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Abstract. Using logspace counting classes we study the computational
complexity of hypergraph and graph isomorphism where the vertex sets
have bounded color classes for certain specific bounds. We also give
a polynomial-time algorithm for hypergraph isomorphism for bounded
color classes of arbitrary size.

1 Introduction

In this paper we explore the complexity of Graph Isomorphism (GI) and Hy-
pergraph Isomorphism (HGI) in the bounded color class setting. This means
that the vertices of the input graphs are colored and we are only interested in
isomorphisms that preserve the colors. The restriction of graph isomorphism
to graphs with n vertices where the number of vertices with the same color is
bounded by b(n) is very well studied (we call this problem GIb). In fact, for
b(n) = O(1) it was the first restricted version of GI to be put in polynomial
time using group-theoretic methods [5] (as usual we denote GIO(1) by BCGI).
Later Luks put BCGI in NC using nontrivial group theory [8], whereas Torán
showed that BCGI is hard for the logspace counting classes ModkL, k ≥ 2 [11].
Actually, Torán’s proof shows that for k ≥ 2, GIk2 (as well as GA2k2) is hard for
ModkL. More recently, in [1] it is shown by carefully examining Luks’ algorithm
and Torán’s hardness result that BCGI is in the ModkL hierarchy and is in fact
hard for this hierarchy.

For a fixed constant b, there is still a gap between the general upper bound
result of [1] for GIb and Torán’s hardness result. More precisely, if GIb is upper
bounded by, say, the t-th level of the ModjL hierarchy, and is hard for the s-th
level of the ModkL hierarchy, the constants t and j are much larger than s and
k respectively. In the absence of a general result closing this gap, it is interesting
to investigate the complexity of GIb for specific values of b. In [6] GI2 and GI3
are shown to be equivalent to undirected graph reachability implying that they
are complete for L [10]. In the present paper, we take a linear-algebraic approach
to proving upper and lower bounds for GIb. This is natural because the ModkL
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classes for prime k have linear-algebraic complete problems. Using linear algebra
over F2 we are able to show that GIb is ⊕L complete for b ∈ {4, 5}. Our techniques
involve a combination of linear algebra with a partial Weisfeiler-Lehman type of
labeling procedure (see e.g. [4]).

Another natural question to investigate is the complexity of Hypergraph
Isomorphism when the vertex set is divided into color classes of size at most b(n)
(call it HGIb). Firstly, notice that even for constant b, it is not clear whether
HGIb is reducible to BCGI. At least the usual reduction from HGI to GI does
not give a constant bound on the color classes. The reason is that hyperedges can
be of unbounded size. Hence a hyperedge’s orbit can be exponentially large even
under color-preserving vertex permutations. Thus, we need to directly examine
the complexity of HGIb. We show using group theory and linear algebra that
HGI2 is ⊕L complete. Further we show that for any prime p, HGAp (as well as
GAp2) is ModpL hard.

Next we consider HGIb for arbitrary b. Since HGI is polynomial-time many-
one equivalent to GI, complexity-theoretic upper bounds for GI like NP∩ coAM
and SPP hold for HGI. However, consider an instance of HGI: a pair of hyper-
graphs (X1, X2), with n vertices and m edges each. The reduction to GI maps
it to a pair of graphs (Y1, Y2) with vertex sets of size m + n. The best known

isomorphism testing algorithm (see [2]) which has running time c
√

n lg n will take

time c
√

(m+n) lg(m+n) when combined with the above reduction and applied to
HGI. The question whether HGI has a simply exponential time (i.e. cn time)
algorithm was settled positively by Luks by using a dynamic programming ap-
proach [9]. In Section 5 we give a polynomial-time upper bound for HGIb when
b is bounded by a constant. This result is based on Luks’ polynomial-time al-
gorithm [7] for the set stabilizer problem for a permutation group in the class
Γd.

