Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2018/19

Bemerkung

- Es ist klar, dass jede reguläre Grammatik auch kontextfrei ist
- Zudem ist die Sprache $L = \{a^n b^n \mid n \ge 0\}$ nicht regulär
- Es ist aber leicht, eine kontextfreie Grammatik für L anzugeben:

$$G = (\{S\}, \{a, b\}, P, S) \text{ mit } P = \{S \rightarrow aSb, \varepsilon\}$$

- Also gilt REG ⊊ CFL
- Allerdings sind nicht alle kontextfreien Grammatiken kontextsensitiv
- Z.B. ist obige Grammatik G nicht kontextsensitiv, da sie die Regel $S \to \varepsilon$ enthält und S auf der rechten Seite der Regel $S \to aSb$ vorkommt
- Wir können G jedoch wie folgt in eine Grammatik G' umwandeln:
 - ersetze die Regel $S \rightarrow \varepsilon$ durch die Regel $S \rightarrow ab$ und
 - füge ein neues Startsymbol S' sowie die Regeln $S' \to S, \varepsilon$ hinzu
- ullet Tatsächlich lässt sich jede kontextfreie Grammatik G in eine äquivalente kontextfreie Grammatik G' umwandeln, die auch kontextsensitiv ist

Definition

Eine Grammatik $G = (V, \Sigma, P, S)$ ist in Chomsky-Normalform (CNF), falls $P \subseteq V \times (V^2 \cup \Sigma)$ ist, d.h. alle Regeln haben die Form $A \to BC$ oder $A \to a$.

Satz

Zu jeder kontextfreien Grammatik G lässt sich eine CNF-Grammatik G' mit $L(G') = L(G) \setminus \{\varepsilon\}$ konstruieren.

Anwendungen der Chomsky-Normalform

Korollar

CFL ⊆ CSL.

Beweis

- Sei $L \in CFL$ und sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik mit $L(G) = L \setminus \{\varepsilon\}$
- Im Fall $\varepsilon \notin L$ folgt sofort $L = L(G) \in CSL$, da G kontextsensitiv ist
- Ist $\varepsilon \in L$, so erzeugt folgende kontextsensitive (und kontextfreie) Grammatik G' die Sprache $L = L(G) \cup \{\varepsilon\}$:

$$G' = (V \cup \{S_{neu}\}, \Sigma, P \cup \{S_{neu} \rightarrow S, \varepsilon\}, S_{neu})$$

Weitere Anwendungen der Chomsky-Normalform

- Der Beweis des Pumping-Lemmas für kontextfreie Sprachen basiert auf CNF-Grammatiken
- Zudem ermöglichen sie einen effizienten Algorithmus zur Lösung des Wortproblems für kontextfreie Sprachen

Das Pumping-Lemma für kontextfreie Sprachen

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine Zahl I, so dass sich alle Wörter $z \in L$ mit $|z| \ge I$ in z = uvwxy zerlegen lassen mit

- $vx \neq \varepsilon$,
- $|vwx| \le I$ und
- $uv^i wx^i y \in L$ für alle $i \ge 0$.

Das Wortproblem für kontextfreie Grammatiken

Gegeben: Eine kontextfreie Grammatik G und ein Wort x. Gefragt: Ist $x \in L(G)$?

Das Pumping-Lemma für kontextfreie Sprachen

Beispiel

- Betrachte die Sprache $L = \{a^n b^n | n \ge 0\}.$
- Dann lässt sich jedes Wort $z = a^n b^n = a^{n-1} abb^{n-1}$ in L mit $|z| \ge l = 2$ pumpen.
- Zerlegen wir nämlich z in

$$z = uvwxy$$
 mit $u = a^{n-1}$, $v = a$, $w = \varepsilon$, $x = b$ und $y = b^{n-1}$,

dann gilt

- $vx = ab \neq \varepsilon$
- $|vwx| = |ab| \le 2$ und
- $v^i w x^i y = a^{n-1} a^i b^i b^{n-1} \in L$ für alle $i \ge 0$

Anwendung des Pumping-Lemmas

Beispiel

- Die Sprache $L = \{a^n b^n c^n \mid n \ge 0\}$ ist nicht kontextfrei
- Für eine vorgegebene Zahl $l \ge 0$ hat nämlich das Wort $z = a^l b^l c^l \in L$ die Länge $|z| = 3l \ge l$
- Dieses Wort lässt sich aber nicht pumpen:

Für jede Zerlegung z = uvwxy mit $vx \neq \varepsilon$ und $|vwx| \leq I$ gehört $z' = uv^0wx^0y$ nicht zu L:

- Wegen $vx \neq \varepsilon$ ist |z'| < |z|
- Wegen $|vwx| \le l$ kommen in vx nicht alle drei Zeichen a, b, c vor
- Kommt aber in vx beispielsweise kein a vor, so ist $\#_a(z) = \#_a(z')$ und somit gilt

$$|z'| < |z| = 3 \#_a(z) = 3 \#_a(z')$$

Also gehört z' nicht zu L

<

Satz

CFL ist abgeschlossen unter Vereinigung, Produkt und Sternhülle.

