How Workflow Management Systems
address Kubernetes - A Taxonomy

Exposé
Lennart Seiffer

November 9, 2021

Abstract

Data analysis workflows are an integral part of modern research in the natural
sciences. Yet, several issues are slowing down the process of creating and
sharing workflows. One issue is the lack of portability and reproducibility of
workflows across different environments. Several workflow management systems
aim to achieve these properties by abstracting their execution over various
infrastructures. One common attempt to enable this abstraction is the use of
resource managers like Kubernetes. Kubernetes manages Cloud resources in
a uniform way, simplifying the migration process of workflows across different
Clouds and datacenters.

In this thesis, we give an overview of the utilization of Kubernetes by multiple
state-of-the-art workflow management systems. We aim to categorize the systems,
based on the way they address Kubernetes. To discuss aspects of workflow
implementation, performance, and distribution of responsibilities, we adapt a
simplified word count workflow to all systems. For evaluation, we run each
workflow in a Kubernetes cluster hosted in the Cloud, measure the execution
time, and track the task scheduling decisions. Based on these results, we discuss
advantages and disadvantages of the approaches.

1 Introduction

Nowadays, many research departments in the natural sciences heavily rely on data
analysis workflows (DAW), processing large data volumes [I3]. Various approaches for
creating, managing, and executing DAWs exist, ranging from custom-built tools to
complex workflow management systems (WMS). Researchers dealing with DAWs face
several challenges, such as:

e Each research lab has its own infrastructure, and transferring a DAW from one
to another is time-consuming and error-prone.

e Researchers creating and managing the DAWSs are often no computer scientists
and need to spend significant time to learn the tools for creating pipelines.

e Adapting a DAW from one WMS to another may require fundamental adjust-
ments.

For these reasons, research teams can hardly reuse other institutions’ workflows to
reproduce their results. Modern WMSs aim to achieve portability and reusability of
data analysis workflows by abstracting their execution environment, while supporting a
range of different resource managers and executors. A common resource manager that
we examine in this paper is Kubernetes, a state-of-the-art, Cloud-native infrastructure
orchestration system [21].

This bachelor thesis aims to give an overview of how existing WMSs address Kuber-
netes to enable abstract DAW definitions and portable workflows. We have limited the
scope of this thesis to Kubernetes to enable a more direct comparison of WMSs than
considering the complete range of supported resource managers would allow. We will
focus on the Cloud as the execution infrastructure.

For the comparison, we consider the following open-source workflow management
systems, which support DAW execution via Kubernetes:

e Apache Airflow [7]
e Apache OODT [6]
e Argo [3]

e Arvados [18]

e Galaxy [19]

e Nextflow [11]

e Pegasus [25]

e Snakemake [9]

e Toil [10]

2 Related work

There are several overviews of WMSs that highlight different aspects of these systems,
such as the survey of Barker and Hemert [I], who present various early scientific WMSs
and discuss key aspects of future research with scientific workflows. Also, Mork et
al. [I7] survey WMSs, how they operate on research Clouds, and how this has been
utilized in papers across various domains. An overview of more recent WMSs, which
also utilize Kubernetes, can be found in Spjuth et al. [20]. Bux and Leser [2] and Liu

et al. [14] give an overview of parallelization techniques in WMSs and how they are
implemented in specific systems. Furthermore, Fjukstad and Bongo [5] investigate
scalability aspects of WMSs in the bioinformatics realm, also mentioning Toil. In
addition, Wratten et al. [26] and Leser et al. [13] discuss general requirements for WMSs
on a broader scope.

Several articles examine specific WMSs, such as Galaxy [16], Toil [23], Nextflow [4],
and Snakemake [I5]. The workflow management systems Apache Airflow, Apache
OODT, Arvados, and Snakemake do not appear in the overview papers mentioned
above. In contrast, Galaxy and Pegasus have been discussed extensively in older
literature, while Nextflow is often mentioned in more recent papers.

Various papers specifically focus on requirements for running DAWs in the Cloud
and provide example migrations. Vockler et al. [24] demonstrate the deployment of
a Pegasus workflow from the astronomy domain onto various Clouds simultaneously.
Similarly, Zhao et al. [27] discuss general requirements for running workflows in the
Cloud and provide a migration of the WMS Swift into the Cloud. Klop [8] investigates
scheduling of workflow jobs over Kubernetes and Docker Swarm. Moreover, Lehmann
et al. [I2] discuss the adaption process of tailor-made data analysis workflows to
workflow management systems by the example of porting a DAW for earth observation
to Nextflow. Bux and Leser [2] also mention operational models and cost aspects of
deploying WMSs in the Cloud.

We have found little material that discusses the implementation of Kubernetes
executors of specific WMSs in more detail, this is where this thesis can establish a
foundation of knowledge. It can also be considered as an update to the overviews of
state-of-the-art WMSs. However, this kind of information is outdated quite fast, as
the DAW management and execution field is still evolving.

