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Abstract

Technological advancements in high-throughput sequencing have lead to
a tremendous increase in the amount of genomic data produced. With
the cost being down to 2,000 USD for a single human genome, sequencing
dozens of individuals is a task that is feasible even for smaller project
or organizations already today. However, generating the sequence is only
one issue; another one is storing, managing, and analyzing it. These
tasks become more and more challenging due to the sheer size of the data
sets and are increasingly considered to be the most severe bottlenecks
in larger genome projects. One possible countermeasure is to compress
the data; compression reduces costs in terms of requiring less hard disk
storage and in terms of requiring less bandwidth if data is shipped to large
compute clusters for parallel analysis. Accordingly, sequence compression
has recently attracted much interest in the scientific community. In this
paper, we explain the different basic techniques for sequence compression,
point to distinctions between different compression tasks (e.g., genome
versus read compression), and present a comparison of current approaches
and tools. To further stimulate progress in genome compression research,
we also identify key challenges for future systems.
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Key messages of the article:

Overview of trends in genome compression: bit manipulation, dictionary-
based, statistical, and referential compression schemes

Wide ranges of compression performance (compression ratio, compression
time, memory requirements)

Comparing compression schemes for evaluation purposes is difficult
Many minor improvements in recent contributions

Lack of widely accepted and utilized benchmark data
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1 Introduction

The introduction of high-throughput sequencing has led to the generation of
large amounts of biological data. Sequence databases now contain literally more
data than any scientist can handle. In the future, the situation will become even
worse [1], for several reasons: First, the decreasing sequencing cost per genome
makes larger and larger projects feasible, taking advantage of the increased
statistical power of larger data sets. Second, the falling cost alongside the
increasing knowledge on the relationship between genotype and phenotype will
also make more and more individuals interested in their genome and its genetic
predispositions. Third, sequencing platforms will produce more and longer reads
at a growing rate, thus further increasing the possible throughput.

The resulting growing amounts of sequenced genomes make it more necessary
than ever to carefully think about efficient storage and transmission. Current
projects already target sequencing of several thousands of human genomes [2, 3].
A straightforward way to store and manage DNA data in computers is to use
ASClII-encoded characters, resulting in one byte for each base. Although this
representation is wasteful in terms of space because it does not compress the
sequence at all, many scientists are still accustomed to this format. Its main
advantages are that it allows applications and programming languages easy
access to the data and that it is easy to read by human beings. However, it
also has the drawback of being highly space-intensive. Suppose a project aims
at sequencing 10,000 humans. Stripped of all quality information, assembled to
individual genomes and managed as ASCII files, this would amount to roughly
30 TB of data. While storing such a mass of data is no severe problem in
today’s hardware, transmitting it to a (possibly remote) compute cluster for
analysis would be a highly time-consuming task [4]. The situation becomes much
worse when not only finished genomes are stored, but the raw read sets with
associated quality scores. Then, the amount of necessary space easily grows by
a factor of 20 or more, and managing 600 TB already is much more difficult than
managing 30 TB, especially when fail-safeness, backup, and long-term archival
are considered. Finally, while storing 10,000 genomes seems like a lot today,
much higher numbers will probably become reality within a couple of years
when the current visions for third-generation sequencing become reality [5].

Another aspect of data size is monetary cost. As pointed out by Stein [6], the
cost for sequencing is decreasing much faster than the cost for storing sequences.
As a consequence, storing sequences (i.e., buying hard disks) will become more
costly than producing them in the very near future. One escape from this
situation is to simply delete sequences after analysis, thus saving mid- and long-
term storage costs, and to re-sequence the original samples if the data is needed
again later. However, such a radical approach still is considered inappropriate
by most researchers for various reasons, including general rules of good scientific
conduct which require storing experimental data for a prolonged period of time
to allow re-assessment and reproduction of results.

Another solution, which we discuss in this paper, is compression. Compres-
sion is considered one key technology for data management of population-scale
genome analysis[7]. We use the term compression to denote methods for storing
the information encoded in the original data in less space, possibly losing infor-
mation (see below). There are various methods for achieving this goal. Early
approaches focused mainly on bit manipulation techniques, i.e., they packed



more bases into one byte of data. These methods were succeeded by statistical
and dictionary-based approaches, which reach considerably higher compression
ratios than bit manipulation techniques. More recently, so-called referential
compression algorithms have become popular which allow compression rates
that are by orders of magnitude higher than that of previous attempts. The
field is highly active; in the last few years dozens of papers appeared that pro-
pose new compression schemes or variations of existing methods. At the same
time, the field is difficult to understand as schemes may differ substantially, re-
sults were published in different communities, and methods often are specialized
for particular problems (such as compression of bacterial genomes or compress-
ing only coding sequences). Another important difference that sometimes is not
obviously reflected in published results is the distinction between compressing
genomes and compressing reads.

