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1 Introduction

Entities in many public biological data bases are annotated with terms from
agreed-upon vocabularies. Usually these vocabularies are not plain lists of
terms, but ontologies containing concepts and the relationships between them.
Since most biological ontologies focus on specific sub-domains of biological re-
search, entities such as proteins are frequently annotated with terms from dif-
ferent ontologies. Thus, one biological entry may relate concepts from multiple
ontologies. By exploring these links researchers might gain useful information
and even reveal unknown interrelations.

Consider for example the Arabidopsis Information Resource (TAIR) [6],
where entries are annotated with terms from the Gene Ontology [1] as well
as the Plant Ontology [2]. GO terms describe the molecular function of a gene
product, the biological process it is involved in, or the cellular component of
it’s action. PO terms in contrast describe structure or developmental stage of
plants. While most existing approaches towards ontology mapping focus on
alignment, i.e. finding near synonym relationships between ontologies, exploit-
ing ontology links allows to find mappings of arbitrary meaning. From a link
contained in TAIR a scientist might infer that a certain biological process is
located in a specific part of a plant or regulates the growth of this part the
plant. Gaining knowledge from ontology links is not trivial though. An entry
in TAIR might be annotated with several terms from GO and PO, resulting in
a large amount of concept pairs to explore. Since annotations may describe dif-
ferent characteristics of an entity, many of these links might not be particularly
meaningful.

The first step towards knowledge inference from ontology links is to identify
those pairs of linked concepts that most likely represent some biological fact.
This study aims at defining a measure for estimating the meaningfulness of
inter-ontology links and the application of this measure in an algorithm that
computes the top-k concept pairs given a set of annotated biological entities.

2 Problem Description

To illustrate the problem consider for instance the TAIR entry for gibberellin 3
β-hydroxylase as shown in Figure 1. This entry is annotated with eight terms
from the Gene Ontology and 19 terms from the Plant Ontology, immediately
indicating 152 potential associations. Even more concept pairs can be gener-
ated from this link through ontology inference. GO and PO like many other
ontologies can be viewed as hierarchical graphs. Through semantic subsumption
introduced by is-a type relationships an entity annotated with a certain concept
is implicitly annotated with all ancestor concepts in the hierarchy. This multi-
plies the number of concept pairs derivable from a linking entry. Furthermore
biologists usually select sets of entries from a data source like TAIR. Although
proteins in this set presumably share many annotations every single protein
might contribute unique concept pairs. Exploring the resulting amount of con-
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Figure 1: Terms from Gene Ontology and Plant Ontology linked through the
TAIR entry for gibberellin 3 β-hydroxylase.
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Figure 2: Mapping between subgraphs selected from GO and PO by terms
annotated to gibberellin 3 β-hydroxylase
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cept pairs manually in order to gain information is not feasible for a scientist.
However, not all concept pairs - even if representing meaningful associations -
are of interest to researchers.

Figure 2 shows sub graphs from GO and PO. Double border concept nodes
are explicitly annotated to the above mentioned TAIR entry. As indicated with
dotted lines, four term pairs could be generated from the chosen subset. But
all these pairs represent the same biological fact, namely that gibberelic acid,
a growth regulator in vascular plants, is distributed through the vascular sys-
tem. It would thus be desirable to relate the sub graphs through a single - the
‘best’ - concept pair. The intuitive choice is to use the least general super con-
cepts of both structures resulting in the concept pair (‘response to gibberellin
stimulus’, ‘vascular system’). This pair actually represents the same biological
fact and is easier to interpret than the cross product of - more specific - an-
notated terms. Replacing multiple annotations with common super concepts,
i.e., choosing representative concepts for graph structures is a feasible approach.
Finding appropriate rooted subtrees is not trivial however. Consider the sub
graph from PO in Figure 3. This structure can not be represented by a single
concept. Subsuming the two root concepts ‘embryo’ and ‘vascular system’ we
would end up with a concept too general to be regarded valuable information.
If furthermore the term ‘cotyledon vascular system’ was actually annotated to
the sample TAIR entry, the concepts ‘embryo’ and ‘vascular system’ would no
longer adequately represent the sub graph as a whole. The information that
both concepts are related regarding this entity would be lost. Developing a
metric to reflect the balance between generalization and information loss will
be the first part of this thesis.

The second step after condensing annotated ontology data is to find the
‘best’ matching pairs of representative concepts. Consider again Figure 1. The
term pairs (‘gibberellic acid mediated signalling’,‘vascular system’) and (‘gib-
berellic acid mediated signalling’,‘germination’) represent meaningful associa-
tions as gibberelic acid regulates seedling growth and is distributed through the
vascular system. A similar relationship exists for the term pair (‘response to red
light’,‘germination’) as red light stimulates germination. No binary relationship
however can be inferred from the term pair (‘response to red light’,‘vascular
system’) for example. Primary objective of this study is to derive meaningful
relationships between concepts from data source statistics and ontology infor-
mation. Obviously concepts linked through many entities in the underlying
data source are likely to be semantically related. This is particularly true if the
number of links significantly exceeds the expectancy based on random distribu-
tion. However, such pairs could be considered common knowledge and are thus
unlikely to reveal unknown interrelations. More sophisticated heuristics are re-
quired to distinguish rare but meaningful from false associations. Within the
scope of this thesis I will develop a scoring scheme to assess the meaningfulness
of concept pairs based on the scores assigned to representative concepts, data
source statistics and ontology information.
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Figure 3: Sub graph from the plant ontology. Double border nodes are anno-
tated to the TAIR entry for gibberellin 3 β-hydroxylase

3 Approach

As implicitly described in Section 2 finding the top-k concept pairs regarding a
set of entities from a biological data source can be separated into two subsequent
steps, namely finding representative concepts within ontologies and pairing rep-
resentatives from different ontologies in an appropriate manner. Both steps
require preprocessing. The following sub sections elaborate all three steps in-
cluding solution statements to be evaluated and refined during the course of this
thesis.

