

ODEMx Documentation

Version 1.0 Humboldt-Universität Berlin
16. January 2004

Author: Ralf Gerstenberger

 2

Table of Contents

Table of Contents 2

Introduction 3

Copyright and License 3

Installation 3

First Steps 3

Contributions 3

ODEMx - Overview 4

The Structure 4

Base 4

Utilities 5

Random 5

Synchronisation 5

Statistics 6

Coroutine 6

From ODEM to ODEMx 7

Overview 7

New features 9

Lost features 10

Changes 10

Examples 13

Base1.cpp 13

continuousExample.cpp 14

 3

Introduction
Welcome to ODEMx. ODEMx is a library for process simulation in C++. ODEMx is a C++ library for process
simulation. Process simulation is a branch of computer simulation. As such, it uses processes to model real world
or fictional systems. A process in this context is a continuous or discrete sequence of actions, which are
somehow closely related to each other, for instance they are all 'done' by one agent. The sequence can be divided
into branches, and broken off by idle periods or synchronisation.

Copyright and License
ODEMx is protected by the GNU LESSER GENERAL PUBLIC LICENSE as described in
the file Copying.txt, which has to be present in the ODEMx package; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA.

Installation
There is no installation procedure for ODEMx, at least in this version. To use ODEMx in your projects choose
the respective folder that fits your needs best (Gcc on Unix systems, Msvc or Msvc7.1 on windows), build the
library and finally set-up your project to use the library.

Note:
• If you are using GCC we recommend to use a version higher than 3.x.x . ODEMx has been successfully

build with GCC version 2.95.2 and tested on Sun Sparc architecture. However, ODEMx has a problem with
GCC prior to GCC version 3 on Linux (SuSE, Debian).

• Always take care to activate RTTI in your projects, because ODEMx depends on this feature. (MSVC and
MSCVC7.1 disable RTTI by default)

First Steps
At first you will have to build ODEMx - see Installation for details. Afterwards try the examples included. That
should give you a good start. Apart from that you can use them to check whether ODEMx is working properly
on your computer.
ODEMx includes an online documentation as well. You will need Doxygen (http://www.doxygen.org) to
generate the documentation from the source files. To do so, change to odemx/Doxygen directory and run
doxygen.

Contributions
ODEMx is based on ODEM (http://odem.sf.net). That's why all contributors of ODEM could be listed here, too.
Instead, only those who put their hands on this code directly will be mentioned. Anyway, we encourage you to
look at ODEM and its contributors list as well.

Ralf Gerstenberger (gerstenb@users.sourceforge.net)

 4

ODEMx - Overview
In this chapter, we will give an overview of ODEMx.

The Structure
ODEMx is divided into the six modules Base, Utilities, Random, Synchronisation, Statistic and Coroutine. All
modules depend on Utilities. The Base module additionally depends on Coroutine and Random, while the
Synchronisation module depends on Base. Utilities contains utility classes and interfaces of ODEMx. Coroutine
provides a coroutine implementation. Base contains basic modelling concepts. The Random module is a
collection of random number generators. Synchronisation and Statistic provide classes for synchronisation and
statistical analysis.

Base
Base contains classes for the basic modelling concepts of process simulation and three important output classes.
Not all classes in this module are for public use. Those of immediate relevance to a user of ODEMx are:
Simulation, Process, Continuous, HtmlTrace, HtmlReport and ContuTrace which are declared and
implemented in the files Simulation.h, Simulation.cpp, Process.h, Process.cpp, Continuous.h,
Continuous.cpp, HtmlTrace.h, HtmlTrace.cpp, and finally HtmlReport.h along with HtmlReport.cpp.

Simulation
For every simulation with ODEMx, a class derived form the abstract base class Simulation is necessary. The
Simulation class provides a context for all the other model components like processes, synchronisation classes
and random number generators. In the user defined classes the initSimulation() method has to be
implemented to create and initialise model components.
For convenience, ODEMx also provides the class DefaultSimulation with an empty implementation of
initSimulation(). If the user does not want to define a specific simulation class, this default implementation
can be used. A pointer to an object of this class is returned by the function getDefaultSimulation(). This
function creates the object if required. ODEMx provides at most one object of DefaultSimulation in a
program.
If a user defines their own simulation classes, several simulations in one program are possible. This includes
simulations inside simulations and parallel simulations.