2 Preliminaries

We first fix some notation. Let X = (V,E) denote a (finite) hypergraph, i.e., E
is a subset of the power set P(V ) of V , and let g be a permutation on V . We
can extend g to a mapping on subsets U = {u1, . . . , uk} of V by

g(U) = {g(u1), . . . , g(uk)}.

g is an isomorphism between hypergraphs X = (V,E) and X ′ = (V,E′), if

∀e ⊆ V : e ∈ E ⇔ g(e) ∈ E′.

We also say that g maps X to X ′ and write g(X) = X ′. If g(X) = X , then g
is called an automorphism of X . Note that the identity mapping on V is always
an automorphism. Any other automorphism is called nontrivial.

A coloring of a hypergraph (V,E) is given by a partition C = (C1, . . . , Cm)
of V into disjoint color classes Ci. We call X = (V,E, C) a colored hypergraph.
In case ‖Ci‖ ≤ b for all i = 1, . . . ,m, we refer to X as a b-bounded hypergraph.



Further, for 1 ≤ k ≤ b, we use Ck = {C ∈ C | ‖C‖ = k} to denote the set of all
color classes having size exactly k.

A permutation g on V is called an isomorphism between two colored hyper-
graphs X = (V,E, C) and X ′ = (V,E′, C′) with colorings C = (C1, . . . , Cm) and
C′ = (C′

1, . . . , C
′
m), if g preserves the hyperedges (i.e., g(V,E1) = (V,E2)) and g

preserves the colorings (i.e., g(Ci) = g(C′
i) for all i = 1, . . . ,m).

The decision problem HGIb consists of deciding whether two given b-bounded
hypergraphs X1 and X2 are isomorphic. A related problem is the hypergraph
automorphism problem HGAb of deciding if a given b-bounded hypergraph X
has a nontrivial automorphism. For usual b-bounded graphs X = (V,E) (i.e.,
each edge e ∈ E contains exactly 2 nodes), we denote the isomorphism and
automorphism problems by GIb and GAb, respectively.

Let X = (V,E) be a graph. For a subset U ⊆ V , we use X [U ] to denote
the induced subgraph (U,E(U)) of X , where E(U) = {e ∈ E | e ⊆ U}. Further,
for disjoint subsets U,U ′ ⊆ V , we use X [U,U ′] to denote the induced bipartite

subgraph (U∪U ′, E(U,U ′)), where E(U,U ′) contains all edges e ∈ E with e∩U 6=
∅ and e∩U ′ 6= ∅. For a set U of nodes, we use ΓX(U) to denote the neighborhood

{v ∈ V | ∃u ∈ U : (u, v) ∈ E} of U in X .
We denote the symmetric group of all permutations on a set A by Sym(A)

and by Sn in case A = {1, . . . , n}. Let G be a subgroup of Sym(A) and let a ∈ A.
Then the set {b ∈ A | ∃π ∈ G : π(a) = b} of all elements b ∈ A reachable from a
via a permutation π ∈ G is called the orbit of a in G.

3 Graphs with color classes of size 5

In this section we prove that GA4 is contained in ⊕L. The proof is easily extended
to GI4 as well as to GA5 and GI5. Let X = (V,E, C) be a 4-bounded graph (an
instance of GA4) and let C = (C1, . . . , Cm). We use Xi to denote the graph
X [Ci] induced by Ci and Xij to denote the bipartite graph X [Ci, Cj ] induced
by the pair of color classes Ci and Cj . We assume that all vertices in the same
color class have the same degree and that the edge set Ei of Xi is either empty
or consists of two disjoint edges (only if ‖Ci‖ = 4), since otherwise we can either
split Ci into smaller color classes or we can replace Xi by the complement graph
without changing the automorphism group Aut(X) of X . Further, we assume
that the edge set Eij of Xij is of size at most ‖Ci‖ · ‖Cj‖/2, since otherwise, we
can replace Xij by the complement bipartite graph without changing Aut(X).

Any π ∈ Aut(X) can be written as π = (π1, . . . , πm) in Aut(X1) × · · · ×
Aut(Xm), where πi is an automorphism of Xi. Furthermore, for any pair of
color classes Ci and Cj , (πi, πj) has to be an automorphism of Xij . These are
precisely the constraints that any automorphism in Aut(X) must satisfy.