Beweis

- Seien $G_1 = (V_1, \Sigma, P_1, S_1)$ und $G_2 = (V_2, \Sigma, P_2, S_2)$ kontextfreie Grammatiken mit $V_1 \cap V_2 = \emptyset$ und sei S eine neue Variable
- Dann gilt
 - $L(G_1) \cup L(G_2) = L(G_3)$ für die kontextfreie Grammatik $G_3 = (V_1 \cup V_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \rightarrow S_1, S_2\}, S)$
 - $L(G_1)L(G_2) = L(G_4)$ für die kontextfreie Grammatik $G_4 = (V_1 \cup V_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}, S) \text{ und}$
 - $L(G_1)^* = L(G_5)$ für die kontextfreie Grammatik $G_5 = (V_1 \cup \{S\}, \Sigma, P_1 \cup \{S \rightarrow S_1 S, \varepsilon\}, S)$

Abschlusseigenschaften von CFL

Satz

CFL ist nicht abgeschlossen unter Schnitt und Komplement.

Beweis von $L_1, L_2 \in CFL \Rightarrow L_1 \cap L_2 \in CFL$

• Folgende Sprachen sind kontextfrei (siehe Übungen):

$$L_1 = \{a^n b^m c^m \mid n, m \ge 0\} \text{ und } L_2 = \{a^n b^n c^m \mid n, m \ge 0\}$$

Beweis von
$$L \in CFL \Rightarrow \bar{L} \in CFL$$

• Nicht jedoch ihr Schnitt $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$

- Wäre CFL unter Komplement abgeschlossen, so wäre CFL wegen de Morgan auch unter Schnitt abgeschlossen
- Mit $A, B \in \mathsf{CFL}$ wären dann nämlich auch $\overline{A}, \overline{B} \in \mathsf{CFL}$, woraus wegen $\overline{A}, \overline{B} \in \mathsf{CFL} \Rightarrow \overline{A} \cup \overline{B} = \overline{A \cap B} \in \mathsf{CFL}$

Satz

Zu jeder kontextfreien Grammatik G lässt sich eine CNF-Grammatik G' mit $L(G') = L(G) \setminus \{\varepsilon\}$ konstruieren.

Beweis

Wir wandeln $G = (V, \Sigma, P, S)$ wie folgt in eine CNF-Grammatik G' um:

- Wir beseitigen zunächst alle Regeln der Form $A \to \varepsilon$ und danach alle Regeln der Form $A \to B$ (siehe folgende Folien)
- Dann fügen wir für jedes Terminal a ∈ Σ eine neue Variable X_a und eine neue Regel X_a → a hinzu und ersetzen jedes Vorkommen von a, bei dem a nicht alleine auf der rechten Seite einer Regel steht, durch X_a
- Anschließend führen wir für jede Regel $A \rightarrow B_1 \dots B_k$, $k \ge 3$, neue Variablen A_1, \dots, A_{k-2} ein und ersetzen sie durch die k-1 Regeln

$$A \rightarrow B_1 A_1, A_1 \rightarrow B_2 A_2, \dots A_{k-3} \rightarrow B_{k-2} A_{k-2}, A_{k-2} \rightarrow B_{k-1} B_k$$

Falls G Regeln mit vielen Variablen auf der rechten Seite hat, empfiehlt es sich, Regeln der Form $A \to \varepsilon$ und $A \to B$ zuletzt zu beseitigen (s. Übungen)

Beseitigung von ε -Regeln

Satz

Zu jeder kontextfreien Grammatik $G = (V, \Sigma, P, S)$ gibt es eine kontextfreie Grammatik $G' = (V, \Sigma, P', S)$ ohne ε -Regeln mit $L(G') = L(G) \setminus \{\varepsilon\}$.