In this paper, we survey recent algorithms for all these classes of problems.
In Section 2, we first explain the four main classes of compression techniques,
i.e., bit manipulation, dictionary-based, statistical, and referential compression.
We then discuss concrete systems for compressing entire genomes class by class
in Section 3. In contrast, in Section 4, we review recent contributions to the
compression of sequence reads, which involves the treatment of quality scores.
The paper is concluded in Section 5 with potential directions for future research
in the area of genome compression.

2 Basic Techniques

The increasing number of (re-)sequenced genomes has lead to many proposals for
compression algorithms. In general, compression algorithms can be separated
into naive bit encoding, dictionary-based, statistical, and referential approaches.

e Naive bit encoding algorithms exploit fixed-length encodings of two or
more symbols in a single byte [8, 9].

e Dictionary-based or substitutional compression algorithms replace re-
peated substrings by references to a dictionary (i.e., a set of previously seen
or predefined common strings), which is built at runtime or offline [10, 11].

e Statistical or entropy encoding algorithms derive a probabilistic model
from the input. Based on partial matches of subsets of the input, this
model predicts the next symbols in the sequence. High compression rates
are possible if the model always indicates high probabilities for the next
symbol, i.e., if the prediction is reliable [12, 13].

e Referential or reference-based approaches recently emerged as a fourth
type of sequence compression algorithm. Similar to dictionary-based tech-
niques, these algorithms replace long substrings of the to-be-compressed
input with references to another string. However, these references point
to external sequences, which are not part of the to-be-compressed input
data. Furthermore, the reference is usually static, while dictionaries are
being extended during the compression phase.

In order to compare algorithms in the remaining part of our work, we need
to introduce some terminology. Usually, the input of a compression algorithm



Table 1: A comparison of standard compression schemes.

Name Usual compression rate
Naive bit manipulation algorithms 2:1-6:1
Dictionary-based algorithms 4:1 - 6:1
Statistical algorithms 4:1 - 8:1
Referential algorithms 1:1 - 400:1

is a sequence of symbols from a given alphabet. Lossless compression allows
to reconstruct the complete original input from the compressed output, as op-
posed to lossy compression. A compression scheme allows random access, if
arbitrary positions of the input stream can be accessed without decompressing
the whole stream. Random access can for instance be enabled by splitting the
input sequence into blocks.

There exist additional compression techniques, which can be employed in
addition to the aforementioned categories. For instance, in run-length encoding
consecutive occurrences of the same symbol are replaced by a counter. This
technique is especially useful to encode long subsequent occurrences of the same
symbol, e.g., N, in sequences.

In the remaining part of the paper, we only discuss lossless compression algo-
rithms, as in most biomedical applications every single base is important. Lossy
compression is more suitable for other applications, such as image compression
(e.g., the JPEG standard [14]). Further, we do not discuss the compression of
protein sequences which is usually considered to be more complex due to the
larger alphabet size and the fact that repeats are less frequent [15]. For some
work on compressing protein sequences, see [16].

In the following subsections, we will discuss all these base techniques in
detail. This discussion builds the foundation for evaluating recent systems in
Section 3 and Section 4. Table 1 summarizes the compression rates for state of
the art compression schemes.

2.1 Naive Bit Manipulation Algorithms

Using eight bits (or 256 different states) to encode four different bases obviously
constitutes a waste of space. Four bases can easily be encoded with two bits
(or four states). Therefore, a straight-forward compression technique for DNA
sequence data is the encoding of four bases within one byte via bit encoding. One
example for naive bit encoding is shown in Figure 1. Each symbol in the input is
replaced by two bits using the replacement {4 — 00,C' — 01,G — 10,7 — 11}.

Current processor architectures provide highly improved bit operations, ba-
sically allowing an encoding of DNA sequence data with two bits on the fly.
Note that this encoding impacts human readability of data severely, since one
needs a lookup table in order to interpret the compressed data. Since the repre-
sentation of four bases fits exactly into eight bits, byte boundaries or big/little
endian issues are circumvented.

