Datenbanksysteme II:
Overview and General Architecture

UIf Leser

Table of Content

e Storage Hierarchy
e 5-Layer Architecture
e QOverview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems

2010: Price versus speed

e X Register 1-10 ns/byte
Difference

~105
10 10-60 ns/cache

Very expensiv Cache line
~ Main Memo 0 ns/block
~1€/GB Disk s/block
Difference
< 1€/GB Tape ~104

Ulf Leser: Implementation of Database Systems 3

2010: Storage Hierarchy

/\
Really expensive /i{egisé\ 1-4 byte

Very expensive / Cache \ 1-4 MB

~ 200 €/ GB Main Memory 1-16 GB
~1€/GB Disk 512%?5(; 1TB

“Infinite”
< 1€/GB / [ELE \tape robots

Ulf Leser: Implementation of Database Systems

2016: Storage Hierarchy

/\
/!{egisé\

Really expensive 1 — 32 byte
Very expensive / Cache \ 1-16 MB
~ 7€/ GB / Main Memory \ 16-256 GB
~ 0,04 €/GB Disk 1-16 TB
/ e \ “Infinite”
tape robots

Ulf Leser: Implementation of Database Systems

Costs Drop Faster than you Think

Hard Drive Cost per Gigabyte

1980 - 2009
$10,000,000.00

$1,000,000.00
4 ¥

$100,000.00

$10,000.00

$1,000.00

$100.00

$10,00

$1.00

$0.10

001
&

Ly

af

Source: http://analystfundamentals.com/?p=88

Ulf Leser: Implementation of Database Systems 6

New Players

Really expensive Reg 1-10ns /
Ister byte
Very expensive Cache \ 1c(a)1-c1hoeolr|]r? e/
~ 7€/ GB Main Memory 60'b3|g2|r(‘5/
~1€/GB Solid-State Disks (SSD) lblnc:sk/
~ (0,04 €/ GB Disk 10-20 ms /
block

/ Tape \ sec — min

Ulf Leser: Implementation of Database Systems 7

New Players

55D ws. HDD Pricing Trends

Average HDD and SSD prices in USD per gigabyte

HDD © 88D
Prediction

T $56.30/GB

¥ o
- -\\
= T .
¥
B
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2000 2010 2011 2012 — —
$0.054/GB
Data sources: Mkomo.com, Gartner, and Pingdom (Decembar 2011) W pingdom.com : e i e e Lower Cosfidencs Tm 4 Uposr Comfiomn Tromd i 00 i

Source: http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices, 14336.html
https://www.pcworld.com/article/3011441/

Ulf Leser: Implementation of Database Systems 8

Characteristics

random access != sequential

Hard Drive

SSD

RAM Disk

S o= I0OOME + @ 13% (BEMGYIGH)

ol

5 v Q000ME w O 45% (101224G8) -
Read [MB/fs] Wirite [MB/s] il Read [MBfs) Write [MB/s]

2.3 1109.3 | | lazazio 1235.7
i 41,69 48.05 || =0 402.7 1248.9
W 10.543 10.693 || W 130.49 64/67

% 11.004 10.698 || ¥ 1200.3 1233.2

Quelle: http://blog.laptopmag.com/faster-than-an-ssd-how-to-turn-extra-memory-into-a-ram-disk

L'J

read != write

Cfemrne, e e

File e Toassa Plalp Longusge E:lirl.ul'lhlrnlrillq:L.q-l'

fam B Teewa Holp Lanpage

5 = 100OMB = B 1% [SRA0EeiE)
| H=ad [MB/s] Whril= [MB 5]

= 5766 7760
=x 5649 7172
« 657.0 554.8
«x 631.9 544.7

Ulf Leser: Implementation of Database Systems

9

Prize of Main Memory

o
(o))
o
o

&
(@)

-
V)
o
e
7))
o
Om
RY,
o
(")
i
=
=,

2000 2005 2010 2013 2015
Year

2014: 1TB DRAM ~ 5000€

2016: Laptops with 16GB,
desktops with 32GB,
servers with 128GB

2019: Mobiles with 32GB,
servers with >1TB

My Guess: 99% of all
commercial databases are
smaller than 100GB

— Research: Main memory
databases

Ulf Leser: Implementation of Database Systems

10

Consequences

e Dealing with memory hierarchy is core concern of DBMS
— Another issue is multi-core

e This lecture will mostly focus on disk versus RAM
e Similar problems for cache-RAM, disk-SSD, ...

e Many differences between storage media
— Speed, durability, size, cost
— Block sizes
— Read/write, random-access/sequential
— Error rates, longevity

Ulf Leser: Implementation of Database Systems

11

Table of Content

e Storage Hierarchy
e 5-Layer Architecture
e QOverview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems

