Parameterized Learnability of k-Juntas and
Related Problems*

Vikraman Arvind', Johannes Kébler?, and Wolfgang Lindner?

! The Institute of Mathematical Sciences, Chennai 600 113, India
arvind@imsc.res.in
2 Institut fiir Informatik, Humboldt Universitit zu Berlin, Germany
koebler@informatik.hu-berlin.de
3 Sidonia Systems, Grubmiihl 20, D-82131 Stockdorf, Germany
wolfgang.lindner@sidoniasystems.de

Abstract. We study the parameterized complexity of learning k-juntas
and some variations of juntas. We show the hardness of learning k-juntas
and subclasses of k-juntas in the PAC model by reductions from a W/[2]-
complete problem. On the other hand, as a consequence of a more general
result we show that k-juntas are exactly learnable with improper equiv-
alence queries and access to a W[P] oracle.

Subject Classification: Learning theory, computational complexity.

1 Introduction

Efficient machine learning in the presence of irrelevant information is an impor-
tant issue in computational learning theory (see, e.g., [2I]). This has motivated
the fundamental problem of learning k-juntas: let f be an unknown boolean
function defined on the domain {0, 1}"™ that depends only on an unknown subset
of at most k variables, where k < n. Such a boolean function f is referred to as a
k-junta, and the problem is whether this class of functions is efficiently learnable
(under different notions of learning). This is a natural parameterized learning
problem that calls for techniques from parameterized complexity.

Our study is motivated by the recent exciting work by Mossel, O’Donnell
and Servedio [22] and the article with open problems on k-juntas proposed by
Blum [3], drawing to our attention the connection between the learnability of
k-juntas and fixed parameter tractability. Notice that in the distribution-free
PAC model, an exhaustive search algorithm can learn k-juntas in time roughly
n®. For the uniform distribution, [22] have designed an algorithm for learning
k-juntas in time roughly n7*. For the smaller class of monotone k-juntas they
even achieve a running time polynomial in n and 2* (for this class an algorithm
with a different running time is given in [§]). Further, for learning symmetric k-
juntas, Lipton et al. [20] have provided an algorithm with running-time roughly
n%1* and this bound has been subsequently improved to O(n*/1°8¥) in [I§].

* Work supported by a DST-DAAD project grant for exchange visits.

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 120 2007.
© Springer-Verlag Berlin Heidelberg 2007

Parameterized Learnability of k-Juntas and Related Problems 121

Actually, natural parameters abound in the context of learning and several
other learning algorithms in the literature can be seen as parameterized learning
algorithms. We mention only two important further examples: Kushilevitz and
Mansour [I9] Theorem 5.3] give an exact learning algorithm with membership
queries for boolean decision trees of depth d and n variables with Fs-linear
functions at each node with running time polynomial in n and 2¢. Blum and
Rudich [5] design an exact learning algorithm with (improper) equivalence and
membership queries for k-term DNFs which runs in time n29®).

Parameterized Complexity, introduced as an approach to coping with in-
tractability by Downey and Fellows in [11], is now a flourishing area of research
(see, e.g. the monographs [12IT4]). Questions focussing on parameterized prob-
lems in computational learning have been first studied in [10]. Fixed parameter
tractability provides a notion of feasible computation less restrictive than poly-
nomial time. It provides a theoretical basis for the design of new algorithms
that are efficient and practically useful for small parameter values. We quickly
recall the rudiments of this theory relevant for the present paper. More details
(especially on the levels of the W-hierarchy) will be given in the next section
(see also [1214]).

Computational problems often have inputs consisting of two or more parts
where some of these parts typically take only small values. For example, an input
instance of the vertex cover problem is (G, k), and the task is to determine if the
graph G has a vertex cover of size k. A similar example is the k-clique problem
where again an input instance is a pair (G, k) and the problem is to test if the
graph G has a clique of size k. For such problems an exhaustive search will take
time O(n"*), where n is the number of vertices in G. However, a finer classification
is possible. The vertex cover problem has an 2°n°() time algorithm, whereas no
algorithm is known for the k-clique problem of running time O(n°®*)). Thus, if the
parameter k is such that k& < n, then we have a faster algorithm for the k-vertex
cover problem than is known for the k-clique problem.

More generally, a parameterized decision problem is a pair (L, k) where L C
{0,1}* and & is a polynomial time computable function x : {0,1}* — N. We
call £ = k(x) the parameter value of the instance xz. The problem (L,k) is
fized parameter tractable ((L,r) € FPT for short) if L is decidable by an fpt
algorithm, i.e., by an algorithm that runs in time g(x(z))|z|?™) for an arbitrary
computable function g. In particular, the k-vertex cover problem has an 2¥n©(®)
time algorithm, implying that it is fixed parameter tractable. On the other hand,
the k-clique problem is not known to be in FPT.

In their seminal work, Downey and Fellows [T1[12] also developed a theory
of intractability for parameterized problems as a tool to classify parameterized
problems according to their computational hardness. The W-hierarchy consists
of the levels WTt], ¢ > 1, together with the two classes W[SAT] and W[P] and
we have the inclusions

FPT C W[1] C W[2] C --- C W[SAT] C W[P].