3 Goals

In this thesis we aim to give an overview of state-of-the-art workflow management
systems that utilize the resource manager Kubernetes. We plan to investigate how these
systems are making use of resource managers to achieve portability and reproducibility
of workflows. More precisely, we will analyze the distribution of responsibilities between
Kubernetes resources for DAW execution, the means used to transfer data between
jobs, and the scheduling of the jobs.

Based on our findings, we aim to categorize the different workflow systems by their
approaches to use Kubernetes. In addition, we compare the systems in terms of
performance and highlight under which circumstances one system may be preferable
over the other.

As the number of existing systems supporting execution via Kubernetes exceeds the
scope of a Bachelor Thesis, we have limited ourselves to at most nine systems listed
above. We may adjust the exact number of systems depending on the amount of work
and available information.

In the first chapters of the thesis, we plan to introduce general concepts, such as

data analysis workflows, workflow management systems, Cloud, and Kubernetes. We
will give a brief overview of current research concerning DAW execution in the Cloud,
focusing on Kubernetes. To convey the context for assessing the analyzed WMSs, we
will highlight requirements of WMSs, that are associated with their infrastructure.

4 Methodology

Word Count (2) | Sort (2)

Merge Results
Word Count (n) \

/ Calculate
—Input text—s Split Deviance
Word Count (1) —+| Sort (1) \
\ Word Count (2) Sort (2) —— Merge Results
Chunk file

Word Count (n) H Sort (n) }/

Figure 1: A distributed workflow

Word Count (1) | Sort (1) \

Chunk file

In the following chapter, we describe the planned proceeding of writing the thesis.

We will gather information about how the WMSs utilize Kubernetes from various
sources. Specifically, we expect the WMS documentation to give a brief overview of the
deployment and execution procedure. More in-depth information will be taken from
papers, if available, or derived from the WMS’s source code. Additionally, monitoring
the execution of the evaluation-workflow may yield further details.

To evaluate the systems’ performance and demonstrate differences in DAW specifi-
cation, we will create a simple test workflow that we adapt to each WMS (Figure 1).
The evaluation-workflow splits a text file into two equally sized pieces and counts word
frequencies for each of those. Furthermore, it sorts the resulting word count lists and
compares them, returning the word with the largest deviance among the two lists. To
make the workflow scalable, the text pieces get chunked and passed to replicas of the
counting and sorting jobs. Thus, the jobs can be distributed among multiple machines,
so that they are processed in parallel.

We will test the workflow on large amounts of public data, like a dump of the German
Wikipedia [22], that is publicly available in XML format and has a size of about 23 GB.
The data will be pre-processed, so that the input of the chunking job is unformatted
text without special characters. However, the pre-processing is not part of the workflow
itself.

The amount of test data used should ensure that the running time of the workflow
is not too short. This should reduce the impact of little variances and side effects on
the execution time. Concerning resources, we will use 5-10 virtual machines with at
least two cores. With this configuration, we want to ensure that differences in the use
of the resource manager will have a significant impact on the execution time.

We plan to execute the DAW in an Azure Kubernetes Service (AKS) cluster. For
this purpose, we will use a trial Azure subscription with limited budget. However,
the choice of the Cloud provider could still change during the process, as long as all
workflow runs are executed in the same Cloud environment. For monitoring, we will
either use services of the Cloud provider or deploy a monitoring stack alongside the
WMS in the Kubernetes cluster. The requirement is, that the evaluation procedure for
each WMS is the same. For each system, we will run the workflow three times and
take the median for comparison. This should eliminate strong deviations, which could
appear due to over allocation of Cloud resources. However, we still need to decide on
the exact method for measuring the execution time of a DAW execution.

References

[1] Adam Barker and Jano van Hemert. Scientific workflow: A survey and research
directions. In Parallel Processing and Applied Mathematics, pages 769-776, 2008.

[2] Marc Bux and Ulf Leser. Parallelization in scientific workflow management
systems. arXiv preprint arXiv:1303.7195, 2013.

[3] Cloud Native Computing Foundation (CNCF). Argo workflows - the workflow
engine for kubernetes, September 2021. URL: https://argoproj.github.io/
argo-workflows/|

[4] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. Nextflow enables reproducible computational
workflows. Nature biotechnology, 35(4):316-319, 2017.

[5] Bjorn Fjukstad and Lars Ailo Bongo. A review of scalable bioinformatics pipelines.
Data Science and Engineering, 2(3):245-251, 2017.

[6] The Apache Foundation. Apache OODT - distributed data management, Septem-
ber 2021. URL: https://oodt.apache.org/.

[7] The Apache Software Foundation. Apache airflow, September 2021. URL:
https://airflow.apache.org/.

[8] Isaac Klop. Containerized workflow scheduling. 2018.

[9] Johannes Koster. Snakemake - a framework for reproducible data analysis,
September 2021. URL: https://snakemake.github.io/.

