From Invariants to Canonization in Parallel

Johannes Kébler! and Oleg Verbitsky?*

! Institut fiir Informatik, Humboldt Universitit zu Berlin, D-10099 Berlin, Germany
koebler@informatik.hu-berlin.de
2 Institute for Applied Problems of Mechanics and Mathematics,
Naukova 3b, 79060 Lviv, Ukraine
verbitsky@informatik.hu-berlin.de

Abstract. A function f of a graph is called a complete graph invariant
if two given graphs G and H are isomorphic exactly when f(G) = f(H).
If additionally, f(G) is a graph isomorphic to G, then f is called a
canonical form for graphs. Gurevich [9] proves that any polynomial-time
computable complete invariant can be transformed into a polynomial-
time computable canonical form. We extend this equivalence to the
polylogarithmic-time model of parallel computation for classes of graphs
having either bounded rigidity index or small separators. In particular,
our results apply to three representative classes of graphs embeddable
into a fixed surface, namely, to 3-connected graphs admitting either a
polyhedral or a large-edge-width embedding as well as to all embeddable
5-connected graphs. Another application covers graphs with treewidth
bounded by a constant k. Since for the latter class of graphs a com-
plete invariant is computable in NC, it follows that graphs of bounded
treewidth have a canonical form (and even a canonical labeling) com-
putable in NC.

1 Introduction

We write G = H to indicate that G and H are isomorphic graphs. A complete
invariant is a function f on graphs such that f(G) = f(H) if and only if G = H.
If, in addition, f(G) is a graph isomorphic to G, then f is called a canonical form
for graphs. For a given graph G and a one-to-one map o on the vertices of G,
we use G to denote the isomorphic image of G under o. A canonical labeling
assigns to each graph G a map o so that the function f defined as f(G) = G°
is a complete invariant. Note that f is even a canonical form. Thus, the notion
of a canonical labeling is formally stronger than that of a canonical form which
in turn is formally stronger than that of a complete invariant.

Obviously, a polynomial-time computable complete invariant can be used to
decide in polynomial time whether two given graphs are isomorphic. Conversely,
it is not known whether a polynomial-time decision algorithm for graph iso-
morphism implies the existence of a polynomial-time complete invariant (cf. the
discussion in [2, Sect. 5]). However, for many classes of graphs for which we

* Supported by an Alexander von Humboldt fellowship.

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 216|227, 2008.
© Springer-Verlag Berlin Heidelberg 2008

From Invariants to Canonization in Parallel 217

have an efficient isomorphism test, we also have a canonical labeling algorithm
of comparable complexity (see, e.g., [I7I14]); but this often requires substantial
additional efforts (cf., e.g., [3I]).

Gurevich [9] proves that a polynomial-time computable complete graph in-
variant can be used to compute a canonical labeling in polynomial time. This
result is really enlightening because there are approaches to the graph isomor-
phism problem which are based on computing a graph invariant and, without an
extra work, do not provide us with a canonical form. An important example is
the k-dimensional Weisfeiler-Lehman algorithm WLF. Given an input graph G,
the algorithm outputs a coloring of its vertices in polynomial time (where the
degree of the polynomial bounding the running time depends on k). WL* always
produces the same output for isomorphic input graphs. Whether the algorithm
is able to distinguish G from every non-isomorphic input graph H depends on
whether the dimension k is chosen large enough for G. In particular, £k = 1
suffices for all trees T. However, notice that the coloring computed by WL! on
input T partitions the vertex set of T into the orbits of the automorphism group
of T and hence WL! does not provide a canonical labeling unless 7 is rigid (i.e.,
T has only the trivial automorphism). We mention that an appropriate modifi-
cation of the 1-dimensional Weisfeiler-Lehman algorithm to a canonical labeling
algorithm is suggested in [T1].

The reduction of a canonical labeling to a complete invariant presented in [9]
(as well as in [I1]) is inherently sequential and thus leaves open the following
question.

Question 1. Suppose that for the graphs in a certain class C' we are able to com-
pute a complete invariant in NC. Is it then possible to compute also a canonical
labeling for these graphs in NC?

