Institut für Informatik

Priv.-Doz. Dr. W. Kössler

Aufgaben zur

"Stochastik für Informatiker"

Aufg. 33) In der folgenden Tabelle sind einige Einzelwahrscheinlichkeiten p_{ij} einer zweidimensionalen Zufallsvariablen (X, Y) eingetragen.

$X \setminus Y$	1	2	3	4	$p_{i.}$
-1		0.01		0.10	0.2
0	0.6			0.07	0.7
1	•	0.06			
$\overline{p_{.j}}$	0.6	0.1		0.2	1

- a) (1P.) Bestimmen Sie die restlichen Einträge!
- b) (2P.) Berechnen Sie die Korrelation zwischen X und Y!

Aufg. 34) Seien $U, V, W \sim \mathbb{R}(0, 1)$, unabhängig.

- a) (1 P.) Berechnen Sie die Dichte von $X = V^2$.
- b) (2P) Zeigen Sie, die Dichte von UW ist

$$f_{UW}(t) = \begin{cases} -\ln t, & \text{falls } t \in (0,1) \\ 0 & \text{sonst.} \end{cases}$$

Hinweis: $P(U \cdot W < y) = \int P(U \cdot W < y | W = w) f_W(w) dw$

- c) (1 P.) Bestimmen Sie die Dichte von -4UW.
- d) $(+3 \,\mathrm{P.})$ Berechnen Sie die Dichte von V^2-4UW . Nutzen Sie obigen Hinweis.

Aufg. 35) Seien $U, V \sim \mathbb{R}(0, 1)$, unabhängig.

- a) (2 P.) Berechnen Sie die Kovarianz zwischen $X=U\cdot V$ und V! Hinweis: Benutzen Sie den Transformationssatz für Erwartungswerte!
- b) (1P.) Berechnen Sie die Korrelation zwischen X und V!