3.1 Identifying representative concepts

The annotations of biological entities select sub graphs from ontologies; consist-
ing of the annotated concepts themselves and their node-to-root paths. The first
major goal of this thesis is to develop a method to identify (preferably small)
subsets of concepts that adequately represent subgraphs within ontologies. To
achieve this goal an evaluation metric for representative concepts needs to be
defined. For the sake of simplicity this metric will be designed assuming a sin-
gle linking entity. In a second step set orientation will be achieved by either
generalization or aggregation. The following paragraphs describe two possible
solutions for the single link case.

3.1.1 Generic Metric

A simple approach to measure a concept’s suitability as representative is to
count the descendent concepts present in annotations. Intuitively, every such
descendant provides evidence that the concept in question characterizes the
annotated entity. Simple counting however results in overgeneralization. Any
common ancestor of the concepts at hand - and in particular the ontology’s
root concept - would be assigned the maximum score. Introducing a decreasing
factor 0 < ε < 1 to penalize every step of abstraction solves this problem in a
straightforward manner. Instead of counting ancestor nodes equally each node
A is assigned a value e = εd, where d is the minimum number of edges traversed
from A to the representative concept.
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3.1.2 Metric based on Information Content

The generic metric described in Subsection 3.1.1 uses a static factor to penalize
subsumption. The implicit assumption underlying this approach is that path
length between concept nodes accurately reflects semantic distance. But, as ex-
plained in Section 1, biological ontologies conceptualize different sub domains of
biological research. Core concepts of such domains are modeled in more detail,
i.e., edges between descendant concepts are ‘shorter’ than for concepts included
for the sake of completeness. More important, the actual distance between con-
cepts is a matter of context. Quantitive information on semantic distance can
be derived from data source statistics. In [3] the authors give an overview of
different frequency-based semantic similarity measures. The basic idea under-
lying all these measures is that, given a data source, the information content
of a concept is inversely related to it’s number of occurrences in annotations.
As sub concepts logically imply their super concepts, differences in information
content reflect semantic differences between ancestor and descendant concepts.
One objective of this study is to apply a frequency-based distance measure to
improve the metric described in Subsection 3.1.1.

3.2 Relating representative concepts

The second major goal of this thesis is to find those pairs of linked representative
concepts that semantically relate to each other. Again, data source statistic can
be utilized to mine the strength of relationships. As elaborated in Section 2 fre-
quently co-occurring concepts likely represent semantic relationships. Further-
more ontology information can be utilized to avoid loosing rare but meaningful
and thus particularly interesting pairs. Besides considering ‘close relatives’ e.g.
siblings of meaningful related concepts, domain specific relationships might be
leveraged to extend the coverage. In the second part of my thesis I will develop
a method to evaluate the strength of relationships between linked representative
concepts based on the score assigned to these concepts, ontology information
and data source statistics.

3.3 Pre-computations

The major focus of this thesis is to find the most meaningful, i.e., the top-k
relationships between concepts of different ontologies, given a set of linking en-
tities. Instead of computing and ranking all possible concept pairs, we intend to
consider only the most promising concepts for pairing. A crucial step in finding
representative concepts is to identify the subgraphs selected from an ontology
by annotations. Assuming every ontology graph is stored in two relational ta-
bles nodes(id, term) and edges(node id, parent id) this task can be dramatically
simplified by pre-calculating the transitive closure tc(node id, ancestor id, dis-
tance). This way candidate concept scores as defined by the metric described in
Subsection 3.1.1 can be calculated using the following pseudo SQL statement:
SELECT ancestor id, sum(0.5distance) FROM tc WHERE node id IN (annota-
tions) GROUP BY ancestor id. As ontologies are small and grow moderately
compared to other graph data sources (like biological pathway databases for
example) pre-calculating the transitive closures is non-critical concerning both
runtime and memory/disk-consumption.
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Besides ontology information data source statistics are needed both to com-
pute the semantic distance between concepts within an ontology and to mea-
sure the strength of relationships between concepts in different ontologies. As
described in Subsection 3.1.2 the semantic distance between ancestor and de-
pendent concepts depends on the frequencies of annotations, i.e., the number of
occurrences of both concepts in annotations. In a relational database this infor-
mation can be gathered by a single scan on the table that links data source en-
tries (fact table) to ontology concepts. Measuring the strength of inter-ontology
relationships additionally requires concept pair frequencies to be pre-calculated.
Although pairing concepts requires joins between the fact table, link tables and
ontology tables, this operation is not expected to be performance critical and
can be expressed in a single SQL statement.

4 Evaluation

Evaluating the performance of the top-k concept pair algorithm requires manual
assessment of sample data, as to the best of my knowledge no gold standard
exists for relating concepts through annotated data. While in [5] and [4] the
authors present a methodology to calculate support and confidence scores for
concept pairs associated through chains of linked entities, their approach only
considers annotated concepts and their parent nodes. Ignoring further ancestor
nodes this method does not qualify as benchmark. Manually created global
ontology mappings, such as those maintained by the Open Biomedical Ontology
Foundry [7], can be explored to find the concept pairs relevant to a set of entities.
A concept pair is relevant if the mapped concepts are linked through at least
one entity in the data set at hand. Note that ancestors of explicitly linked
concepts have to be considered as well. Regarding manually curated mappings
as ground truth we can calculate sensitivity and selectivity measures to evaluate
the performance of the algorithm.
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