12

Five Layer Architecture

Conceptual

Logical

Physical

—

—

I

|

|

Data Model

A

Logical Access

y

v

Data Structures

A

\ 4

Buffer Management

A

Operating System

|

Schema, SQL, data types

Records, transactions

Arrays, locks

Memory blocks (pages)

Disks, disc blocks

Ulf Leser: Implementation of Database Systems

13

Tasks

Query optimization
Data Model Access control

Integrity constraints
Sort v
Transaction processing Logical Access
Cursor management 1 Physical record manager
v

Index manager
Data St[uctures Lock manager

v Log / Recovery
Buffer Management

Block management
Caching

A

Operating System

|

UIf Leser: Implementation of Database Systems 14

Operations

SQL: select ... from ... Where
Grant access to ...
Create index on ...

Data Model

OPEN - FETCH -CLOSE ‘

STORE Record LoglcaIAAccess

v

Data Structures RECORDs in pages
T access paths, indexes

\ 4

READ page | | g ffer Management
WRITE page $)

A

Operating System

|

UIf Leser: Implementation of Database Systems 15

Note: Idealized Representation

e Layers may be merged
— E.g. logical and internal record-based layers

e Not all functionality can be assigned to exactly one layer
— E.g. recovery, optimization

e Layers sometimes must access non-neighboring layers
— Prefetching needs to know the query
e Layer 4 to Layer 1/2
— Optimizer needs to know about physical data layout
e Layer 1 to layer 4/5
— Breaks information hiding principle

Ulf Leser: Implementation of Database Systems

16

Table of Content

e Storage Hierarchy
e 5-Layer Architecture
e QOverview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems

17

Bottom-Up

Data Model

A

y

Logical

Access

y

Data Structures

A

y

Buffer Ma

nagement

Operating System

|

Ulf Leser: Implementation of Database Systems

18

Classical Discs

Zugriffs- Arm Kopf Spindel Sektor Spur

kamm

Kopf

Arm

Zylinder
a) seitliche Ansicht b) Draufsicht

e Durable, slow, cheap, large, robust (compared to ...)
e In principle: Same read/write speed
e Much difference between random-access / scan

UIf Leser: Implementation of Database Systems 19

RAID 1: Mirroring

e Redundancy: Fail-safety and access speed
— Increased read performance, write perf. not affected (parallel write)
— Disc crash (one) can be tolerated
— Be careful about dependent components (controller, power, ...)

e Drawbacks
— Which value is correct in case of divergence in the two copies?
— Space consumption doubles

UIf Leser: Implementation of Database Systems 20

Bottom-Up

Data Model

A 4

Logical Access

y

Data Structures

A 4

Buffer Management

Operating System

|

Records, Blocks,
Files

Ulf Leser: Implementation of Database Systems

21

Access Methods: Sequential Unsorted Files

e Access to records by record/tuple identifier (RID or TID)

1522

Bond

123

Mason

1754

Miller

e QOperations
— INSERT(Record):
— SEEK(TID):
e FIRST (File):
e NEXT(File):
e EOF (File):
— DELETE(TID):

Move to end of file and add, O(1)
Sequential scan, O(n)

O(1)

O(1)

O(1)

Seek TID; flag as deleted, O(n)

— REPLACE(TID, Record): Seek TID; write record, O(n)
e What happens if records have variable size?

Ulf Leser: Implementation of Database Systems

22

Access Methods: Sequential sorted Files

123 Mason
1522 Bond
1754 Miller

e Operations
— SEEK(TID):

Bin search, O(log(n))

e But a lot of random access
e Might be slower than scanning the file

— INSERT(Record):

Seek(TID), move records by one, O(n)

e This is terribly expensive

Ulf Leser: Implementation of Database Systems

23

Indexed Files

Root

Internal Node

Leaves

e (QOperations
— SEEK(TID): Using order in TIDs: O(log(n))
e Only if tree is balanced
e Only if tree is ordered by the right attribute

— INSERT(TID): Seek TID and insert; possibly restructuring

UIf Leser: Implementation of Database Systems 24

Storage in Oracle

e Data files are assigned to
tablespaces
— May consist of multiple files

— All data from one object (table,
index) are in one tablespace

e But table and index can be in
different ones

— Backup, quotas, access, ...

o Extents: Continuous
sequences of blocks on disc

Database

2\

Tablespace

ZI\
Segment

4 Data file

Extent P

ZI\,
OracleBlock

4 OS ch;ck

e Space is allocated in extents (min, next, max, ...)
e Segments logically group all extents of an object

Ulf Leser: Implementation of Database Systems

25

Managing space in Oracle

Tablespace (gestrichelter Bereich)

L
Index
Tabelle Tabelle
Index
\- Index
Index
Index Iindex Index
Index Tabelle
Index
Index
Index \
Index X
Index \ |ndex
kY Vi
- // ="\ / £
Datenbankdateien Objekte (Segmente)

Ulf Leser: Implementation of Database Systems

Bottom-Up

Data Model

A

y

Logical

Access

y

Data Structures

A

y

Virtual — physical blocks,
access paths

Buffer Ma

nagement

Operating System

|

Ulf Leser: Implementation of Database Systems

27

Caching = Buffer Management

Main Memory
Buffer (Cache)

e Which blocks should be cached — for

l Page XYZ

Buffer Manager

T~

L

PO

P1

P2

e (Caching data blocks? Index blocks?
e Competition: Intermediate data, data buffers, sort buffer, ...