Since each Aut(Xi) is isomorphic to a subgroup of S4, the only prime factors
of ‖Aut(X)‖ (if any) are 2 and 3. Thus, Aut(X) is nontrivial if and only if it has
either an automorphism of order 2 or of order 3. By a case analysis, we will show
that the problem of testing whether X has a nontrivial automorphism can be
reduced to either undirected graph reachability or to solving a system of linear



equations over F2, implying that the problem is in ⊕L. In fact, as we will see, it
is also possible to compute a generating set for Aut(X) in FL⊕L.

Let Gi be the intersection of Aut(Xi) with the projections of Aut(Xij) on Ci

for all j 6= i. Any subgroup of the symmetric group Sym(Ci) of all permutations
on Ci is called a constraint for Ci. We call Gi the direct constraint for Ci.

The algorithm proceeds in several preprocessing steps which progressively
eliminate different cases and simplify the graph. We describe some base steps of
the algorithm in a sequence of claims.

Claim 1. The direct constraints can be determined in deterministic logspace.

Proof. Follows easily from the fact that the color classes are of constant size. ⊓⊔
Next we consider a specific way in which the direct constraints get propagated

to other color classes in X . To this end, we define a symmetric binary relation
T on the set C. Let Ci, Cj ∈ C such that ‖Ci‖ = ‖Cj‖. Then (Ci, Cj) ∈ T if

– ‖Ci‖ ∈ {1, 2, 3} and Xij is a perfect matching or
– ‖Ci‖ = 4 and Xij is either a perfect matching or an 8-cycle.

The following easy lemma states a specific useful way in which the constraints
get propagated over color classes related via T .

Lemma 2. For each pair (Ci, Cj) ∈ T there is a bijection fij : Ci → Cj such

that for any automorphism π = (π1, . . . , πm) ∈ Aut(X) the permutations πi ∈ Gi

and πj ∈ Gj are related as follows:

∀u, v ∈ Ci : πi(u) = v ⇐⇒ πj(fij(u)) = fij(v).

In other words, if (Ci, Cj) ∈ T via fij and π = (π1, . . . , πm) ∈ Aut(X) is an
automorphism, then πj(fij(u)) = fij(πi(u)), i.e., πj is the image of πi under the
bijection gij : Sym(Ci) → Sym(Cj) defined by π 7→ fij ◦ π ◦ f−1

ij (here we use
g ◦ h to denote the mapping x 7→ g(h(x))).

We use Lemma 2 to define a symmetric relation on constraints. Let G and
H be constraints of two different color classes Ci and Cj , respectively, where
(Ci, Cj) ∈ T . We say that G is directly induced by H , if gij is an isomorphism
between G and H . Further, G is induced by H , if G is reachable from H via a
chain of directly induced constraints. Note that the latter relation is an equiva-
lence on the set of all constraints. We call the intersection of all constraints of
Ci that are induced by some direct constraint the induced constraint of Ci and
denote it by G′

i. Note that Aut(X) is a subgroup of the m-fold product group
∏m

i=1G
′
i of all induced constraints.

Claim 3. The induced constraints can be determined in deterministic logspace.

Proof. Consider the undirected graph X ′ = (V ′, E′) where V ′ consists of all
constraintsG inX and E′ = {(G,H) | G is directly induced byH}. In this graph
we mark all direct constraints computed by Claim 1 as special nodes. Now, the
algorithm outputs for each color class Ci the intersection of all constraints for
Ci that are reachable from some special node, and since SL = L [10], this can
be done in deterministic logspace. ⊓⊔



We define two special types of constraints. We say that Ci is split, if G′
i has

at least two orbits, and we call the partition of Ci in the orbits of G′
i the splitting

partition of Ci. Further, a partition {H0, H1} of Ci with ‖H0‖ = ‖H1‖ = 2 is
called a halving of Ci, if any π ∈ G′

i either maps H0 to itself or to H1. Any class
Ci which has a halving, is called halved, and all color classes that are neither
split nor halved are called whole. Now let Cs, Ch and Cw denote the subclasses of
C containing all split, halved, and whole color classes, respectively, and consider
the following two cases:

Case A: All color classes in C4 are halved (i.e., C ⊆ Ch ∪ C3 ∪ C2 ∪ C1).
Case B: All color classes in C4 are halved and C3 is empty (i.e., C ⊆ Ch∪C2∪C1).