For several classes of graphs, NC algorithms for computing a complete invariant
are known (see, e.g., [AT7T4I0]). For example, in [I0] it is shown that a k-
dimensional Weisfeiler-Lehman algorithm making logarithmically many rounds
can be implemented in TC! € NC? and that such an algorithm succeeds for
graphs of bounded treewidth. Similar techniques apply also to planar graphs
but for this class a canonical labeling algorithm in AC! is known from an earlier
work [I7]. Nevertheless, also in this case it is an interesting question whether
the approach to the planar graph isomorphism problem suggested in [I0], which
is different from the approach of [I7], can be adapted for finding a canonical
labeling. Finally, Question [Il even makes sense for classes C' for which we don’t
know of any NC-computable complete invariant since such an invariant may be
found in the future.

We notice that a positive answer to Question [Il also implies that the search
problem of computing an isomorphism between two given graphs in C, if it
exists, is solvable in NC whenever for C' we have a complete invariant in NC
(notice that the known polynomial-time reduction of this search problem to the
decision version of the graph isomorphism problem is very sequential in nature,

see [12]).

218 J. Kébler and O. Verbitsky

As our main result we give an affirmative answer to Question [for any class
of graphs having either small separators (Theorem [2) or bounded rigidity index
(Theorem []). A quite general example for a class of graphs having small separa-
tors is the class of graphs whose treewidth is bounded by a constant. Since, as
mentioned above, a complete invariant for these graphs is computable in TC!
[10], Theorem Bl immediately provides us with an NC (in fact TC?) canonical
labeling algorithm for such graphs (Corollary B]). As a further application we
also get a TC? algorithm for solving the search problem for pairs of graphs in
this class (Corollary M.

Regarding the second condition we mention the following representative clas-
ses of graphs with bounded rigidity index:

— 3-connected graphs having a large-edge-width embedding into a fixed surface
S (Corollary[ﬂ)El

— 3-connected graphs having a polyhedral embedding into a fixed surface S
(Corollary [@I).

— 5-connected graphs embeddable into a fixed surface S (Corollary [0).

As shown by Miller and Reif [T7], the canonization problem for any hereditary
class of graphs C' (meaning that C is closed under induced subgraphs) AC!
reduces to the canonization problem for the class of all 3-connected graphs in
C. Thus, with respect to the canonization problem, the 3-connected case is of
major interest.

The rest of the paper is organized as follows. In Sect. 2] we provide the nec-
essary notions and fix notation. Graphs with small separators are considered in
Sect. Bland graphs with bounded rigidity index are considered in Sect. [Section
summarizes our results and discusses remaining open problems.

2 Preliminaries

The concept of polylogarithmic parallel time is captured by the hierarchy of
complexity classes NC = J,», NC?, where NC' consists of functions computable
by DLOGTIME—constructib_le boolean circuits of polynomial size and depth
O(log’ n). The class AC? is the extension of NC' to circuits with unbounded
fan-in and TC? is a further extension allowing threshold gates as well. Recall also
that AC® C TC® C NC! C L € NL C AC! and NC! C AC? C TC! C NC+!,
where L (resp. NL) is the set of languages accepted by (non)deterministic Turing
machines using logarithmic space. Alternatively, the AC? level of the NC hier-
archy can be characterized as the class of all functions computable by a CRCW
PRAM with polynomially many processors in time O(log’ n).

The vertex set of a graph G is denoted by V(G). The set of all vertices adjacent
to a vertex v € V(G) is called the neighborhood of v and denoted by I'(v).

A colored graph G, besides the binary adjacency relation, has unary relations
Ui,...,U, defined on V(G). If a vertex v satisfies U;, we say that v has color
1. A vertex is allowed to have more than one color or none. It is supposed that
the number of colors is equal to the number of vertices in a graph, though some

! This result is actually stated in a stronger form, without referring to a parameter S.

From Invariants to Canonization in Parallel 219

of the color relations may be empty. A colored graph (G,Uy,...,U,) will be
called a coloring of the underlying graph G. An isomorphism between colored
graphs must preserve the adjacency relation as well as the color relations. Thus,
different colorings of the same underlying graph need not be isomorphic.

We consider only classes of graphs that are closed under isomorphism. For a
given class of graphs C' we use C* to denote the class containing all colorings of
any graph in C.

Let C be a class of graphs and let f be a function mapping graphs to strings
over a finite alphabet. We call f a complete invariant for C if for any pair of
graphs G and H in C we have G = H exactly when f(G) = f(H). A canonical
labeling for C assigns to each graph G on n vertices a one-to-one map o : V(G) —
{1,...,n} such that f(G) = G” is a complete invariant for C. Note that a
complete invariant f originating from a canonical labeling has an advantageous
additional property: f(G) # f(H) whenever G is in C and H is not. Moreover,
it provides us with an isomorphism between G and H whenever f(G) = f(H).