In this paper, we show that k-juntas and some subclasses of k-juntas are
proper PAC learnable in fixed parameter time with access to an oracle in the

122 V. Arvind, J. Kébler, and W. Lindner

second level W[2] of the W-hierarchy. This bound is achieved by reducing the
parameterized consistency problem for k-juntas to the parameterized set cover
problem. In order to achieve proper learning in fixed parameter time, the learner
computes an optimal set cover with the help of a W[2] oracle. A similar approach
has been used by Haussler [15] to design an efficient PAC-learning algorithm
for k-monomials using O(e~*(log(6™') + klog(n)(log(k) + loglog(n)))) many
examples.

As a lower bound we prove that monotone k-monomials are not even PAC
learnable with k-juntas as hypotheses in randomized fixed parameter time un-
less W[2] has randomized FPT algorithms. The proof is an application of the
well-known technique introduced by Pitt and Valiant [23] to reduce a hard prob-
lem to the consistency problem for the hypothesis class. Further, we describe
a deterministic fpt algorithm that proper PAC learns k-monomials under the
uniform distribution.

We next consider the question of exactly learning k-juntas with only equiv-
alence queries. It turns out that k-juntas are learnable by a randomized fpt
algorithm with improper equivalence queries and access to a W[P] oracle. As a
consequence, k-juntas are also fpt PAC learnable with access to a W[P] oracle.
Actually, we prove a more general result: we consider the problem of learning
parameterized concept classes for which the membership of an assignment to a
given concept is decidable in FPT and show that these concept classes are ex-
actly learnable by a randomized fpt algorithm with equivalence queries and with
access to a W[P] oracle, provided that the Hamming weight is used as parame-
ter. Our learning algorithm uses a similar strategy as the algorithm designed by
Bshouty et al. [7] for exactly learning boolean circuits with equivalence queries
and with the help of an NP oracle.

The rest of the paper is organized as follows. In Section 2] we provide the
necessary notions and concepts and fix notation. Section Bl contains our results
on PAC learning and in Section [l we prove the query-learning results.

2 Preliminaries

2.1 Parameterized Complexity

We fix the alphabet X' = {0, 1}. The Hamming weight w(z) of a string x € {0,1}*
is the number of 1’s in . The cardinality of a finite set X is denoted by || X]|.

The key idea in quantifying parameterized hardness is the notion of the weft
of a boolean circuit [I1]: We fix any constant [> 2. In a boolean circuit ¢ we
say that a gate is large if it has fanin at least . The weft of a boolean circuit (or
formula) ¢ is the maximum number of large gates on any input to output path
in ¢. Thus, any CNF formula is a depth 2 and weft 2 circuit, whereas k-CNF
formulas (i.e. CNF formulas with at most k literals per clause) are circuits of
depth 2 and weft 1.

The following parameterized problem WEIGHTED-CIRCUIT-SAT (a weighted
version of the satisfiability problem for boolean circuits) is central to this the-
ory: Given a pair (¢, k), where ¢ is a boolean circuit (or formula) and k =

Parameterized Learnability of k-Juntas and Related Problems 123

k(c, k) is the parameter, the problem is to decide if there is an input of ham-
ming weight k accepted by c. For a class C of circuits we denote the param-
eterized problem WEIGHTED-CIRCUIT-SAT restricted to circuits from C' by
WEIGHTED-CIRCUIT-SAT(C).

In order to compare the complexity of parameterized problems we use the
fpt many-one and Turing reducibilities [I1]. An fpt many-one reduction f from
a parameterized problem (L, k) to a parameterized problem (L', ') maps an
instance = for L to an equivalent instance f(z) for L' (i.e., x € L & f(x) € L'),
where for a computable function g, f(z) can be computed in time g(x(z))|z|°M)
and /(f(x)) is bounded by g(x(x)). The notion of an fpt Turing reduction where
the parameterized problem (L’,x’) is used as an oracle is defined accordingly:
An fpt Turing reduction from a parameterized problem (L, k) to a parameterized
problem (L', k') is a deterministic algorithm M that for a computable function
g, decides L with the help of oracle L' in time g(r(x))|z|°M) and asks only
queries y with «/'(y) < g(k(z)). Now we are ready to define the weft hierarchy
and the class XP [12/14].

— For each ¢t > 1, W[t] is the class of parameterized problems that for some
constant d are fpt many-one reducible to the weighted satisfiability problem
for boolean formulas of depth d and weft t.

— The class W[SAT] consists of parameterized problems that are fpt many-one
reducible to the weighted satisfiability problem for boolean formulas.

— WI[P] is the class of parameterized problems fpt many-one reducible to the
weighted satisfiability problem for boolean circuits.

— For each k € N, the k'! slice of a parameterized problem (L, x) is the lan-
guage Ly, = {x € L | k(x) = k}. A parameterized problem (L,) belongs
to the class XP if for any k, the k' slice L, of (L, k) is in P. Note that
XP is a non-uniform class that even contains undecidable problems. There
is also a uniform version of XP that is more suitable for our purpose. A
parameterized problem (L, k) belongs to the class uniform-XP if there is a
computable function f : N — N and an algorithm that, given z € {0,1}*,
decides if € L in at most |x|[f () 4+ f(k(x)) steps.