Documentation:
odemx::Simulation
odemx::DefaultSimulation
odemx::getDefaultSimulation

Process
Process is the base class for all user-defined classes of discrete processes. For every process in a simulation, the
user has to specify a process class. This class has to provide the behaviour (the sequence of actions,
synchronisation and idle periods) of its objects as an implementation of the function main(). While a process
class is not necessarily associated to a simulation class, every process is linked to one simulation. (The
constructor of the base class Process requires a pointer to a simulation.)

Documentation:
odemx::Process
odemx::Process::main

Continuous
As Process is the base class for discrete processes, Continuous is the base class for continuous processes. The
class Continuous is derived from Process. It provides additional functions for the definition of time
continuous behaviour. Time continuous behaviour can only be approximated by ODEMx. This is done through a
step by step computation of state changes, which of course introduces an inherent error. ODEMx is observing
this error to keep it in defined boundaries.

 5

A user defined class of continuous processes has to provide an implementation of the function derivatives()
in addition to its implementation of main(). In this function, the continuous state changes are coded by setting
the change rates for each state variable. A continuous phase is than started in main() by a call of integrate().

Documentation:
odemx::Continuous
odemx::Continuous::integrate
odemx::Continuous::derivatives

HtmlTrace
During development, it is often required to look at what actually happened during a simulation. HtmlTrace logs
simulation events for this and other reasons. The backbone of HtmlTrace actually is a sophisticated trace system
that supports multiple trace clients (like HtmlTrace) with different outputs (for example Xml instead of Html) fed
by arbitrary trace producers. A user can define its own trace producers and add its specific events to the trace.
The amount of events during a simulation is usually enormous. To reduce the number of logged events
HtmlTrace provides a simple filter.

Documentation:
odemx::HtmlTrace
odemx::HtmlTrace::setFilter
odemx::Trace

HtmlReport
Like HtmlTrace, HtmlReport is used to gather information about a simulation. Instead of logging all simulation
events, HtmlReport is used to report summaries of a simulation. Such summaries are often statistical analysis of
samples from model components. A summary could for instance include the number of uses of a random number
generator, the maximum time of processes spent in a queue or the average number of free token in a resource.
ODEMx also supports multiple reports about different sets of model components.

Documentation:
odemx::HtmlReport
odemx::Report

ContuTrace
ContuTrace finally is a class for observing Continuous objects. It logs the state changes of continuous
processes. The output is written in a text file. An object of the type ContuTrace is always linked to exactly one
object of the type Continuous.

Documentation:
odemx::ContuTrace

Utilities
This module contains utility classes and interfaces for concepts of ODEMx. The Trace system as well as the base
classes for HtmlReport can be found in this module. However, many classes in Utilities are not used directly. A
user might be interested in the functions in ErrorHandling.h and in odemx::Version. For background
information, it will be necessary to take a look at this module as well.

Random
Random provides a set of random number generators (RNG). There are RNG of different distributions for
discrete and for continuous random numbers. This module is further divided into a module for Integer
distributions and a module for continuous distributions. The usage of the RNG from these modules is quite
similar. All provide a function sample() which returns the next random number. The parameters for the
generators are set in the constructors.

Synchronisation
An important part of process simulation is to synchronise different processes with certain situations during a
simulation. Synchronisation is a collection of classes, which provide model components for synchronisation

 6

tasks. There are two resource-type synchronisation classes: Bin and Res, two queue-like synchronisation
components Waitq and Condq and finally one synchronisation-point-type class Wait.

Bin and Res
Bin and Res are both used to model resource-like synchronisation. A process is blocked if the resource is
exhausted otherwise it continuous its actions. Bin and Res use tokens to simulate real resources. A process takes
and gives, or acquires and returns tokens.

Documentation:
odemx::Bin
odemx::Res

Waitq
Waitq provides a master-slave-synchronisation (MSS). A MSS is a synchronisation between two processes. One
of them (the master) takes control after a successful synchronisation. The other (the slave) is delivered to the
master.

