consider the
theory 7" = TUSS. As T" is an extension of T all k-tuples are also representable
in T77. As in [KP89] we define from the theory 7" a propositional proof system
P as follows:

A if 7w is a T’-proof of Taut(p)
P(r) = { T otherwise.
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Because T” has a polynomial time axiomatization this defines indeed a propo-
sitional proof system. We claim that all k-tuples are representable in P. To
verify this claim let (A1, ..., Ag) be a disjoint k-tuple of NP-sets. By hypothesis

there exist arithmetic representations ¢, ..., ¢, of Ay,..., A such that
T F (Vx) /\ —i(z) V pji(x) . (6.4)
1<i<j<k

From Lemma 3.6.5 we know that for TI%-formulas v we have
Sy b (Ya)y(a) — (Vy)Taus(||v|) .
Therefore we get from (6.4)

T+ (Yy)Taut(| A\ —i(@) v —p;()|) .

1<i<j<k

By the construction of P this implies

Profl A i) V-p@)" (6.5)
1<i<j<k

The translations ||p;||™ are propositional representations for A; for i = 1,... k.

By the definition of the translations ||.|| we get from (6.5)

P A Slle@))"V=llei @),
1<i<j<k

hence (Aq, ..., Ag) is representable in P. Therefore, all disjoint k-tuples of NP-
sets are representable in P which by Theorem 6.5.1 implies condition 1. O

In Theorem 6.5.1 we stated that the existence of complete disjoint NP-pairs
is equivalent to the existence of a propositional proof system P in which every
disjoint NP-pair is representable. By definition this condition means that for
all disjoint NP-pairs there exists a representation for which the disjointness of
the pair is provable with short P-proofs. If we strengthen this condition by
requiring that this is possible for all disjoint NP-pairs and all representations
we arrive at a condition which is strong enough to characterize the existence of
optimal proof systems. This is the contents of the next theorem.

Theorem 6.5.3 The following conditions are equivalent:
1. There exists an optimal propositional proof system.

2. There exists a propositional proof system P such that for all k > 2 the
system P proves the disjointness of all disjoint k-tuples of NP-sets with
respect to all representations, i.e. for all disjoint k-tuples (Aq,. .., Ax) of
NP-sets and all representations @), ..., oF of A1,..., A, we have P,
Ni<icj<k 7Pn V —@.

3. There exists a propositional proof system P that proves the disjointness
of all disjoint NP-pairs with respect to all representations, i.e. for all
disjoint NP-pairs (A, B) and all representations , of A and 1, of B we
have P F, =@, V —1hy,.
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4. There exists a propositional proof system P and a number k > 2 such that
P proves the disjointness of all disjoint k-tuples of NP-sets with respect
to all representations.

Proof. To prove the implication 1 = 2 let P be an optimal proof system. Let
further (Ay,. .., Ay) be a disjoint k-tuple of NP-sets and let (! be propositional
representations of A; for i = 1,..., k. As the sequence of tautologies

N oLVl
1<i<j<k

can be generated in polynomial time we can define some proof system () with
Q Fe Ni<icj<k =l V=l But because P is optimal we have ) < P and
therefore also Py A<, i< 75 V 7).

As 2 = 3 and 3 = 4 trivially hold it only remains to show 4 = 1. For this
assume that optimal proof systems do not exist. To prove that condition 4 fails
let k£ be a natural number and let P be a proof system. We choose some proof
system @ that simulates P and is closed under conjunctions. Let (Ay,..., Ag)
be a disjoint k-tuple of NP-sets. Then we know by Corollary 4.5.6 that there
exist representations ¢. and (2 for A; and A, respectively, such that the
DNPP (A1, As) is not representable in @ with respect to ¢l and @2, i.e. Q s
-l V —p2. We choose arbitrary representations @3, ..., of for As,..., Aj. As
@ is closed under conjunctions @) does not prove the disjointness of (41, ..., Ax)
with respect to l,..., ¥ and as P < @ this is also true for the system P.
Hence condition 4 fails. O

As an immediate corollary to Theorems 6.5.1 and 6.5.3 we get a strength-
ening of a theorem of Kobler, Messner and Toran [KMTO3], stating that the
existence of optimal proof systems implies the existence of <;-complete disjoint
NP-pairs:

Corollary 6.5.4 If there exist optimal propositional proof systems, then there
exist <gs-complete disjoint k-tuples of NP-sets for all numbers k > 2.

Proof. The existence of optimal proof systems implies condition 2 of Theo-
rem 6.5.3. This condition is a strengthening of condition 5 from Theorem 6.5.1
which is equivalent to the existence of <;-complete disjoint k-tuples of NP-sets
for all k > 2. O
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