From these definitions it is easy to see that we have the following inclusion
chain:

FPT C W[1] C W[2] C --- C W[SAT] C W[P] C uniform-XP C XP.

2.2 Parameterized Learnability

The Boolean constants false and true are identified with 0 and 1, and B,, denotes
the set of all Boolean functions f : {0,1}™ — {0,1}. Elements x of {0,1}" are
called assignments and any pair (x,b) with f(z) = b is called an ezample of f. A
variable x; is called relevant for f,if there is an assignment x with f(z) # f(2),
where 2’ is obtained from x by flipping the i-th bit.

In order to make our presentation concise, we only consider learning of concept
classes C' C By, for some fixed arity n. By abusing notation, we often identify a
concept f € C with the set {z € {0,1}" | f(x) = 1}.

124 V. Arvind, J. Kébler, and W. Lindner

A representation of concepts is a set R C {0,1}* of encoded pairs (r,z). A
concept name r represents for each integer n > 1 the concept

R, (r) ={x €{0,1}" | (r,x) € R}.

The concept class represented by R is C(R) = J,;»; Cn(R) where Cp(R) =
{Bn(r) | r€{0,1}7}.

A parameterization of a representation R of concepts is a polynomial-time
computable function : {0,1}* — N. We call (R, k) a parameterized representa-
tion of concepts and k = k(r) the parameter value of the concept description 7.
(R, k) is said to be fpt evaluable if (r, z) € R is decidable in time g(x(r))p(|r|, |z|),
for some arbitrary computable function g and some polynomial p. For a pair of
integers k, s we denote by Ry s the set {r € {0,1}° | k(r) = k} of all representa-
tions 7 of size s having parameter value k.

The concept classes we consider in the present paper are the following.

— The class Uy~ B, of all boolean functions. We usually represent these con-
cepts by (binary encodings of) boolean circuits.

— The class Jj ,, of k-juntas in B,,. If we represent k-juntas by boolean circuits
¢, then we use the number £ of input gates x; in ¢ having fanout at least 1
as parameter. As in [I] we can also represent concepts in Jin by strings of
length n + 2* having at most k + 2¥ ones, where the first part is of length
n and contains exactly k ones (specifying the relevant variables) and the
second part consists of the full value table of the k-junta. We denote this
representation of k-juntas by J.

— Likewise, for the class My, of k-monomials consisting of all conjunctions f
of at most k literals, we can represent f by a string of length n + k having at
most 2k ones, where the first n bits specify the set of relevant variables of f
(exactly as for k-juntas) and the last & bits indicate which of these variables
occur negated in f. Clearly, monotone k-juntas f € mon-Jj , and monotone
k-monomials f € mon-Mjy ,, can be represented in a similar way.

The Hamming weight w(r) provides a natural parameterization of concept
classes R, (r). In fact, if we use the representation J of k-juntas described above,
then this parameterization is equivalent to the usual one since for every string
7 representing a k-junta it holds that k& < w(r) < k + 2*. Further, it is easy to
see that all parameterized representations considered in this paper are fpt (even
polynomial-time) evaluable. W.r.t. the Hamming weight parameterization, no-
tice that Ry ¢ has size s?(F). Furthermore, the set Ry ¢ can be easily enumerated
in time s©*). This motivates the following definition: a parameterized represen-
tation (R, x) is XP-enumerable if the set Ry o can be enumerated in time s©*)
by a uniform algorithm.

Valiant’s model of probably approximately correct (PAC) learning [25] and
Angluin’s model of exact learning via queries [2] are two of the most well-studied
models in computational learning theory. In the parameterized setting, both
PAC-learning and exact learning with queries are defined in the standard way.
However, the presence of the fixed parameter allows a finer complexity classifi-
cation of learning problems.

Parameterized Learnability of k-Juntas and Related Problems 125

To define a parameterized version of exact learning with equivalence queries,
let (R,x) and H be (parameterized) representations. An algorithm A ezactly
learns (R, k) using equivalence queries from H, if for all n € N and all concept
names r,

1) A gets inputs n, s = |r| and k = x(r).

2) A makes equivalence queries with respect to R, (r), where the query is a
concept name h € {0,1}*, and the answer is either “Yes” if H, (h) = R, (r)
or a counterexample x in the symmetric difference H,,(h) AR, (7).

3) A outputs a concept name h € {0,1}* such that H,(h) = R, (r).

We say that A is an fpt EQ-learning algorithm if for each integer n € N and
each target r the running time of A on input n, s = |r| and k = k(r) is bounded
by g(k)p(n,s), for some computable function g and some polynomial p.