Documentation:
odemx::Waitq

Condq
Condq is used to wait for an arbitrary condition. A process provides a function, which implements the condition
check. The condition is checked every time a process signals a Condq object. The user is responsible to signal a
Condq when the situation has changed.

Documentation:
odemx::Condq

Wait
The class Wait synchronises a process with a set of partner processes. The process that creates the Wait class is
blocked until one or all of its partner processes are terminated.

Documentation:
odemx::Wait

Statistics
An important part of every simulation is to analyse the results. ODEMx supports this with six classes in the
module Statistic: Count, Sum, Tally, Accum, Histo and finally Regress. These classes are used to collect and
analyse samples. All of them have a usage counter and allow resetting their statistics.

Coroutine
Unlike the other modules, this module is not meant to be used by the user directly. It contains an implementation
of coroutines, which fits the needs of ODEMx. The implementation is independent of Base and the other
modules with the exception of some classes in Utilities.

 7

From ODEM to ODEMx
In this chapter, we describe differences between ODEMx and its predecessor ODEM and features they have in
common.

Overview
The following table lists all classes from ODEM and ODEMx and their status in ODEMx. This Table is not
supposed to be documentation for ODEMx.

Class Status Description Comment
Accum Changed Statistics Statistics
Bin Changed Resource like synchronisation Synchronisation
BinObserver new Observer Observation
Buff_head lost Buffered communication not transferred to ODEMx
Buff_tab lost Buffered communication not transferred to ODEMx
Buff_tail lost Buffered communication not transferred to ODEMx
Condq Changed Condition queue Synchronisation
CondqObserver new Observer Observation
Continuous Changed Time-continuous process Continuous
ContinuousObserver new Observer Observation
ContuTrace new Trace for Continuous Continuous
Coroutine new Portable coroutine implementation Coroutine
CoroutineContext new Portable coroutine implementation Coroutine
CoroutineContextObserver new Observer Observation
CoroutineObserver new Observer Observation
Count changed Statistic Statistics
DebugTrace lost Text-log Replaced by HtmlTrace
DefaultContext new Portable coroutine implementation Coroutine
DefaultOrder new Process sorting scheme Process queue

DefaultSimulation new Default implementation of
Simulation Encapsulation

DefaultTimeIO lost Time to string to time not transferred
DefLabeledObject new Object labels Object labels
Discrete lost Time-discrete process Replaced by Process
Dist changed Random number generator Random
DistContext new Random number generator Random
Draw changed Random number generator Random
DynTableDefinition new Report Report
Elem lost ODEM-internal not transferred
Empirical lost Random number generator not transferred
Entity lost ODEM-internal not transferred
Entry lost ODEM-internal not transferred
Erlang changed Random number generator Random
Event lost ODEM-internal not transferred
ExecutionList new Process scheduling Process
ExecutionListObserver new Observer Observation
File_list lost ODEM-internal not transferred
FormatedTimeInput lost String to time not transferred
FormatedTimeOutput lost Time to string not transferred
Graph lost ODEM trace for Continuous not transferred
Head lost ODEM-internal not transferred
Histo changed Statistic Statistics
HtmlReport new Report Report
HtmlTrace new Trace Trace
Iconst changed Random number generator Random
Idist changed Random number generator Random