We first show how the general case logspace reduces to Case A. Then we
reduce Case A to Case B in logspace, and finally we show how Case B is solved
in logspace with a ⊕L oracle. We start by summarizing some properties of whole
color classes which are easily proved by a case analysis.

Lemma 4. Let Ci, Cj ∈ C be color classes, where Ci is whole and Eij 6= ∅.
– All vertices in Ci have the same degree in Xij. Likewise, all vertices in the

neighborhood ΓXij
(Ci) have the same degree in Xij.

– If Cj is whole, then ‖Ci‖ = ‖Cj‖ and (Ci, Cj) ∈ T .
– If Cj is halved, then ‖Ci‖ ≤ 3.
– If Cj is halved and Ej 6= ∅, then ‖Ci‖ ≤ 2.
– If Cj is split and ‖Cj‖ ≤ ‖Ci‖, then all vertices in Ci have the same neigh-

borhood in Xij .

Lemma 4 tells us that the action of an automorphism on a whole color class
C ∈ C4 is not influenced by its action on color classes that are either smaller or
halved or split, i.e., only other whole color classes in C4 can influence C. This
means that we can write Aut(X) as the product Aut(X ′)×Aut(X ′′), where X ′

is the induced subgraph of X containing the nodes of all color classes in C4 ∩Cw

and X ′′ is induced by the set of all other nodes. Clearly, it suffices to compute
generating sets for Aut(X ′) and Aut(X ′′).

Claim 5. A generating set for Aut(X ′) can be computed in FL.

Proof. The algorithm will work by reducing the problem to reachability in undi-
rected graphs. For each whole color class Ci ∈ C4 we create a set Pi of 4!
nodes (one for each permutation of Ci). Consider Ci, Cj ∈ C4 ∩ Cw such that
(Ci, Cj) ∈ T and let fij be the bijection from Lemma 2. Recall that for each
π ∈ Pi the bijection fij induces a unique permutation ψ = gij(π) on Cj and
hence, we put an undirected edge between π and ψ. We thus get an undirected
graph X̂ with 4!‖C4 ∩ Cw‖ nodes.

A connected component P in X̂ that picks out at most one element πi from
each set Pi defines a valid automorphism π for the graph X ′, if P contains only
elements πi ∈ Aut(Xi). On the color classes Ci, for which P contains an element
πi ∈ Pi, π acts as πi, and it fixes all nodes of the other color classes. By collecting
these automorphisms we get a generating set for Aut(X ′) and since SL = L [10],
this can be done in deterministic logspace. ⊓⊔



By using Claim 5 we can already assume that C4 only contains halved or split
color classes. To fulfil the assumption of Case A, we now take all the split color
classes and break them up into smaller color classes defined by the split. Then
only halved color classes remain in C4. Further, we can assume that if Ci is
halved, then Ei consists of two disjoint edges.

Next we consider the reduction of Case A to Case B. Since C4 only contains
halved color classes with two disjoint edges, Lemma 4 now guarantees that a
whole color class C ∈ C3 can only influence other whole color classes in C3.
Hence, we can remove all whole color classes in C3 exactly as we removed the
whole color classes in C4, by applying an analogue of Claim 5. Now we can again
break up all split color classes yielding a graph that fulfils Case B. Observe that
the splitting partition of a halved color class only contains sets of size 1, 2 or 4.

It remains to compute a generating set for a 4-bounded graph which only
has color classes of size 1, 2 or 4, where all the size 4 color classes are halved.
Clearly, in this case X can only have nontrivial automorphisms of orders 2 or 4.
We continue by defining an encoding of the candidate automorphisms of Aut(X)
as vectors over F2. Later we show how one can reduce the problem of finding
Aut(X) to the problem of solving linear equations over F2.