Beweis

• Zuerst berechnen wir die Menge $E = \{A \in V \mid A \Rightarrow^* \varepsilon\}$ aller Variablen, die nach ε ableitbar sind:

```
1 E' := \{A \in V \mid A \rightarrow \varepsilon\}

2 repeat

3 E := E'

4 E' := E \cup \{A \in V \mid \exists B_1, \dots, B_k \in E : A \rightarrow B_1 \dots B_k\}

5 until E = E'
```

• Nun bilden wir P' wie folgt:

$$\begin{cases} A \to v' & \text{es ex. eine Regel } A \to_G v, \text{ so dass } v' \neq \varepsilon \text{ aus } v \text{ durch} \\ & \text{Entfernen von beliebig vielen Variablen } A \in E \text{ entsteht} \end{cases}$$

Beispiel

Betrachte die Grammatik $G = (\{S, T, U, X, Y, Z\}, \{a, b, c\}, P, S)$ mit

$$P: S \to aY, bX, Z \qquad Y \to bS, aYY \qquad T \to U$$
$$X \to aS, bXX \qquad Z \to \varepsilon, S, T, cZ \qquad U \to abc$$

Berechnung von E:

• Entferne $Z \to \varepsilon$ und füge die Regeln $Y \to b$ (wegen $Y \to bS$), $X \to a$ (wegen $X \to aS$) und $Z \to c$ (wegen $Z \to cZ$) hinzu:

$$P': S \rightarrow aY, bX, Z$$
 $Y \rightarrow b, bS, aYY$ $T \rightarrow U$
 $X \rightarrow a, aS, bXX$ $Z \rightarrow c, S, T, cZ$ $U \rightarrow abc$

Satz

Zu jeder kontextfreien Grammatik $G = (V, \Sigma, P, S)$ gibt es eine kontextfreie Grammatik $G' = (V, \Sigma, P', S)$ ohne Regeln der Form $A \to B$ mit L(G') = L(G).

Beweis

- Zuerst entfernen wir sukzessive alle Zyklen $A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_k \rightarrow A_1$
- Hierzu entfernen wir diese Regeln aus P und ersetzen alle Vorkommen der Variablen A_2, \ldots, A_k in den übrigen Regeln durch A_1
- ullet Befindet sich die Startvariable unter A_1,\dots,A_k , so sei dies o.B.d.A. A_1
- Nun eliminieren wir sukzessive die restlichen Variablenumbenennungen, indem wir
 - eine Regel $A \rightarrow B$ wählen, so dass in P keine Variablenumbenennung $B \rightarrow C$ mit B auf der linken Seite existiert,
 - diese Regel $A \rightarrow B$ aus P entfernen und
 - für jede Regel $B \rightarrow v$ in P die Regel $A \rightarrow v$ zu P hinzunehmen

Beseitigung von Variablenumbenennungen

Beispiel (Fortsetzung)

P:
$$S \rightarrow aY, bX, Z$$
 $Y \rightarrow b, bS, aYY$ $T \rightarrow U$
 $X \rightarrow a, aS, bXX$ $Z \rightarrow c, S, T, cZ$ $U \rightarrow abc$

• Entferne den Zyklus $S \rightarrow Z \rightarrow S$ und ersetze Z durch S:

$$S \rightarrow aY, bX, c, T, cS$$
 $Y \rightarrow b, bS, aYY$ $T \rightarrow U$
 $X \rightarrow a, aS, bXX$ $U \rightarrow abc$

• Ersetze die Regel $T \rightarrow U$ durch $T \rightarrow abc$ (wegen $U \rightarrow abc$):

$$S \rightarrow aY, bX, c, T, cS$$
 $Y \rightarrow b, bS, aYY$ $T \rightarrow abc$
 $X \rightarrow a, aS, bXX$ $U \rightarrow abc$

• Ersetze dann auch die Regel $S \to T$ durch $S \to abc$ (wegen $T \to abc$):

$$S \rightarrow abc, aY, bX, c, cS$$
 $Y \rightarrow b, bS, aYY$ $T \rightarrow abc$
 $X \rightarrow a, aS, bXX$ $U \rightarrow abc$

• Da T und U nirgends mehr auf der rechten Seite vorkommen, können wir die Regeln $T \to abc$ und $U \to abc$ weglassen:

$$S \rightarrow abc, aY, bX, c, cS$$
 $Y \rightarrow b, bS, aYY$ $X \rightarrow a, aS, bXX$

Bringe alle Regeln in die Form $A \rightarrow a$ und $A \rightarrow BC$

Beispiel (Schluss)