 8

LabeledObject new Object labels Object labels
LabelScope new Unique object labels Object labels
Link lost ODEM-internal not transferred
MarkType new Trace Trace
Memo lost ODEM object linking Replaced by Observation
Msg lost Buffered communication not transferred
Negexp changed Random number generator Random
Normal changed Random number generator Random
NoQueue lost ODEM-internal not transferred
NoTally lost ODEM-internal not transferred
Observable new Observation of individual objects Observation
Object_names lost Object labels Replaced by LabeledObject
Odem lost ODEM-internal not transferred
Poisson changed Random number generator Random
Port lost Port synchronisation not transferred
Port_head lost Port synchronisation not transferred
Port_tail lost Port synchronisation not transferred
PriorityOrder new Process sorting scheme Process queue
Process changed Process Process
Process_clock lost Time event not transferred
ProcessObserver new Observer Observation
ProcessOrder new Process sorting scheme Process queue
ProcessQueue new Process list Process queue
Queue changed Process synchronisation queue Synchronisation
Randint changed Random number generator Random
Rconst changed Random number generator Random
Rdist changed Random number generator Random
Regress changed Statistics Statistics
Report new Report Report
ReportProducer new Report Report
Reportq changed Report Replaced by Report
Res changed Resource-like synchronisation Synchronisation
ResObserver new Observer Observation
Resource lost Resource-like synchronisation not transferred
Sched lost Scheduling replaced by ExecutionList
ShortGermanTF1 lost Time to string not transferred
Simulation new Simulation Encapsulation
SimulationObserver new Observer Observation
Stackdir lost ODEM-internal not transferred
Starter lost ODEM-internal not transferred
StatisticManager new Statistic Statistics
StatisticObject new Statistic Statistics
Sum changed Statistic Statistics
Tab changed Statistic Statistics
Table new Report data table Report
TableDefinition new Report table structure Report
Tag new Trace Trace
Tally changed Statistic Statistics
Timer lost Time events not transferred
Trace changed Trace Trace
TraceClient lost Trace replaced by TraceConsumer
TraceConsumer new Trace Trace
TraceFilter new Trace Trace
TraceProducer new Trace Trace
TraceServer lost Trace replaced by Trace

TypedObject new C++ RTTI Interface to standard C++
RTTI

 9

Unifrom changed Random number generator Random
utTableDef new Report Report
Version new ODEMx version information no comment

Wait new Synchronisation with child-
processes Synchronisation

Waitq changed Master-Slave synchronisation Synchronisation
WaitqObserver new Observer Observation
Class Status Description Comment

New features

Observation
ODEMx introduces a system for observing individual objects. Observable objects provide an interface with call-
back-functions for the events of that object. Observers implement this interface to handle selected events. An
observable object inherits an observer management from the template class Observable. Observable objects also
have an optional constructor parameter, which allows registering an initial observer.

Documentation:
odemx::Observable
odemx::ProcessObserver

Encapsulation
In contrast to ODEM, ODEMx does encapsulate simulations. While in ODEM the main program is always made
a part of the simulation, ODEMx separates the simulation from its environment. Simulation specific data and
services are put into the class Simulation instead of being placed in the global scope. For many objects of
ODEMx, this requires a link to the Simulation class, which is in general handed over during construction.
The separation is often realised by the introduction of context-objects. Simulation for instance is the context-
object for processes. Due to multiple inheritance Simulation also serves as a context-object for other types of
objects, like random number generators, labelled objects and trace producers.
The advantage of the encapsulation is that a simulation can be programmed as an independent component
without side effects on its environment. It is for instance possible to run a simulation in a simulation.

Documentation:
odemx::Simulation
odemx::Process

Coroutines
ODEMx separates the implementation of coroutines from the implementation of processes for process-
simulation. ODEM on the other hand implements the coroutine functionality inside its process implementation.
The coroutine implementation of ODEMx is apart from a few concepts in the Utilities module independent from
the rest of ODEMx. It is designed to be portable and already ported to Windows higher than Windows 95 (x86
architecture) as well as Unix and Linux (Sparc, and x86 architecture) though in some compiler-os-platform
configurations there could be problems.
The techniques used to realise coroutines are based on ODEM, which in turn has used previous works from
HANSEN and others. ODEMx however introduces the encapsulation of coroutines in separate contexts.

Process queue
While in ODEM processes are designed to be part of a linked list, ODEMx uses STL containers to manage
object collections. ProcessQueue is introduced in ODEMx to manage such collections. ProcessQueue allows
different sorting schemes like considering the priority or the execution time of a process. Derived from
ProcessQueue is the class Queue, which is used by synchronisation objects like Res, Bin, and Waitq.

 10

Lost features

Memo
In ODEM, many classes include the functionality to be part of a linked list. The Memo concept of ODEM uses
this property to provide a synchronisation technique. A Process object can wait in a Memo object until, the Memo
object is 'available'. From Memo derived classes can override a function to redefine the 'available' condition.
Process from ODEM for instance is also a Memo object, which redefines 'available'. A Process in ODEM is
'available' if it is terminated.
ODEMx does not include the Memo feature. It is however possible to realise Memo-like synchronisation with the
Observation feature. The ODEMx class Wait in the module Synchronisation is an example for this.