Next we define parameterized PAC-learning. Let (R, k) and H be (parameter-
ized) representations. A (possibly randomized) algorithm A PAC-learns (R, k)
using hypotheses from H , if for all n € N, all concept names r and for all €, > 0,

1) A gets inputs n, s = |r|, k = k(r), € and 6.
2) A gets random examples (x,b) of the concept R, (r), where the strings x are
chosen independently according to some distribution D,, on {0,1}".
3) With probability at least 1 — 6, A outputs a concept name h € {0,1}* such
that the error
error(h) = Pr [x € R, (r)AH, (h)]
z€D,
of h with respect to the target r, where x is chosen according to D,, is at
most e.

A is an fpt algorithm if for each integer n € NV, each target r and for all ¢,6 >
0, the running time of A is bounded by g(k)p(n,s,1/e,1/6), for an arbitrary
computable function g and a polynomial p. We say that (R,k) is fpt PAC-
learnable with hypotheses from H , if there is an fpt algorithm A that PAC-learns
(R, k) using hypotheses from H.

As usual, in distribution-free PAC-learning, the algorithm must succeed on any
unknown distribution, whereas in distribution-specific PAC-learning the learning
algorithm only works for a fixed distribution.

3 PAC Learning of k-Juntas

By the classical algorithm due to Haussler [I5] (using the modification of War-
muth as described in [I7, Chapter 2]), the class of k-monomials is PAC-learnable
in time poly(n,1/e,log(1/6)) with klog(2/e)-monomials as hypotheses and us-
ing O(e *(log(6~1) + klog(n)log(¢~1))) many examples. The algorithm uses
the well-known greedy heuristic to approximate the set cover problem [I6/9]. By
computing an optimal solution of the set cover problem, we can achieve proper
learning with k-monomials as hypotheses, though at the expense of access to a

126 V. Arvind, J. Kébler, and W. Lindner

W[2] oracle. In the fixed parameterized setting, this can be extended to the class
of k-juntas as well as to monotone k-monomials and to monotone k-juntas.

We first show that the parameterized consistency problem (see Definition [I])
for (monotone) k-juntas and for (monotone) k-monomials is in W[2]. For this we
use the parameterized version of the set cover problem defined as follows. Given
aset U = {uy,...,un}, a family S = {S1,...,S,} of subsets S; C U, and a
positive integer k (which is the parameter), is there a subset R C S of size k
whose union is U. It is well-known that this problem is W[2]-complete (see for
example the book [12]).

Definition 1. The parameterized consistency problem for a concept class C =
U,,>1 Cn, where C,, C By, is defined as follows. Given sets P and N of positive
and negative examples from {0,1}" and a positive integer k (which is the param-
eter), does C,, contain a k-junta f which is consistent with P and N (meaning
that f(x) =1 for allx € P and f(x) =0 for all z € N).

Theorem 2. The parameterized consistency problem is in W[2] for the following
concept classes C = Un21 Ch:

1) for all k-juntas (i.e., Cr, = Uj_o Jk,n = Bn),

2) for monotone k-juntas (i.e., C, = Up_o mon-Jy.n),

3) for k-monomials (i.e., Cr, = Up_y Min),

4) for monotone k-monomials (i.e., Cr, = Jj_, mon-My).

Moreover, in each case, a representation for a consistent k-junta f € C,, can be
constructed (if it exists) in fized parameter time relative to a W[2] oracle.

Proof. 1) Let (P, N, k) be an instance of the consistency problem for k-juntas.
We claim that there is a k-junta consistent with P and N if and only if there is
an index set I C [n] of size k such that

V(a,b)erNﬂieI:ai#bi. (1)

The forward implication is immediate. For the backward implication let I be a

size k index set fulfilling property () and consider the k-junta f defined by

1, there exists an a € P s.t. for all indices i € I : x; = ay,

fz) = . (2)
0, otherwise.

Then it is clear that f(a) = 1 for all a € P. Further, since by property () no as-
signment b € N can agree with any a € P on I, it follows that f is also consistent
with N. Thus we have shown that (P, N, k) is a positive instance of the consis-
tency problem for k-juntas if and only if the weft 2 formula A, ;)¢ pyn Vo, 25, @i
has a satisfying assignment of weight k, implying that the consistency problem
for k-juntas is in W[2].

In order to construct a consistent k-junta with the help of a W[2] oracle in time
poly(2¥,m,n), where m = || P U N||, note that there is also an easy reduction of
the parameterized consistency problem to the parameterized set cover problem.

Parameterized Learnability of k-Juntas and Related Problems 127

In fact, for each ¢ € [n] consider the subset S; = {(a,b) € P x N | a; # b;} of
U = P x N. Then an index set I C [n] fulfills property () if and only if the
subfamily R = {S; | i € I'} covers U. Now observe that a set \S; is contained in a
size k subfamily R C {S1,...,S,} covering U if and only if the set U' = U\ S; is
covered by some size k — 1 subfamily of R’ = {S1\ S;,..., S, \S:}. Thus, we can
successively construct a cover R of size k (if it exists) by using kn oracle calls to
the parameterized set cover problem. From R we immediately get an index set
I C [n] fulfilling property () and thus, a representation of the consistent k-junta
f defined by Equation (2] can be computed in fixed parameter time relative to
the parameterized set cover problem.