Betrachte die Grammatik $G = (\{S, X, Y, Z\}, \{a, b, c\}, P, S)$ mit

$$P: S \rightarrow abc, aY, bX, c, cS$$
 $Y \rightarrow b, bS, aYY$ $X \rightarrow a, aS, bXX$

 Ersetze a, b und c durch A, B und C (außer wenn sie alleine auf der rechten Seite einer Regel stehen) und füge die Regeln A→a, B→b, C→c hinzu:

$$S \rightarrow ABC, AY, BX, c, CS$$
 $Y \rightarrow b, BS, AYY$ $X \rightarrow a, AS, BXX$ $A \rightarrow a$ $B \rightarrow b$ $C \rightarrow c$

• Ersetze die Regeln $S \rightarrow ABC$, $Y \rightarrow AYY$ und $X \rightarrow BXX$ durch die Regeln $S \rightarrow AS'$, $S' \rightarrow BC$, $Y \rightarrow AY'$, $Y' \rightarrow YY$ und $X \rightarrow BX'$, $X' \rightarrow XX$:

$$S \rightarrow AS', AY, BX, c, CS$$
 $S' \rightarrow BC$ $Y \rightarrow b, BS, AY'$ $Y' \rightarrow YY$
 $X \rightarrow a, AS, BX'$ $X' \rightarrow XX$ $A \rightarrow a$ $B \rightarrow b$ $C \rightarrow c$

Links- und Rechtsableitungen

Definition

Sei $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik.

Eine Ableitung

$$\underline{S} \Rightarrow l_1 A_1 r_1 \Rightarrow \cdots \Rightarrow l_{m-1} A_{m-1} r_{m-1} \Rightarrow \alpha_m$$

heißt Linksableitung von α_m (kurz $S \Rightarrow_L^* \alpha_m$), falls in jedem Ableitungsschritt die am weitesten links stehende Variable ersetzt wird, d.h. es gilt $l_i \in \Sigma^*$ für $i=1,\ldots,m-1$

- Rechtsableitungen $S_0 \Rightarrow_R^* \alpha_m$ sind analog definiert
- G heißt mehrdeutig, wenn es ein Wort $x \in L(G)$ gibt, das zwei verschiedene Linksableitungen hat
- Andernfalls heißt G eindeutig

Für alle $x \in \Sigma^*$ gilt: $x \in L(G) \iff S \Rightarrow^* x \iff S \Rightarrow^*_L x \iff S \Rightarrow^*_R x$

Ein- und mehrdeutige Grammatiken

Beispiel

• In $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ gibt es 8 Ableitungen für aabb:

- Darunter sind genau eine Links- und genau eine Rechtsableitung
- In $G' = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, ab, \varepsilon\}, S)$ gibt es 3 Ableitungen für ab:

• Darunter sind zwei Links- und zwei Rechtsableitungen

Ein- und mehrdeutige Grammatiken

Beispiel

- Die Grammatik $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ ist eindeutig
- Dies liegt daran, dass keine Satzform von G das Teilwort Sa enthält
- ullet Daher muss auf die aktuelle Satzform $y\underline{S}eta$ einer Linksableitung

$$S \Rightarrow_{L}^{*} y\underline{S}\beta \Rightarrow_{L}^{*} yz = x$$

genau dann die Regel $S \to aSbS$ angewandt werden, wenn in x auf das Präfix y ein a folgt

• Dagegen ist die Grammatik $G' = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, ab, \varepsilon\}, S)$ mehrdeutig, da das Wort x = ab zwei Linksableitungen hat:

$$\underline{S} \Rightarrow ab \text{ und } \underline{S} \Rightarrow a\underline{S}bS \Rightarrow ab\underline{S} \Rightarrow ab$$

Sei G = (V, E) ein Digraph.

- Ein (gerichteter) v_0 - v_k -Weg in G ist eine Folge von Knoten v_0, \ldots, v_k mit $(v_i, v_{i+1}) \in E$ für $i = 0, \ldots, k-1$. Seine Länge ist k.
- Ein Weg heißt Pfad, falls alle Knoten paarweise verschieden sind.
- Ein u-v-Weg der Länge ≥ 1 mit u = v heißt Zyklus.
- G heißt azyklisch, wenn es in G keinen Zyklus gibt.
- G heißt gerichteter Wald, wenn G azyklisch ist und jeder Knoten $v \in V$ Eingangsgrad $\deg^-(v) \le 1$ hat.
- Ein Knoten $u \in V$ vom Ausgangsgrad $deg^+(u) = 0$ heißt Blatt.
- Ein Knoten $w \in V$ heißt Wurzel von G, falls alle Knoten $v \in V$ von w aus erreichbar sind (d.h. es gibt einen w-v-Weg in G).
- Ein gerichteter Wald, der eine Wurzel hat, heißt gerichteter Baum.
- Da die Kantenrichtungen durch die Wahl der Wurzel eindeutig bestimmt sind, kann auf ihre Angabe verzichtet werden. Man spricht dann auch von einem Wurzelbaum.