An encoding trick

We now describe how to encode the automorphisms of X with vectors over F2.
We introduce some F2 indeterminates for each color class C in X of size more
than 1. More precisely, we encode each automorphism π ∈ Aut(Xi) by a vector
vπ ∈ F

ni−1
2 , where ni = ‖Ci‖.

1. To each color class Ci = {u0, u1} of size 2 we introduce a single variable x.
Here x = 1 denotes the transposition (u0 u1) and x = 0 denotes the identity
mapping on Ci.

2. If Ci is a halved color class of size 4, let e0 = {u00, u01} and e1 = {u10, u11}
be the two disjoint edges in Ei. Notice that each vertex index is encoded
with two bits. The first bit encodes the edge and the second bit the vertex
in that edge. Then we encode an automorphism π ∈ Aut(Xi) by a three bit
vector vπ = xyz, where π(u00) = uxy and π(u10) = ux̄z. In other words, the
permutation π encoded by vπ maps

uab 7→ ua′b′ , where a′ = a+ x and b′ =

{

b+ y, a = 0,

b+ z, a = 1.

Notice that the addition of the 3-bit representations in F
3
2 does not capture

the permutation group structure of Aut(Xi), since the latter is nonabelian.

Let t =
∑m

i=1(ni − 1) denote the sum of the lengths of the F2 representa-
tions for each color class. Thus, every element π = (π1, . . . , πm) of Aut(X) is
encoded as a vector vπ = (vπ1

, . . . , vπm
) in F

t
2, and each vector in F

t
2 repre-

sents a potential automorphism. Recall that a permutation π = (π1, . . . , πm) ∈



Aut(X1)×· · ·×Aut(Xm) is in Aut(X) if and only if for each Ci and Cj , (πi, πj)
is an automorphism of Xij . We now show that each of these constraints yields
a set of linear equalities on the indeterminates that encode (πi, πj). Hence, we
claim that a vector in F

t
2 encodes an automorphism of X if and only if it satisfies

the set of all these linear equalities.

Lemma 6. For any pair of color classes Ci and Cj in X the set

Fij = {vπvϕ | π ∈ Aut(Xi), ϕ ∈ Aut(Xj) and (π, ϕ) ∈ Aut(Xij)}

forms a subspace of F
ni+nj−2
2 .

Proofsketch. The proof is by a case analysis checking all the possibilities. First
note that for any color class Ci of size more than 1, the encodings of all auto-
morphisms in Aut(Xi) form the space F

ni−1
2 . Hence, Fij = F

ni+nj−2
2 if Eij = ∅.

To simplify the analysis if Eij is not empty, notice that if Ci, Cj are unsplit
halved color classes, then either (Ci, Cj) ∈ T or Eij is the union of two 4-
cycles. In the latter case we can modify Xij by removing the two 4-cycles and
introducing a new color class C = {c1, c2}.

Ci Cj Ci CjC

c1

c2

The nodes c1 and c2 represent the two deleted 4-cycles in the following sense:
the node c1 is adjacent to the 4 nodes that were part of one of the 4-cycles (two
each in Ci and Cj). Similarly, c2 is adjacent to the 4 nodes on the other 4-cycle
(two each in Ci and Cj). Then the modified graph has the same automorphism
group as Xij , after we project out the new color class C. Hence, we can assume
that if Ci and Cj are both halved, then (Ci, Cj) ∈ T .

Now consider the case that both Ci and Cj are of size 2. This case is easy,
since the addition of the representations vπvϕ captures the permutation group
structure. In fact, the only interesting case is when Eij is a perfect matching
where Fij = {xixj | xi = xj} (see the following picture).