If one wishes to encode additional symbols, such as N for indistinguishable
base, the encoding becomes more complex. One approach to encode the five
symbols A, C, G, T, N is to put three consecutive bases into one byte. Seven bits
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Figure 1: Example for naive bit encoding

can encode 128 states and since 5% < 128, one can put three such symbols into
one byte. The remaining eighth bit is usually left unused or used as an opcode
or flag bit, which could for instance indicate the end of a stream. For reasons
of byte boundary limitations mentioned above, it might not be advantageous to
use the eighth bit for actual symbol encoding. More than five symbols can be
handled in a similar way. However, with increasing alphabet size less symbols
fit into one byte.

The compression rate of naive bit manipulation algorithms is 4:1, if the size
of the input alphabet is four, or less than 4:1 for more than four symbols. The
compression rate can be further improved, if additional compression is applied
on top, e.g., run-length encoding.

2.2 Dictionary-based Algorithms

Dictionary-based encodings are compression schemes which are generally inde-
pendent of the specific characteristics of the input data. The overall approach is
to replace repeated data elements (here: DNA subsequences) of the input with
references to a dictionary. Repetitions are usually detected by bookkeeping
previously occurring sequences. In many realizations the dictionary is recon-
structed at runtime during the decompression process. This means that the
dictionary itself does not have to be stored along with the compressed data.
One example for a dictionary-based algorithm is shown in Figure 2.
Lempel-Ziv-based compression algorithms, such as LZ77 or LZ78, are promi-
nent example of dictionary-based algorithms [17]. In those algorithms, the input
sequence is parsed sequentially and examined for reoccurring substrings. Sub-
strings that have not been encountered before are registered in the dictionary in
the form of a reference to a previously encountered substring plus one new char-
acter. Algorithms following this scheme mainly differ in the concrete method
applied to detect repeated substrings, which is tightly connected to the average
length of encoded repeats. Another differences is the concrete method used to
encode repeated occurrences of substrings with dictionary indices. This touches
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Figure 2: Example for dictionary-based algorithms

the important research question on how to represent integer values in the most
space-efficient way. Usually the range of integers is restricted in a way that
gives raise to an efficient encoding. Two examples of integer encoding schemes
are Golomb codes [18], which encode small numbers more efficiently than large
numbers, and Fibonacci codes [19], which are more tolerant to failures. Us-
ing such codes, current methods for dictionary-compression (see Table 2) reach
compression rates between 4:1 and 6:1 depending on the frequency of repeats in
the genomes being compressed.

2.3 Statistical Algorithms

Statistical algorithms create a statistical model of the input data, which is in
most cases represented as a probabilistic or prefix tree data structure. Subse-
quences with a higher frequency in the genome are then represented with shorter
codes. Accordingly, statistical compression schemes can be considered as a vari-
ant of dictionary-based schemes which solve the problems of repeat detection
and reference encoding in a single algorithm. Compression rates depend on the
quality of the model as well as the existence of detectable patterns in the input.

One of the most commonly used and best understood statistical encodings
is Huffman encoding [20]. It uses a variable-length code table derived from
estimated probabilities for the occurrence of each possible symbol. A binary
tree is created in which leaf nodes correspond to symbols and edges are labeled
with probabilities and the derived codes. The resulting Huffman code table has
to be stored in addition to the compressed stream and thus has to be taken
into account when computing the compression ratio. Sharing the same code
table over many streams can reduce this storage overhead. Huffman encoding
generally benefits from large alphabets with an uneven distribution of used
characters [21]. Tt is therefore considered not to be ideal for efficient compression
of DNA sequences [22]. One example for a statistical algorithm is shown in
Figure 3. In this example, the frequently occurring base A is assigned a short
code (0), while less likely base T is assigned a longer code (111).

While Huffman encoding is based on finding shortest codes for single indi-
vidual symbols, arithmetic encoding [23] encodes longer strings — or even whole
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Figure 3: Example for statistical algorithms

input streams — as a single number between zero and one. This allows for higher
compression rates in applications with small alphabets. Many concrete imple-
mentations make use of range encoding instead of arithmetic encoding, since it
is believed that the former is less encumbered by patents.

[24] proposed a compression technique based on hidden Markov models.
This approach can be applied to DNA sequence compression, assuming that
DNA sequence data can be approximated by a hidden Markov model. One
can distinguish Markov-based approaches by the order of the model. A second
order Markov model, for instance, takes the context of the last two symbols into
account when predicting the probability of the next symbols.