Port
In the HU-Release of ODEMx, there is no concept for a buffered process-communication. A user will have to
develop its own class for this purpose. ODEM had such a concept in its Port mechanism.

Time translation
In the later versions of ODEM, a time to string to time translation was introduced to allow human readable time
strings other than simple floating point numbers. This feature was introduced for a special application of ODEM.
ODEMx has not yet such a feature, but is likely to get a similar one in a future release.

OpenGL visualisation
ODEM had an experimental 3D visualisation of simulation events. Experiences from this 3D-project had lead to
changes in the trace-mechanism, which finally concluded the current Trace concept of ODEMx. A visualisation
might be available in ODEMx in a future version. Nevertheless, the old 3D-Trace of ODEM is not transferable
without a redesign.

Continuous Graph
ODEM provides the class Graph which logs the state changes of a Continuous object in a text format used by
external visualisation tools. A similar tool is already present in ODEMx (odemx::ContuTrace). The current
version however does no generate output in the exact text-format like Graph.

Buffer
Like the missing Port the simplified Buffer system is not transferred to ODEMx.

Empirical
Empirical from ODEM is not available in ODEMx.

Changes

Synchronisation
ODEMx provides the following synchronisation components: odemx::Res, odemx::Bin, odemx::Waitq,
odemx::Condq and odemx::Wait. The first four components are transferred from ODEM but are changed. Res
and Bin for instance are not derived from a common base class Resource. The constructors of both classes have
additional parameters compared to Res and Bin from ODEM, which reflect the Encapsulation and the
Observation feature. Both classes have more get* methods to receive information about their statistic. Both
classes have a report function according to the Report changes. The basic synchronisation functions however
have not changed.
Similar things can be said about Waitq and Condq. The general meaning has not changed while the classes have
been adjusted to reflect the ODEMx features. In Waitq and Condq however, small changes have been applied to
the classic synchronisation functions as well.

Documentation:
odemx::Res
odemx::Bin
odemx::Waitq

 11

odemx::Condq

Statistics
Many of the statistic components from ODEM have been transferred to ODEMx. The components in ODEMx
share the update() function with their predecessors as well as the used algorithms. They were also changed to
match the Encapsulation and the Report feature. Furthermore, several get* methods for the statistical data were
added.

Documentation:
odemx::Accum
odemx::Count
odemx::Histo
odemx::Regress
odemx::Sum
odemx::Tally

Random
The random number generators (RNG) in ODEMx were taken from ODEM and changed to match the features of
ODEMx. They have additional get* methods for statistical information, and require a pointer to a DistContext
object during construction. They also provide a report function for the Report feature of ODEMx.
The DistContext class was introduced to support the Encapsulation feature. All random number generators
linked to one DistContext are independent from each other, while the RNG in different DistContext produce
the same sequence of numbers (unless the seed was changed manually).

Documentation:
odemx::Draw
odemx::Erlang
odemx::Iconst
odemx::Negexp
odemx::Normal
odemx::Poisson
odemx::Randint
odemx::Rconst
odemx::Uniform

Process
The Process class of ODEMx replaces the Process class and the Discrete class of ODEM. Its interface is
more like the interface of Discrete than of Process. The following table matches the different scheduling
functions of Discrete to the functions of ODEMx Process:

Discrete odemx::Process
start(NOW) hold()
start(AT, t) holdUntil(t)
start(AT, t, PRIOR) activateAt(t)
start(DELAY, t) holdFor(t)
start(DELAY, t, PRIOR) activateIn(t)
activate(NOW) hold() or activate() (FIFO or LIFO)
activate(AT, t) holdUntil(t)
activate(AT, t, PRIOR) activateAt(t)
activate(DELAY, t) holdFor(t)
activate(DELAY, t, PRIOR) activateIn(t)
activate(BEFORE, q) activateBefore(q)
activate(AFTER, q) activateAfter(q)
hold(t) holdFor(t)
passivate() sleep()
e_interrupt() interrupt() (!see documentation!)
cancel() cancel()

 12

ODEMx Process has only one priority attribute, which is used in scheduling as well as in synchronisation
queues. The interrupt function in ODEMx has a different effect than the e_interrupt of Discrete. In ODEMx
an interrupt causes an immediate activation (activate()). The interrupted process is responsible to handle the
interrupt.