SN—

_——

now long?

Disc

Ulf Leser: Implementation of Database Systems

28

From Buffers to Records

e Absolute addressing: TID = <Pageld, Offset, ID>
g Off
set

Page Id * Pro: Fast access
ID, X, Y, ... « Con: Records cannot
be moved

e Absolute addressing + search: TID = <Pageld,ID>

E>
-- Search --
Page Id « Pro: Records can be
ID, X, Y, ... moved within page
« Con: Slower access

UIf Leser: Implementation of Database Systems 29

Free Space, TX, and Concurrent Processes

i Free -H:.
Space

.,.-"@/--::mr|:I1|M'h -

"'E'?_.-"'E:-Hl;ih
mﬂr:;]l-aﬂ'l] - C Frit I""\-
.. TFL
"

Tl ""ff}
/{m
l_.-"
?HfiMrma m:i;
e, i
“‘MI/”
e
\“\-\v P

T,
8 wami:ahu:ln 4
M ~ Extend " Returm Error. 14

—Hiﬂmnmﬂtm‘}m—
~, TR
-"..--
S :
P
,f‘f T, Wes
< Bearch PFL +— Use the space
Ry o
jg
—_—
7 s\ Yes | Life is Good)
< Search MFL "5 R
I

Tablespace

e Oracle procedure for
finding free space

e Free space managed at
the level of segments
— Logical database objects

e Explanation
— TFL: transaction free list
— PFL: process free list
— MFL: master free list
— HWM: High water mark

Ulf Leser: Implementation of Database Systems

Bottom-Up

Data Model

Query optimization

A 4

Logical Access

y

Data Structures

A 4

Buffer Management

Operating System

|

Ulf Leser: Implementation of Database Systems

31

The ANSI/SPARC Three Layer-Model

View View

View

~]

Conceptual

Schema

Internal
Schema

Query rewriting, view expansion

Query execution plan generation
and optimization: Access paths,
join order, ...

Execution of operators,
pipelining

Ulf Leser: Implementation of Database Systems

32

Query Processing

e Declarative query
SELECT Name, Address, Checking, Balance
FROM customer C, account A
WHERE Name = "Bond" and C.Account# = A.Account#

e Translated in procedural Query Execution Plan (QEP)
FOR EACH c in CUSTOMER DO
IF c.Name = "Bond” THEN
FOR EACH a IN ACCOUNT DO

IF a.Account# = c.Account# THEN
Output ("Bond”, c.Address, a.Checking, a.Balance)

Ulf Leser: Implementation of Database Systems

33

One Query — Many QEPs

SELECT Name, Address, Checking, Balance
. FROM customer C, account A
FOR EACH c in CUSTOMER DO WHERE Name = “Bond" and C.Acco# = A.Acco#t

IF c.Name = "Bond" THEN
FOR EACH aIN ACCOUNT DO
IF a.Acco# = c.Acco# THEN Output ("Bond", c.Address, a.Checking, a.Balance)

FOR EACH a in ACCOUNT DO
FOR EACH c IN CUSTOMER DO
IF a.Acco# = c.Acco# THEN
IF c.Name = "BOND" THEN Output ("Bond", c.Address, a.Checking, a. Balance)

FOR EACH c in CUSTOMER WITH Name="Bond" BY INDEX DO
FOR EACH a IN ACCOUNT DO
IF a.Acco# = c.Acco# THEN Output ("Bond", c.Address, a.Checking, a. Balance)

FOR EACH c in CUSTOMER WITH Name="Bond" BY INDEX DO
FOR EACH a IN ACCOUNT with a.Acco#=c.Acco# BY INDEX DO
Output ("Bond", c.Address, a.Checking, a. Balance)

UIf Leser: Implementation of Database Systems 34

Query optimization

e Task: Find the (hopefully) fastest QEP

e Two interdependent levels: Best plan, best implementation

— Different QEPs by algebraic rewriting
e P1: Oname=Bong(ACCOUNt <1 Customer)
e P2: Account > oyyme=pong(CUstomer)
— Different QEPs by different operator implementations
e P1". Access by scan, hash-join
e P1": Access by index, nested-loop-join

e Plan space: Enumerate and evaluate (some? all?) QEPs

e Optimization goal: Minimize size of intermediate results

— Might miss optimality in terms of runtime
e Expansive subplan with sorted result
e Cheap subplan with unsorted result

UIf Leser: Implementation of Database Systems 35

Cost-Based Optimizer

e Use statistics on current state of relations

— Size, value distribution, fragmentation, cluster factors, ...