2) Similarly as above it follows that there is a monotone k-junta consistent
with P and N if and only if there is an index set I C [n] of size k fulfilling the
property

V(a,b)EPxNEIiEI:ai>bi. (3)

In this case, the monotone k-junta f derived from a size k index set I with
property (B has the form

(4)

1, there exists an a € P s.t. for all indices ¢ € I : z; > a;,
fz) = .
0, otherwise.

Thus, there is some monotone k-junta which is consistent with P and N if and
only if the weft 2 formula A, y)cpxn V=5, i has a satisfying assignment of
weight &, implying that also the consistency problem for monotone k-juntas is in
W/2|. Further, a consistent monotone k-junta can be constructed by computing
a size k solution for the set cover instance (U, {S1,...,5,}), where U = P x N
and S; = {(a,b) €U | a; > b;} fori=1,...,n.

3) First observe that a monomial can only be consistent with a set P of positive
assignments if it does not depend on any variable x; such that P contains two
examples a and a’ with a; # aj. Let J = {i € [n] | Va,d’ € P : a; = a}} and
let @ be an arbitrary but fixed positive example from P. Then there is some
k-monomial which is consistent with P and N if and only if there is an index
set I C J of size k fulfilling the property

VbeNTiel: a#b;. (5)

Indeed, if I C J has property (B), then the monomial A;c; . Zi A N;cq 0.0 Ti
is consistent with P and N. Thus, some k-monomial is consistent with P and IV
if and only if the weft 2 formula A,y Vi, 4b; Ti has a satisfying assignment
of weight k, implying that also the consistency problem for k-monomials is in
W]/2]. Further, a consistent k-monomial can be constructed by computing a size k
solution for the set cover instance (N,{S; | i € J}), where S; = {b € N | a; # b;}
fori=1,...,n.

4) The reduction is very similar to the previous one. Observe that a monotone
monomial can only be consistent with a set P of positive assignments if it does
not depend on any variable x; such that P contains an example a with a; = 0.
Let J = {i € [n] | Va € P : a; = 1}. Then there is some monotone k-monomial

128 V. Arvind, J. Kébler, and W. Lindner

which is consistent with P and N if and only if there is an index set I C J of
size k fulfilling the property

VbeNJiel: b =0. (6)

Indeed, if I C J fulfills this property, then the monomial A;_; z; is consistent
with P and N. Thus, some k-monomial is consistent with P and N if and
only if the weft 2 formula A,y \/,c; z: has a satisfying assignment of weight £,
implying that also the consistency problem for monotone k-monomials is in W|[2].
Further, a consistent monotone k-monomial can be constructed by computing a
size k solution for the set cover instance (N,{S; | i € J}), where S; = {b € N |
bi=0}fori=1,...,n. |

Theorem 3. The class of k-juntas is fpt PAC-learnable with access to a W|2]
oracle and using k-juntas as hypotheses. The same holds for monotone k-juntas
as well as for k-monomials and monotone k-monomials.

Proof. We first consider the case of k-juntas and monotone k-juntas. As has been
observed in [I], the set of all k-juntas has size O(n*22") and hence it follows from
[6] that (monotone) k-juntas are proper PAC-learnable by an Occam algorithm
by using O(s~*(log(6~1) + 2¥ + klog(n))) many examples. Further, observe that
using the algorithm described in the proof of Theorem [a (monotone) k-junta
consistent with the random training sample (P, N') can be constructed with the
help of a W[2] oracle in time poly(2¥,m,n), where m = |[P U N|.

For the case of (monotone) k-monomials we note that the variant of Haus-
sler’s algorithm that requests O(e~!(log(6~!) + klog(n))) many examples and
uses the parameterized set cover problem as an oracle to determine a consistent
(monotone) k-monomial learns this class in time poly(n, 1/e,1og(1/6)). O

In order to show that the W[2] oracle is indeed necessary we make use of the fol-
lowing hardness result that easily follows by transforming Haussler’s [T5] reduc-
tion of the set cover problem to the consistency problem for monotone monomials
into the parameterized setting.

Lemma 4. LetC =J,~, Cy be a concept class where C,, contains all monotone

monomials over the variables x1,...,x,. Then the parameterized consistency
problem for C is hard for W[2].

Proof. Consider Haussler’s [I5] reduction f that maps a set cover instance
U= {u,...,um}, S = {5,..., 5.} and k to the instance P = {1"}, N =
{b1,...,by} and k, where the i-th bit of the negative example b; is 0 if and only
if u; € S;. We claim that the following statements are equivalent:

— some k-junta is consistent with P and N,
— U can be covered by a subfamily R C S of size k,
— some monotone k-monomial is consistent with P and N.

Suppose that some k-junta f € C,, is consistent with the examples from P and
N. Let I be the index set of the relevant variables of f. Then by the choice

Parameterized Learnability of k-Juntas and Related Problems 129

of P = {1"}, each negative example b; differs from 1™ in at least one of the k
positions from I. This means that for every j € [m] there is some i € I such that
the i-th bit of b; is 0 and, hence, u; € S;. Thus, the union of all sets .S; with
1 € I covers U.