The compression rate of statistical algorithms is usually between 4:1 and 8:1
(see Table 1). The compression rate depends mainly on the distribution of input
symbols and the available memory for construction of frequency distributions.

2.4 Referential Algorithms

While genome research was focusing on sequencing new genomes for a long time,
recent advances in sequencing technology [25] and increasing demands from ar-
eas such as translational medicine [26] have made the resequencing of genomes
— which means sequencing different individuals of the same species — more and
more popular. Large international projects, such as the ICGC [3] already plan to
sequence thousands of human genomes. Since all resequenced genomes are from
the same species, the resulting sequences exhibit extremely high levels of simi-
larity. This fact is exploited by so-called referential compression schemes. The
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Figure 4: Example for referential algorithms

key idea is to encode sequences with respect to a an external (set of) reference
sequence(s). Given that this reference sequence is available to the decompres-
sor, such techniques allow for very high compression rates[27, 28]. Long matches
in the reference are usually found by using index structures, e.g., hash-based
structures or suffix trees. The general algorithm for referential compression in
pseudocode is shown in Algorithm 1. The value of X determines whether short
matches are encoded as a reference or as a raw string. In many implementations,
any match longer than two characters is encoded as a referential match.

Algorithm 1 Sketch of a referential compression algorithm

1: while input contains characters do

2:  find longest matching substring in reference for current input position
3:  if length of match > X then

4 encode match as (matchposition, length)

5.  else

6 encode match with raw symbols

7. end if

8: end while

One example for a referential compression algorithm is shown in Figure 4.
In this example, there are two interval matches. For instance, interval match
(7,4) indicates that the current input matches the reference for four symbols
starting at position seven. In addition, a short sequence is stored as raw bases,
since there exists no good match in the reference sequence for T A.

Rates of compression are the higher, the more similar the to-be-encoded
sequence and the reference are. In highly similar sequences, long stretches of
DNA are identical, interrupted mostly by SNPs and short INDELs. If this
is the case, matched regions can be easily represented by noting the reference
sequence identifier together with an interval describing the match. Referentially
compressed DNA sequences comprise lists of such interval matches and are able
to reach the highest compression rates for in-species compression. However,
compressing, for instance, a human genome against a mouse genome leads to



considerably worse rates, as most matches of human genomes with respect to
a mouse genome are only of length 20-25 (data not shown). The encoding of
these short matches (for instance four bytes for the position of the match and
two bytes for the length) is longer than the naive encoding in two bits (for
instance 22 bytes).

In general, finding a proper reference sequence can be non-trivial. The task
is simple if the species (and chromosome etc.) of a sequence is known, but
much harder in projects from metagenomics, where sequences are sampled at
random from a large set of species [29]. Heuristics for finding a good reference
sequence can be based on k-mer hashing. High similarity of k-mers indicate high
potential for compression with respect to the reference. However, at genome
scale, k should be chosen higher than 15, in order to avoid too many random
matches.

Besides finding identical matches, there are also more sophisticated matching
techniques between an input and a reference sequence, e.g., referential encoding
to a complementary subsequence of the reference. One may also allow additional
kinds of coding blocks in the compressed file, such as short raw snippets of DNA
sequences. The inclusion of these short raw sequences makes perfect sense if no
match in the reference can be found such that encoding the reference is shorter
than storing the raw sequence itself.

The main challenge for reference-based encoding is to find long matches
efficiently. This can be done by indexing sequences either in the form of suffix
trees or by using hash-based approaches. As with dictionary-based compression,
a second challenge is to find a space-efficient encoding of interval matches and
other coding blocks.

A wide range of compression rates has been reported for reference-based
encoding. Given a good matching reference sequence, compression rates of
400:1 and better are possible (see Table 3). However, when comparing different
referential compression schemes, it has to be taken into account, that some
authors include the reference sequence in the compression ratio, while other
authors do not. We think that in the future, compression ratios for referential
compression schemes should be stated in a uniform way, e.g., without including
the reference sequence.

3 Whole Genome Compression

In this section we discuss concrete algorithms for compressing whole genomes.
Compression of reads will be covered in Section 4. Table 2 summarizes compres-
sion rates and other properties of the non-referential compression schemes we
will discuss, while Table 3 contains similar information for referential schemes.