Documentation:
odemx::Process

Continuous
The Continuous class of ODEMx is derived from Process. The algorithm used to compute the state changes is
taken from ODEM. Some of the Continuous functions in ODEM are also transferred to ODEMx. Other than the
ODEM version of Continuous, the ODEMx version does not log the state changes on its own. If a user wants this
service, he/she has to use the ODEMx class ContuTrace.

Documentation:
odemx::Continuous
odemx::ContuTrace

Object labels
The support of object labels has changed in ODEMx. It is now provided by the classes LabeledObject,
LabelScope and DefLabeledObject. In contrast to ODEM labels are no longer unique to the program but to a
certain LabelScope. Each simulation has of course its own scope.

Documentation:
odemx::LabeledObject
odemx::LabelScope
odemx::DefLabeledObject

Trace
ODEMx introduces the class HtmlTrace. Objects of this class generate Html output from simulation events.
HtmlTrace also provides a simple filter for events to reduce the generated output. The trace control is
implemented in the ODEMx Trace class, which is a base class of Simulation.

Documentation:
odemx::HtmlTrace

Report
ODEMx supports several reports in one simulation. A report is generated by an object of the HtmlReport class.
Other than with ODEM, a user has to register model components to a report. The final report-generation is
triggered manually by the function call generateReport().

Documentation:
odemx::HtmlReport

 13

Examples

Base1.cpp
Basic simulation techniques of ODEMx are introduced in this example.

A process simulation contains a number of processes that describe the active elements in a model. A process
contains a sequence of actions. These actions are timeless. Time consumption is triggered with special time-
operations. In this example, several time-operations are presented together with an example process.

The first Process is a simple timer. It does write a ‘.’ every full (1.0) tic in time. We label all instances of this
class ‘TimerA’. ODEMx changes the label on its own to prevent confusion. It will add a number to the label if
more than one Timer is created in the simulation. This procedure guarantees that every label is unique in a
simulation. When we create a Timer object we will have to provide a pointer to the Simulation we want it to
participate.

#include <odemx/base/Process.h>
#include <iostream>
using namespace std;
using namespace odemx;

class TimerA : public Process {
public:

TimerA(Simulation* sim) : Process(sim, "TimerA") {}

The behaviour of a user process is defined by the implementation of the pure virtual function int main(). The
return value of this function is stored and can be accessed with getReturnValue(). As long as main() hasn't
finished, the return value is not valid. You can use hasReturned() to check this condition.
We use holdFor() to let the time pass. holdFor() requires a period. We could also use activateIn(). The
difference between these two is seen if more than one process is scheduled at the same time. holdFor would
than schedule the current process as the last while activateIn would schedule the current process as the first
one.

virtual int main()
{

while (true)
{

holdFor(1.0);
 cout << '.';

}
 return 0;
}

}; // End of class TimerA

For this example, we can use DefaultSimulation.. In applications that are more complex, it is recommended to
provide a custom-made simulation class.

int main(int argc, char* argv[])
{
TimerA* myTimer=new TimerA(getDefaultSimulation());

The new process is just created by now. It won't be executed because it is not activated. A process can be
activated by any of these methods: hold(), holdFor(), holdUntil(), activate(), activateIn(),

 14

acitvateAt(). hold() and activate() are equal to holdFor(0.0) and activateIn(0.0). holdUntil(t) and
activateAt(t) are equal to holdFor(t-now) and activateIn(t-now).

myTimer->activate();

There are three ways to compute a simulation. Firstly, you can run() the simulation until it is finished. A
simulation is finished if there is no active process left or it is stopped with exitSimulation(). Secondly, you
can compute a simulation step() by step. Thirdly, you can run a simulation until a given time is reached or
passed with runUntil(). Because the process TimerA is running forever, we shouldn't use run(). Instead we try
both step() and runUntil().