The notions of a complete invariant and of a canonical labeling are easily
extensible to colored graphs. In our proofs, extending these notions to colored
graphs will be technically beneficial and, at the same time, will not restrict the
applicability of our results. In fact, any available complete-invariant algorithm
for some class of graphs C' can be easily extended to C* without increasing the
required computational resources. In particular, this is true for the parallelized
version of the multi-dimensional Weisfeiler-Lehman algorithm suggested in [10].

3 Small Separators

For a given graph G and a set X of vertices in G, let G — X denote the graph
obtained by removing all vertices in X from G. A set X is called a separator if
every connected component of G — X has at most n/2 vertices, where n denotes
the number of vertices of G. A class of graphs C is called hereditary if for every
G € C, every induced subgraph of G also belongs to C'.

Theorem 2. Let C' be a hereditary class of graphs such that for a constant r,
every graph G € C has an r-vertex separator. Suppose that C* has a complete
invariant f computable in TC* (resp. AC¥) for some k > 1. Then C has a
canonical labeling in TCF (resp. ACF+1).

Proof. Having f in our disposal, we design a canonical labeling algorithm for C'.
Let G be an input graph with vertex set V(G) = {1,...,n} and assume that G
has an r-vertex separator. We describe a recursive algorithm for finding a canon-
ical renumbering o : {1,...,n} — {1,...,n}. In the following, the parameter d
refers to the recursion depth. Initially d = 1. Further, set R = 2" + r.

For a given sequence s = (vy,...,v,) of vertices, let G4 denote the coloring of
G in which v; receives color (d — 1)R + i.

For each sequence s = (v1,...,v,) in parallel we do the following. First of all,
we check if the set {vy,...,v,} is a separator. We are able to do this in AC!
since checking if two vertices are in the same connected component reduces to

220 J. Kébler and O. Verbitsky

the s-t-connectivity problem, which is easily solvable in NL, and the remaining
job can be easily organized in TCO. If the verification is positive, we mark the
sequence s as separating. If no such sequence s is separating, i.e., G has no r-
vertex separator, we terminate and output the identity permutation. Otherwise,
for each separating sequence s in parallel we compute f(Gs). Then in AC! we
find a sequence s = (v1,...,v,) for which the value f(Gj) is lexicographically
minimum. For this purpose we use the fact that lexicographic comparison can
be done in AC® and employ a known TC? sorting algorithm.

At this stage we are able to determine the renumbering o only in a few points.
Namely, we set o(v;) = (d — 1)R + i for each i <r.

To proceed further, let Fi,..., F,, be the connected components of G — X
where X = {vy,...,v,}. We color each v ¢ X by its adjacency pattern to X,
that is, by the set of all neighbors of v in X, encoding this set by a number
in the range between (d — 1)R + r + 1 and dR. Each F}, regarded as a colored
graph, will be called an X-flap. For each X-flap F} in parallel, we now com-
pute f(Fj) and establish the lexicographic order between these values. At this
stage we fix the following partial information about the renumbering o under
construction: o(u) < o(v) whenever we have f(F;) < f(F}) for the two flaps F;
and F; containing u and v, respectively. Thus, we split V(G) \ X into blocks
V(Fy),...,V(Fy) and determine the renumbering o first between the blocks. It
may happen that for some flaps we have f(F;) = f(F;). We fix the o-order be-
tween the corresponding blocks arbitrarily. Note that the output will not depend
on a particular choice made at this point.

It remains to determine ¢ inside each block V(F}). We do this in parallel. For
F; with more than r vertices we repeat the same procedure as above with the
value of d increased by 1. If F' = F} has ¢ < r vertices, we proceed as follows. Let
a be the largest color present in F. We choose a bijection 7: V(F) — {1,...,t}
and define o on V(F) by o(u) < o(v) if and only if 7(u) < 7(v). To make the
choice, with each such 7 we associate the colored graph F. obtained from F
by adding new colors, namely, by coloring each v € V(F) with color a + 7(v).
For each 7 we compute f(F.) and finally choose the 7 minimizing f(F;) in the
lexicographic order. Note that, if the minimum is attained by more than one 7,
the output will not depend on a particular choice.