3.1 Naive Bit Manipulation Algorithms

[30] propose 2D, a compression algorithm that can handle input strings of any
format. For the five common DNA symbols (4, C, G, T, as well as N), a
seven bit encoding for three consecutive symbols is used. Each remaining non-
standard symbol is encoded with seven bits per symbol. This way, up to 128
additional symbols can be encoded. The free eighth bit distinguishes whether
the byte encodes three of the five basic symbols or a custom character.



GBC, a Java-based GUI for sequence compression, was presented in [31].
Here, run-length encoding is implemented on top of naive 2-bit compression.

[32] also propose to encode three bases with one byte. However, in their
compression algorithm they incorporated a sophisticated handling of repetitions
of N. The obtained encoding is then compressed using LZ77. The authors
claim to factor in concepts of self-chromosomal similarity, cross-chromosomal
similarities and identifying longest common subsequences.

Another approach in this class of algorithms builds on an Oracle database
[33]. [34] additionally incorporates an algorithm for multi-threaded search in
the compressed data. [35] describes a particular run-length encoding scheme.
Finally, [36] focuses on the analysis of how to store repeats with variable-size
codes.

3.2 Dictionary-based Algorithms

Comrad, proposed in [37], performs multiple passes over the input data. Each
pass discovers longer sequences and incrementally enriches the dictionary. The
algorithm is run until the dictionary does not change any more or a frequency
threshold is reached. The created dictionary is used to encode the DNA se-
quences and partially stored alongside compressed data. Note that this encoding
allows for random access to the compressed DNA sequences.

[38] present a splay tree-based compression algorithm. Splay trees are self-
adjusting binary search trees in which recently accessed elements are quick to
access. This property can improve performance when facing local frequency
variations. Splaying refers to the process of rearranging or rotating the tree
such that a particular element is placed at the root of the tree. Similar to
Huffman trees, symbols close to the root have shorter codes than symbols in
leaf nodes.

In [39], the problem of a non-uniform distribution of DNA over the genome is
addressed by splitting the input into blocks and encoding each block separately.
A hash table-based approach is used to detect repeats.

3.3 Statistical Algorithms

[40] present XM, a compression algorithm using repetition detection and statis-
tics on subsequences. The idea is to have a set of experts predicting the next
symbol in a sequence based on different heuristics. Different experts are run in
competition and the expert with the shortest possible encoding is used to en-
code the next symbol. Based on their previous success in encoding, the experts
obtain weights. The types of experts are:

e Markov expert: A k-order Markov model, which predicts the probabil-
ity of a symbol based on the last k symbols. By default, this approach
employs a second order model for DNA and a first order model for protein
sequences.

e Context Markov expert: A first order Markov model which only uses
the last 512 symbols to compute probability distributions. The rationale
behind this is that different areas in the sequence might serve different
functions and should therefore feature different distributions of symbols.
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e Copy expert: An expert that considers the next symbol to be part of a
repeated region copied from a region with a certain offset.

e Reverse expert: Functions similarly to the copy expert yet for comple-
mentary symbols.

The statistics underlying these experts do not have to be stored for decom-
pression, since they can be reconstructed at runtime. Predictions are combined
via Bayesian hashing. Encoding and decoding times are similar, since both
processes apply the same procedure. [41] propose another approach based on
combining different Markov models. The authors use six different Markov mod-
els of orders 1, 4, 6, 10, 14, and 16.

Gene-Compressor was proposed in [42] as a means to encode non-repetitive
parts of DNA sequences. In an initial run, probabilities of symbols are estimated
and a corresponding Huffman encoding is chosen. Then, the Huffman-encoded
output is split into blocks. Finally, each block is restructured in a way that
allows for an efficient run-length encoding, which is employed in a final step.

In [43], the input sequence is fragmented into non-overlapping blocks. For
each block, a set of experts competes for encoding: a first order Markov model,
the naive two bit representation of bases, and an approximate repetition finder
which identifies repetitions interrupted only by few SNPs. The expert which
emits the shortest code length is selected and compressed output undergoes
further arithmetic compression. Unfortunately, this approach can only handle
four base symbols in input sequences.

[44] propose to encode non-repetitive regions as well as mismatches in repeats
(single SNPs) with an arithmetic coder based on a Markov model. The resulting
bit stream is split into blocks to allow for random access.

3.4 Referential Algorithms

[45] propose to only store the differences between a to-be-compressed input
sequence and a reference sequence. They consider three kinds of single-base
differences: inserts, deletes, and replacements. The main contribution of their
work is an analysis on how to encode integers for absolute and relative refer-
ence positions. In particular, they compare fixed (Golomb, Elias) and variable
(Huffman) entropy coding formats and report that Huffman encoding achieves
slightly better results than Golomb and Elias codes. However, the authors stress
that the choice of the reference sequence has more impact on the compression
ratio than the actual integer coding scheme.