Now suppose that U can be covered by a subfamily R = {S; | i € I'} for some
index set I C [n] of size k. Then for every j € [m] there is some index i € I such
that the 4-th bit of b; is 0, implying that the monotone k-monomial A, ; z; is
false on all b; from N and true on 1™.

Since, by assumption, C,, contains all monotone monomials over the variables
Z1,...,Ty, this shows that f is an fpt many-one reduction of the parameterized
set cover problem (which is W[2]-complete) to the parameterized consistency
problem for C. a

By combining Lemma [with Theorem [2] we immediately get the following com-
pleteness results.

Corollary 5. The parameterized consistency problem for the following concept
classes is complete for W[2]:

1) all k-juntas,

2) monotone k-juntas,

3) k-monomials,

4) monotone k-monomials.

Next we show that no concept class containing all monotone k-monomials is
fpt PAC-learnable with boolean circuits having at most k relevant variables as
hypotheses unless the second level of the W-hierarchy collapses to randomized
FPT (meaning that for any problem (L,) € W][2] there is a randomized algo-
rithm that decides L in expected time g(k(z))|z|°M) for a computable function

g; see [L3]).

Theorem 6. Monotone k-monomials are not fpt PAC-learnable with boolean
circuits having at most k relevant variables as hypotheses, unless W[2] is con-
tained in randomized FPT.

Proof. Assume that there exists a PAC-learning algorithm A for the set of mono-
tone k-monomials which runs in time g(k)poly(n,1/e,1/6) and outputs boolean
circuits with at most k relevant variables as hypotheses. We describe a random-
ized algorithm M which solves the parameterized set cover problem in fixed
parameter time.

On input a set U = {u1,...,un}, a family S = {S1,...,S5,} of subsets
S; C U, and a positive integer k, M first computes the corresponding instance
f(U,S, k) = (P,N,k) of the parameterized consistency problem as described
in the proof of Lemma Fl Then M runs the PAC-learning algorithm A with
confidence parameter § = 1/4 and error parameter ¢ = 1/(||N|| + 2). For each
request for a random classified example, M randomly chooses an example from
PUN and passes it to A along with its classification. After at most g(k)poly(n,m)
steps, A produces a boolean circuit computing some hypothesis A. Now M tries

130 V. Arvind, J. Kébler, and W. Lindner

to determine the relevant variables of h as follows. Observe that if h depends on
at most k relevant variables, then for each relevant variable x; and for a uniformly
at random chosen assignment = € {0,1}" we have h(x) # h(z") with probability
at least 27%, where 2’ is obtained from z by flipping the i-th bit. Thus, M can
detect the index set I of all relevant variables of h with probability > 3/4 in time
poly (2% n), provided that & indeed depends on at most k variables (otherwise, I
can be an arbitrary subset of [n] and M might fail to find any relevant variables).
Finally, M accepts if and only if ||| < k and the monomial A, _; z; is consistent
with P and N.

Assume that (U, S, k) is a positive instance of the parameterized set cover
problem. Then, by the choice of § and e, A produces with probability at least
3/4 a k-junta h that is consistent with P and N. Now, using the properties
of the instance (P, N, k) described in the proof of Lemma M it follows that if
A is successful, then M finds with probability > 3/4 a monotone k-monomial
consistent with P and N, implying that M accepts with probability > 1/2.

On the other hand, it is clear that M will never accept a negative instance

(U, S, k). |

el

Thus it is rather unlikely that the class of k-monomials (or any other concept
class considered in Theorem B]) is proper PAC-learnable in time g(k)poly(n). In
contrast, in the distribution-specific setting with respect to the uniform distri-
bution, proper PAC-learning can be achieved in fixed parameter time. For the
class of monotone k-juntas, this has already been shown by Mossel et al. [22].

Theorem 7. Under the uniform distribution, k-monomials are PAC-learnable
in deterministic fized parameter time with k-monomials as hypotheses.

Proof. Let f be some k-monomial and for any ¢ € [n] consider the probability
p; = Pr[f(z) = x;] for a uniformly chosen assignment x € {0,1}". If z; does not
appear in f then p; = 1/2. If x; appears unnegated in f then p; = 1/2 + 2%,
and if z; appears negated in f then p; = 1/2 — 27%. The probability p; can be
estimated within additive error 27%~! with high probability by using poly(2*)
random examples. Thus, we can successively determine all literals of f in time
poly(2F n). O

4 Learning k-Juntas Exactly

In this section we consider the parameterized learnability of concept classes that
are evaluable in fixed parameter time. Our main result here is that any such class
is randomized fpt EQ-learnable with access to an oracle in W[P], provided that
the Hamming weight is used as parameter. Our learning algorithm uses a similar
strategy as the exact learning algorithm of Bshouty et al. [7]. We first recall a
version of the Valiant-Vazirani lemma [24] that lower bounds the probability
that a randomly chosen linear function h isolates some x € D (we say that a
function A : {0,1}* — {0,1}! isolates z in D C {0,1}*, if z is the only string in
D with h(z) = 0'). Furthermore, it provides an upper bound on the probability
that such an isolated x lies in a given small subset D’ of D.