Finally, we have to estimate the depth of the TC (resp. AC) circuit imple-
menting the described algorithm. At the recursive step of depth d we deal with
graphs having at most /297! vertices. It follows that the circuit depth does not
exceed logh n + logh(n/2) + logh(n/4) + - - +logh (r) < logh™ n. O

It is well known that all graphs of treewidth ¢ have a (¢4 1)-vertex separator [21].
By [10], this class has a complete invariant computable in TC! and therefore is
in the scope of Theorem [2

Corollary 3. For each constant t, a canonical labeling for graphs of treewidth
at most t can be computed in TC?,

Theorem] also has relevance to the complexity-theoretic decision-versus-search
paradigm. Let C be a class of graphs. It is well known (see, e.g., [12]) that, if we

From Invariants to Canonization in Parallel 221

are able to test isomorphism of graphs in C* in polynomial time, we are also able
to find an isomorphism between two given isomorphic graphs in C' in polynomial
time. As the standard reduction is very sequential in nature, it is questionable
if this implication stays true in the model of parallel computation. Nevertheless,
a canonical labeling immediately provides us with an isomorphism between two
isomorphic graphs.

Corollary 4. For each constant t, an isomorphism between isomorphic graphs
of treewidth at most t can be computed in TC2.

4 Bounded Rigidity Index

In this section we show that the canonization problem for any class of graphs
with bounded rigidity index NC reduces to the corresponding complete invariant
problem. Further we show that certain embeddability properties of a given class
of graphs C' imply a bound on the rigidity index of the graphs in C.

4.1 Canonizing Rigid Graphs

A set S C V(G) of vertices is called fizing if every non-trivial automorphism of
G moves at least one vertex in S. The rigidity index of a graph G is defined to
be the minimum cardinality of a fixing set in G and denoted by rig(G).

Theorem 5. Let C be a class of graphs such that for a constant r, we have
rig(G) <r for all G € C. Suppose that C* has a complete invariant f computable
in ACF, for some k > 1. Then C has a canonical labeling also in ACF.

Proof. Let an input graph G with vertex set V(G) = {1,...,n} be given. We
describe an algorithm that uses f as a subroutine in order to find a canonical
renumbering o : {1,...,n} — {1,...,n} for G, provided that G € C.

For a given sequence s = (vy,...,v,) of vertices, let G4 denote the coloring of
G in which v; receives color ¢. If v is another vertex, G, denotes the coloring
where vertex v additionally gets color r + 1.

For each such sequence s in parallel we do the following. For each v in parallel
we compute f(Gs,). If all the values f(Gs,.), v € V(G), are pairwise distinct,
which is decidable in AC®, mark s as fizing. If no fixing sequence s of length r
exists, which implies G ¢ C, we terminate and output the identity permutation.
Otherwise, for each fixing sequence s in parallel, we compute f(Gs) and deter-
mine a sequence s = (v1,...,v,) for which f(Gy) is lexicographically minimum
(as was already mentioned in the proof of Theorem [this can be done in TC?).
The output permutation o is now computed as follows. For each i < r, we set
o(v;) = i. To determine o everywhere else, we sort the values f(G,) for all
v e V(G)\{v,...,v} lexicographically and set o(v) to be the number of v in
this order increased by r. a

222 J. Kébler and O. Verbitsky

4.2 Basics of Topological Graph Theory

A detailed exposition of the concepts discussed in this section can be found in
[19]. We are interested in embeddability of an abstract graph G into a surface
S. All surfaces are supposed to be 2-dimensional, connected, and closed.

In an embedding II of G into S, each vertex v of G is represented by a point
on S (labeled by v and called vertez of the II-embedded graph G) and each
edge wv of G is drawn on S as a continuous curve with endpoints u and v.
The curves are supposed to be non-self-crossing and any two such curves either
have no common point or share a common endpoint. A face of I is a connected
component of the space obtained from S by removing the curves. We consider
only cellular embeddings meaning that every face is homeomorphic to an open
disc. A closed walk in a graph is a sequence of vertices vivs - - - v such that v;
and v;41 are adjacent for any i < k, and v; and vy are adjacent as well. Notice
that some of the vertices may coincide. We will not distinguish between a closed
walk v1vg - - - v and any cyclic shift of it or of its reversal vgvi_1---v1. A closed
walk vivs - - - v is called IT-facial, if there exists a face F' of II, such that the
vertices v1,va,.. .,V occur in this order as labels along the boundary of F.