Similarly, [46] present a referential compression algorithm, which only con-
siders SNPs and multi-base INDELs between input and reference sequences.
Each compression entry consists of a positional reference and additional data
like match length or raw base sequence. Variable length integers are used to
encode positions, where the last bit in a byte is used as a stop bit. If the stop bit
is not set, the next seven bits are concatenated to previous bits. An alternative
is discussed by encoding only the deltas between consecutive integers. Huffman
encoding is used to compress common k-mers. The authors do not provide a
comparative evaluation, but show how each of their own optimizations improve
the compression rate. Besides the reference sequence, the algorithm needs a
reference SNP map of a size of roughly 1 GB.
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GRS [47] is a referential compression tool based on the Unix program diff,
which attempts to find longest common subsequences in two input strings. In
GRS, diff is used to compute a similarity measure between an input chromosome
and a reference chromosome. If the similarity exceeds a given threshold, the
difference between input and reference sequences is compressed using Huffman
encoding. Otherwise, the input and reference chromosomes are split into smaller
blocks and the computation is restarted on each pair of blocks. Note that the
user is required to pick an appropriate reference, which can be a difficult task
(see above).

In [48], RLZ, an approach based on self-indexing is described. It works as
follows: the algorithm compresses input sequences with LZ77 encoding relative
to the suffix array of a reference sequence. Raw sequences are never stored;
even very short matches to the reference are encoded. The authors state that
careful consideration of the reference sequence is vital, since initial results with
cross-species compression are discouraging. In [49], RLZopt is presented as an
extension of RLZ. The key aspect is longest increasing subsequence computa-
tion, which allows to efficiently encode positions. It incorporates several im-
provements, including local look-ahead optimization. RLZopt supports random
access queries.

An LZ77-style compression scheme based on RLZopt was recently proposed
in [50]. The main difference is that more than one reference sequence is taken
into account and a way for encoding approximate matches in introduced. Also,
the Lempel-Ziv parsing scheme originally based on hashing is slightly altered
in that the algorithm considers trade-offs between the length of matches and
distance between matches. Compression is performed on input blocks with
shared Huffman codes, enabling random access. The reference sequence for
[49, 50] is taken from the set of input sequences.

GReEn, an expert-based reference compression scheme was recently pre-
sented in [51]. Inspired by the non-referential compression scheme XM, GReEn
features a copy expert, which tries to find matching k-mers between input and
reference sequences. Raw characters in the form of arbitrary ASCII characters
are encoded with arithmetic encoding. The authors distinguish a special case,
where input and reference sequences have equal length. In this case, GReEn
assumes that sequences are already aligned and merely encodes SNPs.

Further referential compression approaches include: a web-based system [52],
another LZ77-style compression scheme with random access [53], and approaches
based on permanent index structures [54, 55]. The important question of choos-
ing a good reference sequence is discussed in [56] and [57]. The authors im-
plemented a sequence alignment tool in MATLAB, which can be utilized to
compute a variant of edit distance between pairs of sequences. The sequence
exhibiting minimum entropy within the list of edits is chosen as a reference.
The time complexity was reported to be quadratic.

[68] investigated the problem of constructing custom reference sequences.
The main idea is to identify large repeat regions from different sequences, based
on dictionaries for these sequences. Then a reference sequence is constructed
from detected repeats. This technique might have the potential to overcome
problems with inter-species compression of genome data.

12



Example.fastq

@B1:070228_SL-XAB_ 0034 FC3236:4:23:312:527
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Figure 5: Example for two reads in FASTQ

4 Read compression

Compression of entire genomes, as discussed in the previous section, is mostly
applied in projects where genomes are first assembled and then stored in as-
sembled form. However, in re-sequencing projects the step of assembly is often
omitted, also due to the rather short reads in current next generation sequencing
devices. Instead, reads are aligned directly to the reference, and this alignment
(which usually covers each position of a genome multiple times) is used for fur-
ther processing such as SNP detection [59]. However, the original reads are
usually kept, for instance to allow re-alignment when new and more accurate
references become available. For this reason, compressing read sets is an equally
important topic.