Parameterized Learnability of k-Juntas and Related Problems 131

Lemma 8. Let D C {0,1}*—{0%} be a non-empty set of cardinality c, let D’ C
D be of cardinality at most c/12, and let | be an integer such that 2! < 3¢ < 2+1.
Then, for a uniformly chosen linear function h:{0,1}* — {0, 1},

— with probability at least 2/9, there exists exactly one element x € D such
that h(z) = 0!, and

— with probability at most 1/18, there exists some element x € D’ such that
h(z) = 0.

Theorem 9. Any XP-enumerable representation (R, k) is randomized fpt EQ-
learnable with access to a uniform-XP oracle and using boolean circuits as hy-
potheses. Moreover, if the Hamming weight is used as parameter, then a W[P]
oracle suffices.

Proof. We give an outline of the proof. Let 7 be the target. We describe a ran-
domized learning algorithm A that on input n, s = || and k = x(7*) collects a set
S of counterexamples obtained from the teacher. To build a suitable hypothesis
from the current set S, A randomly samples a polynomial number of concept
names ry,...,7p from the set

Consy,s(S) = {r € Ry s | Ry(r) is consistent with S}.

Then A makes an improper equivalence query using the hypothesis

L [{ie{l,....p} [= € Ru(ri)}]| = p/2,
0, otherwise

maj[rl,...,rp](x) - {

which is the majority vote on the concepts R, (r1),..., Ry(rp). In order to do
the sampling A will apply the hashing lemma stated above. More precisely, A
cycles through all values | = s,s—1,...,1 and randomly chooses linear functions
h;:{0,1}* — {0,1}!,i=1,...,p. Then A uses the oracle

B ={(k,r,8,h,s,1) | 3 : " € Consy, 4(S) and h(r') = 0'},

where k is the parameter, to find for each function h; a concept name r; (if it
exists) that is isolated by h; in Consy, s(S). Note that B belongs to uniform-XP
as the representation (R, k) is XP-enumerable. Now, for ¢ = 1,...,p and each
string « € {0, 1}" with the property that

[{r € Consy s(S) |z € Ru(r) & x € Ry(7)}|| > (11/12)]| Consg, s (S)]]

(meaning that the inclusion of the counterexample z in S discards less than a
1/12 fraction of all representations in Consy, (S)) consider the random variable

—1, h; isolates an r; in Consy s(S) with « € R, (r;) AR, (7),
Zi(x) =140, h; does not isolate any string in Consy,s(.5),
1, h; isolates an 7; in Consy ¢(S) with = € R,,(r;) < © € R, (7).

132 V. Arvind, J. Kébler, and W. Lindner

Then, provided that [has the right value, it follows that
E(Zi(x)) 2 (2o — 1hs) = Vs =1/

and by Hoefding’s inequality we get

P

> Ziz) < o] =2 9®),

i=1

Prob

Since the equivalence query h = majy,. . jonly disagrees with the target on the
classification of z if Y°F_, Z;(z) < 0, this means that with probability 1—2"~ ®),
h allows only counterexamples z that discard at least a 1/12 fraction of all
representations in Consy, 4(5).

To complete the proof outline, note that it is easy to see that if we use the

Hamming weight as parameterization, then the oracle B actually belongs to
W[P]. |

As an immediate consequence we get the following corollary.

Corollary 1. Any XP-enumerable representation (R,k) is PAC-learnable in
randomized fized parameter time with access to a uniform-XP oracle. Moreover,
if the Hamming weight is used as parameter, then a W[P] oracle suffices.

By using the representation J of k-juntas described in Section we immedi-
ately get the following positive learning result for k-juntas.

Corollary 2. k-juntas are randomized fpt EQ-learnable with access to a W[P]
oracle.

Note that the hypotheses used by the query-learning algorithm can have up to n
relevant variables. It is not hard to verify that this is essentially optimal for any
algorithm with fixed parameter running time. To see this, suppose that A learns
k-juntas with g(k)n¢ equivalence queries using circuits having at most [relevant
variables as hypotheses. Consider the subclass D consisting of all monotone
monomials with exactly k variables.

If A asks the constant h = 0 function as an equivalence query, then no mono-
tone monomial from D agrees with h on the counterexample a = 1". Otherwise
let a be a counterexample such that h(a) = 1 where a; = 0 on all positions 7 for
which h does not depend on x;. The number of hypotheses from D that agree
with h on a is at most (,lc) Hence, for every equivalence query h there is some
counterexample a such that the algorithm A can discard at most (1) hypotheses
from D. By a simple counting argument it follows that

o ()2 (5) -

implying that [= £2(n'=%/*/g(k)'/*). Thus it follows for all € and for sufficiently
large k and n that [> n'=¢/g(k).