Two embeddings IT and II’ of G into S are called equivalent if they can be
obtained from each other by a homeomorphism of S onto itself (respecting vertex
labels). Since such a homeomorphism takes faces of one embedding to faces of
the other embedding, we see that equivalent embeddings have equal sets of facial
walks. In fact, the converse is also true: if the set of the IT-facial walks is equal
to the set of the II'-facial walks, then IT and II’ are equivalent. This follows
from the fact that up to homeomorphism, the surface S is reconstructible from
the set of facial walks by attaching an open disc along each facial walk.

A closed walk vivs - - v, can be alternatively thought of as the sequence of
edges ejes - - - e where e; = vv;41 (1 < k) and ey, = v1vg. Every edge either ap-
pears in two I7-facial walks (exactly once in each) or has exactly two occurrences
in a single IT-facial walk. An embedding I7 is called polyhedral if every IT-facial
walk is a cycle (i.e., contains at most one occurrence of any vertex) and every
two II-facial walks either have at most one vertex in common or share exactly
one edge (and no other vertex).

Let Aut(G) denote the automorphism group of G. For a given automorphism
a € Aut(@), let I1* denote the embedding of G obtained from IT by relabeling
the vertices according to a. Note that IT“ and II are not necessarily equiva-
lent (they are topologically isomorphic, that is, obtainable from one another by
a surface homeomorphism which is allowed to ignore the vertex labeling). An
embedding I7 is called faithful if II* is equivalent to II for every automorphism
a € Aut(G).

Recall that a graph G is k-connected if it has at least k + 1 vertices and stays
connected after removing any set of at most k — 1 vertices. We now summarize
known results showing that, for & > 3, the flexibility of embedding a k-connected
graph into certain surfaces is fairly restricted.

The Whitney Theorem. [23] Up to equivalence, every 3-connected planar
graph has a unique embedding into the sphere.

From Invariants to Canonization in Parallel 223

The Mohar-Robertson Theorem. [I8 Up to equivalence, every connectedﬁ
graph has at most cg polyhedral embeddings into a surface S, where cg is a
constant depending only on S.

A closed curve in a surface is contractible if it is homotopic to a point. The edge-
width of an embedding IT is the minimum length of a non-contractible cycle in
the IT-embedded graph. IT is called a large-edge-width embedding (abbreviated
as LEW embedding) if its edge-width is larger than the maximum length of a
I1-facial walk.

The Thomassen Theorem. [22] (see also [19, Corollary 5.1.6]) Fvery 3-connec-
ted graph having a LEW embedding into a surface S has, up to equivalence, a
unique embedding into S. Moreover, such a surface S is unique.

Note that if a graph has a unique embedding into a surface (as in the Whitney
Theorem or the Thomassen Theorem), then this embedding is faithful.

As we have seen, an embedding is determined by its set of facial walks (up
to equivalence). We will need yet another combinatorial specification of an em-
bedding. To simplify the current exposition, we restrict ourselves to the case of
orientable surfaces.

Let G be a graph and let T" be a ternary relation on the vertex set V(G) of G.
We call R = (G, T) a rotation system of G if T fulfills the following two conditions:

(1) If T'(a, b, ¢) holds, then b and ¢ are in I'(a), the neighborhood of a in G.

(2) For every vertex a, the binary relation T'(a, -, -) is a directed cycle on I'(a)
(i.e., for every b there is exactly one ¢ such that T'(a,b,c), for every ¢ there is
exactly one b such that T'(a, b, ¢), and the digraph T'(a, -, -) is connected on I'(a)).

An embedding IT of a graph GG into an orientable surface S determines a rotation
system Ry = (G,Ty) in a natural geometric way. Namely, for a € V(G) and
b,c € I'(a) we set Trr(a,b,¢) = 1 if, looking at the neighborhood of a in the IT-
embedded graph G from the outside of S, b is followed by ¢ in the clockwise order.

The conjugate of a rotation system R = (G, T'), denoted by R*, is the rotation
system (G, T*), where T is defined as T*(a, b, ¢) = T'(a, ¢, b). This notion has two
geometric interpretations. First, (Ryr)* is a variant of Ry where we look at the
II-embedded graph from the inside rather than from the outside of the surface
(or, staying outside, just change the clockwise order to the counter-clockwise
order). Second, (R)* = R+ where IT* is a mirror image of I1.