Ci Cj

xi=xj

Ci Cj

xi=xj

Ci Cj

yi=zi=xj

Ci Cj

xi=xj+yi,
yi=zi

xi=xj+yj,
yi=zi=yj=zj

Ci Cj



Next we consider the case ni = 4 and nj = 2. It is easy to see by considering
the different cases that the elements xiyizixj of Fij form a subspace of F

4
2 (see

the picture for three interesting cases).
Finally, if ni = nj = 4, we can assume that (Ci, Cj) ∈ T . It is easy to check

that exactly one of the following two possibilities can occur: either the projec-
tion of (Aut(Xi) × Aut(Xj)) ∩ Aut(Xij) on Ci contains all 8 automorphisms
(this case is similar to the case Eij = ∅), or it is a subgroup that contains no
automorphisms of order four. An interesting property of the encoding is that all
subgroups containing no order four elements are such that permutation compo-
sition coincides with vector addition in F

ni−1
2 . It follows from this observation

that the elements xiyizixjyjzj of Fij form a subspace of F
6
2 (see the picture for

an example). ⊓⊔

As a direct consequence of the above lemma and the fact that the solution
space for a system of linear equations over F2 can be computed in FL⊕L (see
[3]) we get the following upper bound.

Claim 7. Let X be a 4-bounded graph fulfilling the assumption of Case B. Then

the problem of computing a generating set for its automorphism group is in FL⊕L.

By refining Torán’s proof [11] that GA is hard for ⊕L, it can be shown that
also GA4 is hard for ⊕L (see Section 5). By combining this hardness result with
the ⊕L upper bound for GA4 established in this section we get the following
completeness result.

Theorem 8. GA4 is complete for ⊕L.

We end this section by remarking that Theorem 8 easily extends to GA5 as
well as to GI5. Color classes of size 5 are either whole or split. The halved classes
can only be of size 4. Thus, the ⊕L upper bound goes through for GA5 with
minor changes.

4 Hypergraphs with color classes of size 2

In this section we show that HGA2 and HGI2 are complete for ⊕L under logspace
reductions. We only give the proof for HGA2. The proof for HGI2 is similar. Let
X = (V,E) be a 2-bounded hypergraph. Thus V is partitioned into color classes
Ci with ‖Ci‖ ≤ 2 for i = 1, . . . ,m. To each color class Ci of size 2 we associate
an indeterminate xi over F2 which indicates by its value whether the vertices of
Ci flip or not. Thus we can represent any color preserving permutation of X by
a vector x = x1 · · ·xm in F

m
2 .

Our aim is to compute in deterministic logspace a set of linear constraints
on x1, . . . , xm over F2 that determines Aut(X). This will imply that HGA2 is in
⊕L. Hyperedges e and e′ have the same type if ‖e∩Ci‖ = ‖e′ ∩Ci‖ for all i. We
can partition E into subsets E1, . . . , Et of distinct types. Clearly, automorphisms
preserve edge types. Thus, Aut(X) is expressible as the intersection of Aut(V,Ej)
over all edge types.



Proposition 9. A vector x in F
m
2 represents an element in Aut(X) if and only

if it represents an element in Aut(V,Ej) for each Ej.

If for each Ej we can compute in logspace a set of linear constraints on
x1, . . . , xm that determines Aut(V,Ej), then the union of these constraints will
determine Aut(X). Thus, it suffices to consider the case that all edges in E are
of the same type. Further, by ignoring color classes Ci with ‖e∩Ci‖ ∈ {0, 2} for
all e, we can assume that ‖e ∩Ci‖ = 1 for all e ∈ E and i = 1, . . . ,m.

Let Ci = {u0i, u1i} for i = 1, . . . ,m. We can represent the hyperedges e ∈ E
by vectors ve = v1 · · · vm ∈ F

m
2 with vj = 1 if u1j ∈ e and vj = 0 if u0j ∈ e. With

this representation, a candidate automorphism x ∈ F
m
2 acts on the hyperedges

by vector addition in F
m
2 :

x : ve 7→ ve + x.

Since every automorphism x maps ve to some hyperedge ve′ , the candidate auto-
morphisms are in S = {ve + ve′ | e′ ∈ E}, for a fixed e ∈ E. A logspace machine
M can easily check whether each vector x ∈ S represents an automorphism, by
testing if x+ ve ∈ E for each e ∈ E .

Thus, M can compute the set F ⊆ S containing the encodings of all auto-
morphisms. Notice that F is a subspace of F

m
2 .