cout << "Basic Simulation Example" << endl;
cout << "========================" << endl;
for (int i=1; i<5; ++i)
{

getDefaultSimulation()->step();
cout << endl << i << ". step time=";
cout << getDefaultSimulation()->getTime() << endl;

}

cout << endl;
cout << "continue until SimTime 13.0 is reached or passed:";
getDefaultSimulation()->runUntil(13.0);
cout << endl << "time=" << getDefaultSimulation()->getTime() << endl;
cout << "========================" << endl;
return 0;

} // End of main

After compilation, this example produces the following output:

Basic Simulation Example
========================

1. step time=0
.
2. step time=1
.
3. step time=2
.
4. step time=3

continue until SimTime 13.0 is reached or passed:..........
time=13
========================
Press any key to continue

continuousExample.cpp
The basic continuous simulation techniques of ODEMx are introduced in this example.

Apart from discrete processes, a simulation can also contain so called continuous processes. A discrete process
does change the system-state only at discrete moments in simulation time with the actions defined in its main()
function. The progress of time is triggered with functions like holdFor, activateAt and so on. See the previous
example for details. A continuous process instead changes the state of a system continuously. Such a process
could be for example the melting of a block of metal inside an oven. At every time, during the melting process,
the temperature of the metal is changed. Of course, real continuity is quite impossible in the discrete world of our
computers. Therefore, ODEMx has to approximate continuous state changes with a step by step computation.

 15

The first continuous process is very simple. It only defines a sinus/co-sinus oscillator. The construction of a
continuous object is a little different to that of a Process object. You also have to provide the number of state-
variables used by your process. In this case, we need two variables.

#include <odemx/base/Continuous.h>
#include <cmath>
using namespace odemx;

class Oscillator : public Continuous {
public:
Oscillator() : Continuous(getDefaultSimulation(), "Oscillator", 2) {};

The main() function of a continuous process is quite similar to that of a discrete process. You can do everything
that is possible in Process. That's why a continuous can behave just like a discrete process. However, it can also
go through phases of continuous state changes.
Before you can start the solver, which is computing the continuous state changes, you will have to initialise the
state variables. Than you should set some parameters for the internal solver. These parameters include error
sensitivity and the step length.
The step length is set with setStepLength(). The first parameter sets the minimal step length, while the second
defines the maximal step length. The internal solver will compute new states in steps. Between every step, the
process holds. The actual length of each step will depend on numerical errors, peer processes, state events, and
the parameters provided with setStepLength(). However, the actual step length will not exceed your provided
maximum. If the step length has to be reduced because of numerical errors or state events, it will not be reduced
below your provided minimum.
The error sensitivity is set with setErrorlimit(). The first parameter defines whether the errors should be
measured relative to the value of the state variables (0) or absolute (1). The second parameter sets the maximum
error acceptable (relative or absolute). If the actual error exceeds this value, the solver will try to reduce the step
length. If this fails, because the step length is already to small, a simulation error is reported.
Finally, the continuous phase is started with the function integrate(). It is stopped either by a time event, a
state event or an interrupt from another process. The time event is set by the first parameter. If it is zero, the
solver will run forever. Otherwise, it will run to the given absolute time. If the provided time has already passed
it will return at once. The return-value of integrate() will be 0 if the time event was hit and 2 if the process
was interrupted.

protected:
virtual int main()
{

state[0]=1;
state[1]=0;

setStepLength(0.01, 0.1);
setErrorlimit(0, 0.1);

integrate(20.0, 0);
return 0;

}

Every Continuous process has to provide a specific derivatives() function. In this function you define how the
state is changed during the time. You do this by setting the change-rate for every state variable. Although you
don't have to, you can include the time, provided by the parameter t, in your computation. However, never use
getCurrentTime() to get the time.

virtual void derivatives (double t)
{

rate[0]=-state[1];
rate[1]=state[0];

}
}; // End of class Oscillator

 16

The FreeFall continuous process needs only one state variable. It demonstrates the use of parameter t in
derivatives(). The result is an idealistic free fall.