It can be shown that two embeddings IT and IT’ of G into S are equivalent if
and only if R;y = Ry or Ry = R (see [19, Corollary 3.2.5]).

Further, for a given rotation system R = (G,T) and automorphism «a €
Aut(G), we define another rotation system R* = (G,T%*) by T*(a,b,c) =
T(a (a),a (b),a"1(c)). It is not hard to see that RY = Rpe. If R = (G, T)
and R’ = (G, T') are two rotation systems of the same graph G and R’ = R* for
some « € Aut(G), then this equality means that « is an isomorphism from R’
onto R (respecting not only the binary adjacency relation but also the ternary
relations of these structures).

2 Tt is known that only 3-connected graphs have polyhedral embeddings.

224 J. Kébler and O. Verbitsky

4.3 Rigidity from Non-flexible Embeddability

Let « be a mapping defined on a set V. We say that « fizes an element x € V if
a(z) = x. Furthermore, we say that « fizes a set X C V if « fixes every element
of X.

Lemma 6. If a graph G has a faithful embedding 11 into some surface S, then
rig(G) < 3.

Proof. Clearly, G is connected as disconnected graphs don’t have a cellular em-
bedding. If G is a path or a cycle, then rig(G) < 2. Otherwise, G contains some
vertex v with at least 3 neighbors. Notice that a facial walk cannot contain a
segment of the form wvu. Therefore, some facial walk W contains a segment uvw,
where v and w are two different neighbors of v. As v has at least one further
neighbor that is distinct from u and w, uvw cannot be a segment of any other
facial walk than W.

We now show that {u, v, w} is a fixing set. Assume that « is an automorphism
of G that fixes the vertices u, v and w. We have to prove that « is the identity.

Note that v1vs - - - vy is a I-facial walk if and only if a(v1)a(ve) - - - a(vg) is a
I11*-facial walk. Since IT and IT® are equivalent and hence, have the same facial
walks, « takes each IT-facial walk to a I[I-facial walk. It follows that o takes W
onto itself. Since « fixes two consecutive vertices of W, it actually fixes W.

Call two II-facial walks W7 and W5 adjacent if they share an edge. Suppose
that adjacent facial walks W1 and W5 share an edge ujus and that o fixes Wy.
Since ujug cannot participate in any third facial walk, a takes Wy onto itself.
Since u; and wuy are fixed, « fixes W, too.

Now consider the graph whose vertices are the IT-facial walks with the adja-
cency relation defined as above. It is not hard to see that this graph is connected,
implying that « is the identity on the whole vertex set V(G). O

By the Thomassen Theorem and by Lemma [(] it follows that every 3-connected
LEW embeddable graph has rigidity index at most 3. Hence we can apply The-
orem [l to obtain the following result.

Corollary 7. Let C be any class consisting only of 3-connected LEW embed-
dable graphs. If C* has a complete invariant computable in AC*, k > 1, then C
has a canonical labeling in AC*.

Noteworthy, the class of all 3-connected LEW embeddable graphs is recognizable
in polynomial time [I9, Theorem 5.1.8].

Lemma 8. If a connected graph G has a polyhedral embedding into a surface
S, then we have 1ig(G) < 4c¢, where ¢ is the total number of non-equivalent
polyhedral embeddings of G into S.

Proof. To simplify the current exposition, we prove the lemma only for the case
that S is orientable. Let a € V(@) be a vertex in G. We call two rotation systems
R=(G,T)and R = (G,T") of G a-coherent if the binary relations T'(a, -, -) and
T'(a,-,-) coincide.

From Invariants to Canonization in Parallel 225

Claim 1. Let ab be an edge in G. Then any isomorphism « between two a-
coherent rotation systems R = (G,T) and R’ = (G,T') of G that fixes both a
and b, fixes also I'(a).