Finally, we can easily see that M can compute the dual space in terms of
a matrix A over F2 such that x ∈ F if and only if Ax = 0. This matrix A
provides the desired set of linear constraints. Combining the constraints of all
edge types gives the overall system of linear constraints, whose solutions are the
automorphisms. In summary, we have proved the following theorem.

Theorem 10. Let X be a 2-bounded hypergraph. Then the problem of comput-

ing a generating set for its automorphism group is in FL⊕L. In particular, the

problem HGA2 is in ⊕L.

By modifying Torán’s proof [11] that GA is hard for ⊕L, it can be shown
that for any prime p, HGAp is hard for ModpL (see the next section). Combined
with the above theorem this gives the following completeness result.

By modifying Torán’s proof [11] that GA is hard for ⊕L, it can be shown that
for any prime p, HGAp is hard for ModpL. Combined with the above theorem
this gives the following completeness result.

Corollary 11. HGA2 is complete for ⊕L under logspace many-one reductions.

5 Hypergraphs with constant size color classes

In this section we give a polynomial time upper bound for the problem of com-
puting a generating set of Aut(X) for a b-bounded hypergraph X = (V,E).
Further we show that for any prime p ≤ k, HGAk is hard for ModpL (and hence
also hard for ModjL under logspace conjunctive truth-table reductions, by clo-
sure properties of ModjL classes, where j is the product of all primes p ≤ k [3]).
Since the orbit size of the hyperedges in the reduced hypergraphs is bounded by



p2, we also get that GAp2 is ModpL hard. For prime k, this slightly improves
Torán’s result that GA2k2 is hard for ModkL.

Theorem 12. For any prime p, HGAp is logspace many-one hard for ModpL.

Proofsketch. It is well-known that the evaluation problem CirValp for arithmetic
circuits with ⊕p-gates is complete for ModpL, where ⊕p denotes addition modulo
p (see e.g. [11]). To evaluate a single ⊕p-gate we consider the following hyper-
graph H = (V,E), where

V ={ai, bi, ci | i = 0, . . . , p− 1},
E ={{ai, bj , ck} | i⊕p j = k}.

The following figure shows H for the case p = 3, where we use triangles to
depict hyperedges.

a b

c

⊕3

a0 a1 a2 b0 b1 b2

c0 c1 c2

Observe that for every pair of input nodes ai, bj , there is exactly one hyperedge
e in E which contains ai and bj:

e = {ai, bj , ck}, where k = i⊕3 j

Hence, it follows for any automorphism f that

f(a0) = ai ∧ f(b0) = bj

⇒ f({a0, b0, c0}) = {ai, bj , f(c0)} ∈ E

⇒ f(c0) = ck, where k = i⊕3 j.

By replacing all ⊕p-gates by such a gadget we can transform C into a hypergraph
H which has a nontrivial automorphism g if and only if C evaluates to 1. Note
that in order to force g to fix the p input nodes corresponding to a 0 input we
can color them differently. Also, in order to force g to move the p input nodes
corresponding to a 1 input we additionally insert p parallel feedback edges from
the p output nodes to these nodes. Finally, by inserting additional vertices and
edges we can force g to cyclically shift the p output nodes. ⊓⊔

Next we give a polynomial time algorithm for computing a generating set
of Aut(X) for a b-bounded hypergraph X = (V,E). More precisely, we give
an nO(b) algorithm for the problem, where n = ‖V ‖. We remark that if the



hyperedges are all of constant size, i.e. ‖e‖ ≤ k for all e ∈ E and constant k,
then the problem is deterministic logspace reducible to BCGI which is known to
be in NC [8]. However, when hyperedges are of unbounded size, it is not clear
whether HGIb is reducible to BCGI. Our polynomial time algorithm for HGIb
applies ideas from a different result of Luks [7]. We recall some definitions.

Definition 13. Let k ≥ 1. A finite group G is said to be in the class Γk if all

nonabelian composition factors of G are isomorphic to subgroups of Sk.