FOR EACH a in ACCOUNT DO
FOR EACH c IN CUSTOMER DO
IF a.Account# = c.Account# THEN
IF c.Name = "BOND" THEN ...

— Let selectivity of oyzme=pong P€ 1%, |Customer|=10.000,
|Account|=12.000, Customer/Account evenly distributed
— Performs ...
e Join: 10.000 * 12.000 = 120M comparisons
e Produces ~12.000 intermediate result tuples
e Filters down to ~120 results

Ulf Leser: Implementation of Database Systems

36

Join methods

e Suppose the previous query would contain no selection
e (Can't we do better than “Join: 120M comparisons”

e Join methods
— Nested loop join: O(m*n) key comparisons
— Sort-merge join
e First sort relations in O(n*log(n)+m*log(m))
e Merge results in O(m+n)
e Sometimes better, sometimes worse

— Hash join, index-join, grace-join, zig-zag join, ...

e Note: Complexity here measures number of comparisons
— This is a "main-memory” viewpoint
— Must not be used for 10 tasks

Ulf Leser: Implementation of Database Systems

37

Bottom-Up

Transactions,
serializability, recovery

Data Model

A

Logical Access

y

4

Data Structures

A

\ 4

Buffer Management

Operating System

|

Ulf Leser: Implementation of Database Systems

38

Transactions (TX)

e Transaction: “Logical unit of work”

Begin_Transaction

UPDATE ACCOUNT
SET Savings = Savings + 1M
SET Checking = Checking - 1M
WHERE Account# = 007;

INSERT JOURNAL <007, NNN, “Transfer”, ...>
End_Transaction
o ACID properties
— Atomic execution
— Consistent DB state after commits
— Isolation: No influence on result by concurrent TX
— Durability: After commit, changes are reflected in the database

Ulf Leser: Implementation of Database Systems

39

Lost Update Problem

Deposit $ 1,000 Deposit $ 2,000
< —
Read account value Read account value
__—| [5.000
2,000 5,000
Add $1,000
5,000 ~ Add $ 2,000
Write back 6,000 =000
Write back
< —
71000

UIf Leser: Implementation of Database Systems 40

Synchronization and schedules

T1: read 4; To: read B;
A=4-10; B:=8-20;
write A; write 8;
read O; read O;
EZ=E+1|:|; CZ:C-I—ED;
write B; write C;

Schedule 5,

Schedule 55

Schedule Sy

T 15 T 15 T, 15
read A read A read A
A—10 read B | A—10
write A A—10 read B
read B B —20 | write A
B+ 10 write A D — 20
write B write B | read B
read B | read B write B
B — 20 read ' | B+10
write B | B+ 10 read '
read C C' +20 | write B
C'+20 | write B '+ 20
write C' write C' write C'

Ulf Leser: Implementation of Database Systems

41

Synchronization and locks

e When is a schedule ,fine"?
— When it is serializable
— L.e., when it is equivalent to a serial schedule
— Proof serializability of schedules

e Strategy: Blocking everything is dreadful
e Strategy: Checking after execution is wasteful

e Synchronization protocols
— Guarantee to produce only serializable schedules

— Require certain well-behavior of transactions

e Two phase locking, multi-version synchronization, timestamp
synchronization, ...

e Be careful with deadlocks

Ulf Leser: Implementation of Database Systems

42

	Foliennummer 1
	Table of Content
	2010: Price versus speed
	2010: Storage Hierarchy
	2016: Storage Hierarchy
	Costs Drop Faster than you Think
	New Players
	New Players
	Characteristics
	Prize of Main Memory
	Consequences
	Table of Content
	Five Layer Architecture
	Tasks
	Operations
	Note: Idealized Representation
	Table of Content
	Bottom-Up
	Classical Discs
	RAID 1: Mirroring
	Bottom-Up
	Access Methods: Sequential Unsorted Files
	Access Methods: Sequential sorted Files
	Indexed Files
	Storage in Oracle
	Managing space in Oracle
	Bottom-Up
	Caching = Buffer Management
	From Buffers to Records
	Free Space, TX, and Concurrent Processes
	Bottom-Up
	The ANSI/SPARC Three Layer-Model
	Query Processing
	One Query – Many QEPs
	Query optimization
	Cost-Based Optimizer
	Join methods
	Bottom-Up
	Transactions (TX)
	Lost Update Problem
	Synchronization and schedules
	Synchronization and locks