Proof of Claim. Since « fixes a, it takes I'(a) onto itself. Since T'(a,-,) =
T'(a,-,-), a is an automorphism of this binary relation. The latter is a directed
cycle and a must be a shift thereof. Since « fixes b, it has to fix the whole cycle. <

Let Ry,...,Ra. (where R; = (G,T;)) be the rotation systems representing all
polyhedral embeddings of G into S (i.e., each of the ¢ embeddings is represented
by two mutually conjugated rotation systems). Pick an arbitrary edge zy in G.
For each i, 1 <7 < 2¢, select a vertex xz; so that R; and Ry are not x;-coherent
and the distance between z and z; is minimum (it may happen that z; =).
Furthermore, select y; and z; in I'(x;) so that T3 (x;, i, zi) # Ti(xi, yi, 2:). We
will show that {x,y, vz, 22, .., Y2c, 22.} Is a fixing set. Assume that o € Aut(Q)
fixes all these vertices. We have to show that « is the identity.

Notice that R{ is a polyhedral embedding of G into S because so is Rj.
Therefore R = Ry for some k < 2c. Suppose first that Ry and R; are x-
coherent. We will apply Claim 1 repeatedly to R = Ry and R’ = Ry. We first
put @ = z and b = y and see that « fixes I'(z). If the distance between x and
x, is more than 1, we apply Claim 1 once again for zz’ being the first edge of
a shortest path P from z to xp (now a = 2’ and b = z; we have a(a’) = 2/
as o' € I'(x), and Ry and Ry are z’-coherent by our choice of z}). Applying
Claim 1 successively for all edges along P except the last one, we arrive at the
conclusion that a(zy) = xi. This also applies for the case that Ry and Ry are
not x-coherent, when we have xj, = x by definition.

Tt follows that av is an isomorphism between the cycles Ty (g, -, -) and Ty (2, -,).
Our choice of yi and zj, rules out the possibility that & > 2 and we conclude that
k = 1. In other words, R and R’ are coherent everywhere. Therefore, we are able to
apply Claim 1 along any path starting from the edge ab = zy. Since G is connected,
we see that « is the identity permutation on V(G). O

By the Mohar-Robertson Theorem and Lemma[8 it follows that every connected
graph having a polyhedral embedding into a surface S has rigidity index bounded
by a constant depending only on S Applying Theorem B we obtain the follow-
ing result.

Corollary 9. Let C' be any class containing only graphs having a polyhedral
embedding into a fized surface S. If C* has a complete invariant computable in
ACF, k> 1, then C has a canonical labeling in ACF.

We conclude this section by applying a ready-to-use result on the rigidity index
of 5-connected graphs that are embeddable into a fixed surface S.

The Fijavz-Mohar Theorem. [{] The rigidity index of 5-connected graphs
embeddable into a surface S is bounded by a constant depending only on S.

3 As we recently learned, this result has been independently obtained in [7] by using
a different argument.

226 J. Kébler and O. Verbitsky

Corollary 10. Let C be the class of 5-connected graphs embeddable into a fixed
surface S. If C* has a complete invariant computable in AC*, k > 1, then C has
a canonical labeling in ACF.

5 Conclusion and Open Problems

For several important classes of graphs, we provide NC Turing-reductions of
canonical labeling to computing a complete invariant. As a consequence, we get
a canonical labeling NC algorithm for graphs with bounded treewidth by using
a known [I0] NC-computable complete invariant for such graphs.

We also consider classes of graphs embeddable into a fixed surface. Though we
currently cannot cover this case in full extent, we provide NC reductions between
the canonical labeling and complete invariant problems for some representative
subclasses (namely, 3-connected graphs with either a polyhedral or an LEW
embedding as well as all embeddable 5-connected graphs).

To the best of our knowledge, complete invariants (even isomorphism tests)
in NC are only known for the sphere but not for any other surface. The known
isomorphism tests and complete-invariant algorithms designed in [SIT3IT5ITOIS]
run in sequential polynomial time. Nevertheless, the hypothesis that the com-
plexity of some of these algorithms can be improved from P to NC seems rather
plausible. By this reason it would be desirable to extend the reductions proved
in the present paper to the whole class of graphs embeddable into S, for any
fixed surface S. As a first step in this direction one could consider the class of
4-connected toroidal graphsﬂ

A more ambitious research project is to find an NC-reduction of the canonical
labeling problem to computing a complete invariant for classes of graphs that
are defined by excluding certain graphs as minors or, equivalently, for classes of
graphs closed under minors. A polynomial-time canonization algorithm for such
classes has been worked out by Ponomarenko [20]. Note that any class of graphs
with bounded treewidth as well as any class consisting of all graphs embeddable
into a fixed surface is closed under minors.

Acknowledgement. We thank Gasper Fijavz and Bojan Mohar for sending us
their manuscript [7].