[10] UCSC Computational Genomics Lab. Toil, September 2021. URL: http:
//toil.ucsc-cgl.org/.

[11] Seqera Labs. Nextflow - a DSL for parallel and scalable computational pipelines,
September 2021. URL: https://wuw.nextflow.io/.

https://argoproj.github.io/argo-workflows/
https://argoproj.github.io/argo-workflows/
https://oodt.apache.org/
https://airflow.apache.org/
https://snakemake.github.io/
http://toil.ucsc-cgl.org/
http://toil.ucsc-cgl.org/
https://www.nextflow.io/

[12]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Fabian Lehmann, David Frantz, Séren Becker, Ulf Leser, and Patrick Hostert.
FORCE on nextflow: Scalable analysis of earth observation data on commodity

clusters. Ist Int. Workshop on Complex Data Challenges in Earth Observation,
2021.

Ulf Leser, Marcus Hilbrich, Claudia Draxl, Peter Eisert, Lars Grunske, Patrick
Hostert, Dagmar Kainmiiller, Odej Kao, Birte Kehr, Timo Kehrer, Christoph Koch,
Volker Markl, Henning Meyerhenke, Tilmann Rabl, Alexander Reinefeld, Knut
Reinert, Kerstin Ritter, Bjorn Scheuermann, Florian Schintke, Nicole Schweikardt,
and Matthias Weidlich. The collaborative research center FONDA. Datenbank
Spektrum, 2021.

Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. A survey of
data-intensive scientific workflow management. Journal of Grid Computing,

13(4):457-493, 2015.

Felix Molder, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christopher H
Tomkins-Tinch, Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O Twardziok,
Alexander Kanitz, et al. Sustainable data analysis with snakemake. F1000Research,
10, 2021.

Pablo Moreno, Luca Pireddu, Pierrick Roger, Nuwan Goonasekera, Enis Afgan,
Marius van den Beek, Sijin He, Anders Larsson, Daniel Schober, Christoph
Ruttkies, et al. Galaxy-kubernetes integration: scaling bioinformatics workflows
in the cloud. Preprint, 2018.

Ryan Mork, Paul Martin, and Zhiming Zhao. Contemporary challenges for data-
intensive scientific workflow management systems. In Proceedings of the 10th
Workshop on Workflows in Support of Large-Scale Science, pages 1-11, 2015.

Arvados Project. Arvados, September 2021. URL: https://arvados.org/.

The Galaxy Project. Galaxy community hub, September 2021. URL: https:
//galaxyproject.org/.

Ola Spjuth, Marco Capuccini, Matteo Carone, Anders Larsson, Wesley Schaal,
Jon Ander Novella, Oliver Stein, Morgan Ekmefjord, Paolo Di Tommaso, Evan Flo-
den, et al. Approaches for containerized scientific workflows in cloud environments
with applications in life science. 2020.

Various. Kubernetes, November 2021. URL: https://kubernetes.io/.
Various. Wikipedia:Technik/Datenbank/Download, October 2021.
URL: https://de.wikipedia.org/wiki/Wikipedia:Technik/Datenbank/

Download#Herunterladen aller Seiten_als_ XML-Dump.

https://arvados.org/
https://galaxyproject.org/
https://galaxyproject.org/
https://kubernetes.io/
https://de.wikipedia.org/wiki/Wikipedia:Technik/Datenbank/Download#Herunterladen_aller_Seiten_als_XML-Dump
https://de.wikipedia.org/wiki/Wikipedia:Technik/Datenbank/Download#Herunterladen_aller_Seiten_als_XML-Dump

(23] John Vivian, Arjun Arkal Rao, Frank Austin Nothaft, Christopher Ketchum, Joel
Armstrong, Adam Novak, Jacob Pfeil, Jake Narkizian, Alden D Deran, Audrey
Musselman-Brown, et al. Toil enables reproducible, open source, big biomedical
data analyses. Nature biotechnology, 35(4):314-316, 2017.

[24] Jens-S. Vockler, Gideon Juve, Ewa Deelman, Mats Rynge, and Bruce Berriman.
Experiences using cloud computing for a scientific workflow application. In
ScienceCloud’11, 2011.

[25] Pegasus WMS. Pegasus WMS - automate, recover, and debug scientific computa-
tions, September 2021. URL: https://pegasus.isi.edu/.

[26] Laura Wratten, Andreas Wilm, and Jonathan Goke. Reproducible, scalable,
and shareable analysis pipelines with bioinformatics workflow managers. Nature
Methods, pages 1-8, 2021.

[27] Yong Zhao, Youfu Li, Toan Raicu, Shiyong Lu, Wenhong Tian, and Heng Liu.
Enabling scalable scientific workflow management in the cloud. Future Generation
Computer Systems, 46:3—-16, 2015.

https://pegasus.isi.edu/

	Introduction
	Related work
	Goals
	Methodology