Besides the fact that reads are typically short, may map anywhere on a
genome, and are associated to an ID, the main difference between genome com-
pression and read compression are quality scores. Since DNA sequencing is
prone to errors, produced reads have a quality score associated with each se-
quenced base. This score denotes the probability of the base actually being at
this position and is therefore an indicator for the likelihood of an error at this
position. Quality scores are important for methods like SNP detection, since
they influence an algorithm’s decision whether a given mismatch in a read to
the reference is a sequencing error or a true SNP.

Most devices produce Phred-like scores, in which scores can have 94 different
values. An exemplary set of reads in the form of a FASTQ file is given in Figure
5. Each entry in the FASTQ file consists of four lines: a sequence identifier, the
raw sequence of bases, a possible repetition of the first line, and a quality score
for each base of the raw sequence.

Clearly, the entropy of a quality score is much higher than that of the actual
base, making the achievement of high compression rates much more challenging
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than in genome compression. Presumably, this is the reason that we are not
aware of any compression algorithms based exclusively on naive bit manipula-
tion. On the other hand, downstream algorithms do not necessarily need the
full quality information, which makes lossy compression more attractive. Table
4 gives an overview of compression rates for recent algorithms in non-referential
sequence read compression, while Table 5 compares compression rates for refer-
ential compression schemes.

4.1 Dictionary-based Algorithms

A dictionary-based approach based on metasymbols was proposed in [60]. Meta-
symbols are subsequences consisting of regular alphabet symbols and a gap
symbol that matches any alphabet symbol. The authors present an algorithm
which identifies a set of metasymbols frequently appearing in multiple sequence
reads. This dictionary of metasymbols is called a metadictionary and is iter-
atively refined using a genetic approach, which results in consecutively higher
compression rates.

[61] developed CASToRe, a modification of Lempel-Ziv compression [17].
CASToRe compares sequences against the dictionary, registering new dictio-
nary entries as concatenations of two previously parsed subsequences in the
dictionary. This is different to standard Lempel-Ziv compression, in which new
dictionary entries are composed of an existing dictionary entry and a single
mismatching symbol. One major insight of the paper is that one can categorize
genomes by compression statistics.

[62] proposed POMA, a particle swarm optimization-based algorithm for
sequence read compression. They differentiate between four distinct kinds of
repeat patterns: direct, mirror, pairing, and inverted repeats. Most commonly
repeated fragments are identified and added to a dictionary. This procedure is
observed and influenced by a learning particle swarm optimizer as well as an
adaptive and intelligent single particle optimizer.

4.2 Statistical Algorithms

[63] developed a non-referential lossless compression scheme for sequence reads
in FASTQ format. The main idea is to split the FASTQ file into four streams and
compress each stream separately, using different experts. The four streams cor-
respond to the four components of a sequence read in FASTQ, namely sequence
identifier, raw sequence, description, and quality scores. For all four streams,
symbol distribution statistics are gathered and an appropriate encoding is cho-
sen for each sequence. Sequence identifiers and descriptions are investigated
for redundant information. Raw DNA sequences are compressed using repeat
detection and a Markov expert. Assembled dictionaries can be reconstructed at
runtime during decompression. Quality scores are compressed with one out of
six different delta or run-length encodings.

The major limiting factor when compressing FASTQ files is the quality in-
formation. Therefore, [64] focus solely on lossy and lossless compression of
quality scores in FASTQ data sets. Phred quality scores are normalized and
the frequency distribution is determined. Later, a variety of different encoding
techniques for the quality values is compared. The authors show that lossy
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transformation of quality scores can greatly reduce storage cost, while losing
only little information.

The importance of quality information was also addressed in [65] in the
compression scheme G-SQZ. The core idea is that bases and quality values are
assumed to correlate and can therefore be put together into one byte. An initial
scan generates a Huffman code for each (base, quality) pair. In a second scan
the Huffman codes are written to a binary file.

[28] describes DSRC, a block-based compression scheme which enables ran-
dom access for sequence reads. The FASTQ file is split into three streams for
separate compression, one each for sequence identifiers, raw bases, and quality
scores, respectively. DSRC encodes additional symbols with unassigned qual-
ity values in the quality score compression stream. DNA sequence reads are
encoded with a LZ77-style compression scheme, in which hashes for reads of
length 36 are generated for fast lookup. The authors noticed two patterns com-
monly appearing in quality score streams, each of which is encoded using a
different heuristic: Quasi-random quality score sequences are compressed using
different variations of Huffman coding. Repetitive quality streams on the other
hand are compressed via run-length encoding.