References

1. Arvind, V., Das, B., Mukhopadhyay, P.: On isomorphism and canonization of tour-
naments and hypertournaments. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288,
pp. 449-459. Springer, Heidelberg (2006)

2. Arvind, V., Toran, J.: Isomorphism testing: Pespective and open problems. Bulletin
of the European Association of Theoretical Computer Science 86, 66-84 (2005)

3. Babali, L., Luks, E.: Canonical labeling of graphs. In: Proc. 15th ACM Symposium
on Theory of Computing, pp. 171-183. ACM Press, New York (1983)

4 As shown in [7], graphs in this class can have arbitrarily large rigidity index.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

From Invariants to Canonization in Parallel 227

. Chlebus, B.S., Diks, K., Radzik, T.: Testing isomorphism of outerplanar graphs

in parallel. In: Koubek, V., Janiga, L., Chytil, M.P. (eds.) MFCS 1988. LNCS,
vol. 324, pp. 220-230. Springer, Heidelberg (1988)

. Filotti, I.S., Mayer, J.N.: A polynomial-time algorithm for determining the iso-

morphism of graphs of fixed genus. In: Proc. 12th ACM Symposium on Theory of
Computing, pp. 236-243. ACM Press, New York (1980)

. Fijavz, G., Mohar, B.: Rigidity and separation indices of Paley graphs. Discrete

Mathematics 289, 157-161 (2004)

. Fijavz, G., Mohar, B.: Rigidity and separation indices of graphs in surfaces. A

manuscript in preparation, cited in [6]

. Grohe, M.: Isomorphism testing for embeddable graphs through definability. In:

Proc. 32th ACM Symposium on Theory of Computing, pp. 63-72. ACM Press,
New York (2000)

. Gurevich, Y.: From invariants to canonization. Bulletin of the European Associa-

tion of Theoretical Computer Science 63, 115-119 (1997)

Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing a game.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, pp. 3—-14. Springer, Heidelberg (2006)

Immerman, N., Lander, E.: Describing graphs: a first order approach to graph
canonization. In: Selman, A.L. (ed.) Complexity Theory Retrospective, pp. 59-81.
Springer, Heidelberg (1990)

Kébler, J., Schoning, U., Toran, J.: The Graph Isomorphism Problem: Its Struc-
tural Complexity. Birkhduser, Boston (1993)

Lichtenstein, D.: Isomorphism for graphs embeddable on the projective plane. In:
Proc. 12th ACM Symposium on Theory of Computing, pp. 218-224. ACM Press,
New York (1980)

Lindell, S.: A logspace algorithm for tree canonization. In: Proc. 24th ACM Sym-
posium on Theory of Computing, pp. 400-404. ACM Press, New York (1992)
Miller, G.L.: Isomorphism testing for graphs of bounded genus. In: Proc. 12th ACM
Symposium on Theory of Computing, pp. 225-235. ACM Press, New York (1980)
Miller, G.L.: Isomorphism of k-contractible graphs. A generalization of bounded
valence and bounded genus. Information and Computation 56, 1-20 (1983)
Miller, G.L., Reif, J.H.: Parallel tree contraction. Part 2: Further applications.
SIAM Journal on Computing 20, 1128-1147 (1991)

Mohar, B., Robertson, N.: Flexibility of polyhedral embeddings of graphs in sur-
faces. J. Combin. Theory, Ser. B 83, 38-57 (2001)

Mohar, B., Thomassen, C.: Graphs on surfaces. The John Hopkins University Press
(2001)

Ponomarenko, I.: The isomorphism problem for classes of graphs closed under con-
traction. In: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (in Russian),
vol. 174, pp. 147-177 (1988); English translation in: Journal of Mathematical Sci-
ences 55, 1621-1643 (1991)

Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width.
J. Algorithms 7, 309-322 (1986)

Thomassen, C.: Embeddings of graphs with no short noncontractible cycles. J.
Combin. Theory, Ser. B 48, 155-177 (1990)

Whitney, H.: 2-isomorphic graphs. Amer. Math. J. 55, 245-254 (1933)

	From Invariants to Canonization in Parallel
	Introduction
	Preliminaries
	Small Separators
	Bounded Rigidity Index
	Canonizing Rigid Graphs
	Basics of Topological Graph Theory
	Rigidity from Non-flexible Embeddability

	Conclusion and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