Parameterized Learnability of k-Juntas and Related Problems 133

We conclude this section with a remark on exactly learning a generalization of
juntas with membership queries. Consider the natural generalization of k-juntas
where the target f is a boolean function of k linear forms on the n variables over
the field Fy. More precisely, f(z1,...,2n) = g(ai1(z),...,ar(x)), where each
a;(z) is defined as a linear function Z;‘L:1 a;jz; over Fo, where a;; € {0,1}.
Using membership queries such “generalized” k-juntas are exactly learnable in
time 20*)pO(M) by a direct application of the learning algorithm of Kushilevitz
and Mansour [19, Theorem 5.3]. According to this result, a boolean decision tree
of depth d and n variables with Fo-linear functions at each node can be exactly
learned with membership queries in deterministic time polynomial in n and 2¢.
Now it suffices to observe that a generalized k-junta can be transformed into a
decision tree of depth k with a linear function at each node.

5 Discussion and Open Problems

We have examined the parameterized complexity of learning k-juntas, with our
notion of efficient learning as fixed parameter tractable learnability. Our main
results are about the hardness of learning k-juntas and subclasses of k-juntas
in the PAC model by reductions ;from a W[2]-complete problem. On the other
hand, as a consequence of a more general result we show that k-juntas are exactly
learnable with improper equivalence queries and access to a W[P] oracle. Some
interesting open questions remain.

The main open question is whether the learning result of [22] for k-juntas can
be improved to show that k-juntas are fpt PAC-learnable with boolean circuits as
hypotheses. A more modest question is whether (monotone) k-monomials are fpt
PAC-learnable with boolean circuits as hypotheses having &’ relevant variables,
where k' = g(k) only depends on k. From Theorem [6] we only know that if we
choose for g the identity function, then this is not possible unless W[2] collapses.
On the other hand, Warmuth’s modification of Haussler’s algorithm achieves
PAC learning of k-monomials in polynomial time with klog(2/e)-monomials as
hypotheses.

Acknowledgments

We thank the anonymous referees for their valuable comments.

References

1. Almuallim, H., Dietterich, T.G.: Learning boolean concepts in the presence of many
irrelevant features. Artificial Intelligence 69(1-2), 279-305 (1994)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Control 75, 87-106 (1987)

3. Blum, A.: My favorite open problems (and a few results). In: Talk given at 2001
NeuroCOLT Alpine Workshop on Computational Complexity Aspects of Learning,
March 26-29,2001 Sestriere, Italy (2001)

134

4.
5.

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

V. Arvind, J. Kébler, and W. Lindner

Blum, A.: Learning a function of r relevant variables. In: COLT, pp. 731-733 (2003)
Blum, A., Rudich, S.: Fast learning of k-term DNF formulas with queries. Journal
of Computer and System Sciences 51(3), 367-373 (1995)

Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Infor-
mation Processing Letters 24(6), 377-380 (1987)

Bshouty, N., Cleve, R., Gavalda, R., Kannan, S., Tamon, C.: Oracles and queries
that are sufficient for exact learning. Journal of Computer and System Sciences 52,
421-433 (1996)

. Bshouty, N., Tamon, C.: On the fourier spectrum of monotone functions. Journal

of the ACM 43(4), 747-770 (1996)

. Chvatal, V.: A greedy heuristic for the set covering problem. Mathematics of Op-

erations Research 4(3), 233-235 (1979)

Downey, R.G., Evans, P.A., Fellows, M.R.: Parameterized learning complexity. In:
Proc. 6th Annual ACM Conference on Computational Learning Theory, pp. 51-57.
ACM Press, New York (1993)

Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
Basic results. STAM Journal on Computing 24(4), 873-921 (1995)

Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

Fellows, M., Koblitz, N.: Fixed-parameter complexity and cryptography. In:
Moreno, O., Cohen, G., Mora, T. (eds.) Proc. Tenth International Symposium
on Applied Algebra, Algebraic Algorithms, and Error Correcting Codes. LNCS,
vol. 673, pp. 121-131. Springer, Heidelberg (1993)

Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

Haussler, D.: Quantifying inductive bias: AI learning algorithms and Valiant’s
learning framework. Artificial Intelligence 36, 177-221 (1988)

Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9, 256-278 (1974)

Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

Kolountzakis, M., Markakis, E., Mehta, A.: Learning symmetric juntas in time
n°®) Interface between Harmonic Analysis and Number Theory (2005)
Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier spectrum.
SIAM Journal on Computing 22(6), 1331-1348 (1993)

Lipton, R., Markakis, E., Mehta, A., Vishnoi, N.: On the fourier spectrum of sym-
metric boolean functions with applications to learning symmetric juntas. In: Twen-
tieth Annual IEEE Conference on Computational Complexity, pp. 112-119 (2005)
Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning 2, 285-318 (1988)

Mossel, E., O’Donnell, R., Servedio, R.P.: Learning juntas. In: Proc. 35th ACM
Symposium on Theory of Computing, pp. 206-212. ACM Press, New York (2003)
Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. Jour-
nal of the ACM 35(4), 965-984 (1988)

Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoretical
Computer Science 47, 85-93 (1986)

Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134-1142 (1984)

	Parameterized Learnability of k-Juntas and Related Problems
	Introduction
	Preliminaries
	Parameterized Complexity
	Parameterized Learnability

	PAC Learning of k-Juntas
	Learning k-Juntas Exactly
	Discussion and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