In [66], Fibonacci codes are used to encode length information (authors claim
that Huffman would be too slow for their use case) and 2-bit encoding is used
for describing mismatch nucleotides. The main feature of this work is that it
presents a complete sequence compression system (and not just an algorithm),
including a data management component and a graphical user interface.

4.3 Referential Algorithms

Since aligning reads to a reference genome constitutes the first step in most
analysis pipelines, usage of referential compression schemes is a straight-forward
approach towards read compression. However, mapping a read against a genome
for referential compression is very different from mapping it for further analysis:
First, algorithms for the former are free to choose any mapping (and require
only one), while methods for the latter are bound to find the best matches
(and all of them). Second, the former must take quality scores into account to
achieve high compression rates, while the latter may ignore these scores during
the alignment.

[67] presented GenCompress. Sequence reads are aligned to a reference se-
quence with reference entries being composed of a starting position, the match
length, and an optional difference list describing mismatches. Since the ends of
reads are more prone to sequencing errors, base mismatches are indexed from
the end of reads, resulting in smaller integers on average. The focus of the
article is on entropy encoding of integers via fixed or variable schemes, such as
Golomb, Elias, or Huffman. The authors performed their evaluation on a sin-
gle chromosome and extrapolated results for the whole genome. GenCompress
only supports compression of the four bases and is not able to handle additional
symbols, quality scores or unaligned reads.

Following a similar approach, [68] propose SLIMGENE, a lossless or lossy
reference-based compression scheme focusing on how to find encodings of in-
tegers in order to minimize storage. In their work, they employ Huffman and
arithmetic encoding.
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[69] presented a compression scheme inspired by image compression tech-
niques based on controlled loss of precision. The positions of matching bases
are stored in the form of Huffman-encoded integers. Reads are ordered based on
the position in the reference and these positions are delta-encoded using Golomb
encoding. The paper also proposes compression of quality scores in the form of
quality budgets. A quality budget denotes a trade-off between storage cost and
accuracy of quality scores.

5 Discussion and Conclusions

In this paper, we reviewed recent progress concerning DNA compression. We
identified four different classes of compression schemes and described a mul-
titude of different algorithms within each class. Furthermore, we highlighted
the important differences between genome compression and read compression
and separately discussed respective approaches. We found that often novel ap-
proaches are only slight variations of each other, which further helps to structure
the at first sight highly heterogeneous landscape of different approaches.

The comparisons presented in this paper are based on the original papers.
Clearly, tools should ideally be compared based on their performance as mea-
sured on the same hardware using the same data set. Such comparisons are
sometimes contained in the original papers, but are often rather inconclusive,
as they only compare against very few other approaches and only use a particular
data set with its intrinsic properties like frequency and length of repeats, size,
length of sequences etc. Also, sometimes inappropriate competitors are cho-
sen, like Winzip, or algorithms are compared to others of a different kind, e.g.,
comparing a statistical with a referential algorithm. We think that these com-
parisons are inappropriate since window sizes of these implementations (chosen
many years ago) do not allow to find repeats in (sets of) longer sequences. At
the same time, third parties are not able to perform a comprehensive compar-
ison of different tools since most algorithms are not publicly available (see our
comparison tables). We therefore see an urgent need for a community effort to
define a proper benchmark for DNA compression. Test sequences should come
from different species and cover different sizes, from few KB to several hundred
GB. The benchmark should also clearly define the metrics to be reported. We
think that the following list could be used as a starting point: 1) compression
rate, 2) (de)compression time, and 3) maximum main memory usage during
(de)compression.

As the flood of sequence data is growing faster than ever, we expect that
research into novel compression algorithms will continue to flourish. However,
we also believe that not only higher compression rates or faster (de)compression
should be addressed, but also other properties of compressed sequences. One
particular interesting question is how compressed sequences can be used di-
rectly for further analysis. For instance, a referentially compressed read set is
very close to an alignment of the read set against the reference; thus, if prop-
erly compressed, the actual alignment phase might become superfluous. Also
searching in compressed sequence archives is important. Imagine the problem
of finding best local alignments of a given sequence in a set of compressed
genomes. If these genomes first have to be decompressed for every such search,
the space gain of compression is essentially lost. First steps into this direction
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are reported in [70]. Another interesting — yet to our knowledge completely
unexplored — research question is the integration of sequence compression in
scientific workflows, which we consider as a pre-requisite to fully leverage the
advanced computing power of cloud infrastructures.
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