Wir ordnen einer Ableitung

$$A_0 \Rightarrow I_1 A_1 r_1 \Rightarrow \cdots \Rightarrow I_{m-1} A_{m-1} r_{m-1} \Rightarrow \alpha_m$$

den Syntaxbaum (oder Ableitungsbaum, engl. parse tree) T_m zu, wobei die Bäume T_0, \ldots, T_m induktiv wie folgt definiert sind:

- T_0 besteht aus einem einzigen Knoten, der mit A_0 markiert ist.
- Wird im (i+1)-ten Ableitungsschritt die Regel $A_i \rightarrow v_1 \dots v_k$ mit $v_1, \dots, v_k \in \Sigma \cup V$ angewandt, so ensteht T_{i+1} aus T_i , indem wir das Blatt A_i durch folgenden Unterbaum ersetzen:

$$k > 0$$
: A_i $k = 0$: A_i \downarrow \downarrow ε

- Hierbei stellen wir uns die Kanten von oben nach unten gerichtet und die Kinder $v_1 \dots v_k$ von links nach rechts geordnet vor.
- Syntaxbäume sind also geordnete Wurzelbäume.

Beispiel

• Betrachte die Grammatik $G = (\{S\}, \{a,b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ und die Ableitung

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aaSb\underline{S}bS \Rightarrow aa\underline{S}bbS \Rightarrow aabb\underline{S} \Rightarrow aabb$$

Die zugehörigen Syntaxbäume sind dann

Beispiel

• In $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ führen alle acht Ableitungen des Wortes aabb auf denselben Syntaxbaum:

• Dagegen führen in $G' = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, ab, \varepsilon\}, S)$ die drei Ableitungen des Wortes ab auf zwei unterschiedliche Syntaxbäume:

Syntaxbäume und Linksableitungen

- Seien T_0, \ldots, T_m die zu einer Ableitung $S = \alpha_0 \Rightarrow \cdots \Rightarrow \alpha_m$ gehörigen Syntaxbäume.
- Dann haben alle Syntaxbäume T_0, \ldots, T_m die Wurzel S.
- Die Satzform α_i ergibt sich aus T_i , indem wir die Blätter von T_i von links nach rechts zu einem Wort zusammensetzen.
- Auf den Syntaxbaum T_m führen neben $\alpha_0 \Rightarrow \cdots \Rightarrow \alpha_m$ alle Ableitungen, die sich von dieser nur in der Reihenfolge der Regelanwendungen unterscheiden.
- Dazu gehört genau eine Linksableitung.
- Linksableitungen und Syntaxbäume entsprechen sich also eineindeutig.
- Dasselbe gilt für Rechtsableitungen.
- Ist T Syntaxbaum einer CNF-Grammatik, so hat jeder Knoten in T höchstens zwei Kinder (d.h. T ist ein Binärbaum).

Abschätzung der Blätterzahl bei Binärbäumen

Definition

Die Tiefe eines Baumes mit Wurzel w ist die maximale Länge eines Weges von w zu einem Blatt.

Lemma

Ein Binärbaum B der Tiefe $\leq k$ hat $\leq 2^k$ Blätter.

Beweis durch Induktion über k:

k = 0: Ein Baum der Tiefe 0 kann nur einen Knoten haben.

 $k \rightsquigarrow k+1$: Sei *B* ein Binärbaum der Tiefe $\leq k+1$.

Dann hängen an B's Wurzel maximal zwei Unterbäume. Da deren Tiefe $\leq k$ ist, haben sie nach $IV \leq 2^k$ Blätter.

Also hat $B \le 2^{k+1}$ Blätter.

Lemma

Ein Binärbaum B der Tiefe $\leq k$ hat $\leq 2^k$ Blätter.

Korollar

Ein Binärbaum B mit $> 2^{k-1}$ Blättern hat eine Tiefe $\ge k$.

Beweis

Wäre die Tiefe von B kleiner als k (also $\leq k-1$), so hätte B nach obigem Lemma $\leq 2^{k-1}$ Blätter (Widerspruch).