Theorem 14. [7] Let ∆ ⊆ Ω and let G ≤ Sym(Ω) be given by a generating set

S. If G ∈ Γk then there is an nO(k) algorithm for computing the set stabilizer

subgroup G∆ = {g ∈ G | g(∆) = ∆}.

For a colored hypergraph X = (V,E, C) with C = (C′, C′′) let X ′ denote the
hypergraph (C′, E′) where E′ = {e ∩ C′ | e ∈ E}. X ′′ is defined accordingly.
We first give an algorithm for the following problem, that we repeatedly use as
a subroutine. Suppose X = (V,E, C) is such a hypergraph where the automor-
phism groups Aut(X ′) and Aut(X ′′) are in Γk. The problem is to compute in
polynomial time a generating set of Aut(X) from generating sets of Aut(X ′) and
Aut(X ′′).

We first consider the embedding map

ϕ : Aut(X ′) → Sym(C′) × Sym(E′) given by ϕ(π) = (π, τ),

where τ is simply defined as the action of π on E′. Similarly, we have the em-
bedding map ψ : Aut(X ′′) → Sym(C′′) × Sym(E′′). Since ϕ and ψ are easy to
compute, we can easily compute the generating set for ϕ(Aut(X ′)) as the image
of the given generating set of Aut(X ′). Similarly, we can compute a generating
set for ψ(Aut(X ′′)). Thus, we can compute a generating set for the product group
ϕ(Aut(X ′))×ψ(Aut(X ′′)) as a permutation group acting on C′ ∪E′ ∪C′′ ∪E′′.

Furthermore, since this permutation group action extends uniquely to E′ ×
E′′, we can easily compute a generating set S for the product group ϕ(Aut(X ′))×
ψ(Aut(X ′′)) as a permutation group acting on C′ ∪E′ ∪ C′′ ∪ E′′ ∪ (E′ × E′′).

Notice that we can see Aut(X) as a subgroup of ϕ(Aut(X ′))×ψ(Aut(X ′′)).
To compute Aut(X) we construct a bipartite graph Z with W = E′ ∪E′′ as the
vertex set and edge set F , where for e′ ∈ E′ and e′′ ∈ E′′ we include (e′, e′′) in
F if and only if e′ ∪ e′′ ∈ E.

Now, in order to invoke Theorem 14, let Ω denote the set

Ω = C′ ∪ E′ ∪C′′ ∪E′′ ∪ (E′ × E′′)

and let G ≤ Sym(Ω) be the group ϕ(Aut(X ′)) × ψ(Aut(X ′′)). Since Aut(X ′)
and Aut(X ′′) are in Γk and since Γk is closed under homomorphic images and
products [7], it follows that ϕ(Aut(X ′)) × ψ(Aut(X ′′)) is also in Γk. Hence,
letting ∆ = F , Theorem 14 implies that we can compute G∆ (which is Aut(X))
in time nO(k). Notice that it suffices to retain the action of G∆ on V = C′ ∪C′′

and we can discard the remaining part.



We now consider the problem of computing Aut(X) from scratch. For each
s = 1, . . . ,m we define hypergraphs X1,s = (C1,s, E1,s), where C1,s =

⋃s
i=1 Ci

and E1,s = {e ∩ C1,s | e ∈ E}. Notice that X itself is X1,m. We also define
Xs = (Cs, Es), where Es = {e ∩ Cs | e ∈ E}. Notice that Xs is a constant-size
hypergraph for each s and Aut(Xs) can be computed easily in polynomial time.
Our polynomial time algorithm starts by first computing Aut(X1,1) = Aut(X1).
Then for increasing values of s = 1, . . . ,m it progressively computes the group
Aut(X1,s) from the already computed groups Aut(X1,s−1) and Aut(Xs) by using
the algorithm explained above. Notice that the groups Aut(X1,s−1) and Aut(Xs)
are in Γk because their orbits are bounded by k. This completes the proof of the
following result.

Theorem 15. Given a hypergraph X = (V,E) with color classes of size bounded

by k, there is an nO(k) time algorithm that computes Aut(X) as a generating set

in Sym(V ). In particular, HGI and HGA are in P.
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