class FreeFall : public Continuous {
public:
FreeFall() : Continuous(getDefaultSimulation(), "FreeFall", 1) {};

protected:

virtual int main() {

state[0]=0.0;
setStepLength(.1,1);
integrate(20.0, 0);
return 0;

}

Again, never use getCurrentTime() to include the current time in your computation. The reason for this is, that
derivatives() is called multiple times for each step and these calls are not synchronised to the official time in
the simulation.

virtual void derivatives (double t) {
double g=9.81;
rate[0]=t*g;

}

}; // End of class FreeFall

RealFall simulates a 'real fall', which is slowed down by friction. As well as in FreeFall, we don't set the error
limits. We can do so because ODEMx has default settings for error limits and step length. The default error limit
is a relative (0) error of 0,1.

class RealFall : public Continuous {
public:
RealFall() : Continuous(getDefaultSimulation(), "RealFall", 2) {};

protected:
virtual int main()
{

state[0]=2.0;
state[1]=0.0;
setStepLength(.1, 1);
integrate(20.0, 0);
return 0;

}

virtual void derivatives (double t) {

double k=0.5;
double g=-9.81;
rate[0]=state[1];
rate[1]=g - k*state[1];

}

}; // End of class RealFall

RealBounce finally demonstrates the use of state events. The function hitGround() is used to check a state
event. The signature of functions that can be used as state-event-functions is bool(Process::*)(). ODEMx
uses pointer to member functions if it needs a call-back. The advantage is, you can use member functions with

 17

full access to internal data of your classes to check state events. The cost of this design decision is that you
always have to cast the address of your state-event-function to the type Condition. A state function has to return
true if a state event has occurred. Consider that the computation of state changes is done in steps. Because of
that, it is very unlikely to hit a state event exactly. This has to be taken into account for the programming of a
state-event-function. If a state event has occurred (or passed) the internal solver starts a binary search to get
closer to the exact event time. Finally, if it is close enough (minimum step length) the computation is stopped
and integrate() returns 1.

class RealBounce : public Continuous {
public:
RealBounce() : Continuous(getDefaultSimulation(), "RealBounce", 3) {};

bool hitGround()
{

return state[0]<=0.0;
}

protected:
virtual int main()
{

double g=-9.81;
state[0]=2.0;
state[1]=0.0;
state[2]=g;
setStepLength(0.01, 0.1);

RealBounce uses the return value of integrate() to control the computation. Remember that integrate()
returns 0 if a time event occurred, 2 if the process was interrupted and 1 if a state event was detected.
integrate() is called with the time event 20.0 and the state-event-function hitGround(). If the state event is
hit we reflect the movement ‘state[1]=-(0.8*state[1])‘ and continue until the simulation time exceeds 20.0.

while (integrate(20.0, (Condition)&RealBounce::hitGround)==1)
{

if (fabs(state[1])<0.01 && state[0]<0.01)
{

//
// We must stop the ball if it has lost too much energy.
// Otherwise, we would produce an annoying loop because the
// state event would stop integration in every step.
//

state[1]=0.0;
state[2]=0.0;

}
state[1]=-(0.8*state[1]);

}
return 0;

}

virtual void derivatives (double t)
{

double k=0.5;
rate[0]=state[1];
rate[1]=state[2] - k*fabs(state[1]);
rate[2]=0.0;

}

 18

}; // End of class RealBounce

int main(int argc, char* argv[])
{

Oscillator osci;
FreeFall free;
RealFall real;
RealBounce bounce;

To log the state changes we use the class ContuTrace. ContuTrace observes a provided continuous process and
logs all state changes into a text file. The file is managed by ContuTrace. The name is either set in the
constructor or build from the name of the observed continuous process. If you run the simulation you will find
the four text files: Oscillator_trace.txt, FreeFall_trace.txt, RealFall_trace.txt,
RealBounce_trace.txt.

ContuTrace tracer[] =
{ ContuTrace(&osci),

ContuTrace(&free),
ContuTrace(&real),
ContuTrace(&bounce)};

osci.activate();
free.activate();
real.activate();
bounce.activate();

 //

// We can run the simulation without a time limit because
// the defined continuous processes end at 20.0 .
//
getDefaultSimulation()->run();
return 0;

} // End of main

