

Humboldt-Universität zu Berlin

Gene Expression Analysis

Grundlagen der Bioinformatik SS 2017 Lecture 7 16.06.2017

Recap: Proteins & mRNA

* Cellular worker-units

- * Abundance mRNA ~ Geneactivity
- DNA -> mRNA -> Amino-acids-> Protein
- * Connected to phenotypes e.g. cancer

Recap: Microarrays

Structure

* Single-stranded DNA on glass-slides

* cDNA-Hybridization

Laser-illumination

Recap: Microarrays

Structure

Data-Analysis

- * Single-stranded DNA on glassslides
- * Biological & technical errors/ biases

cDNA-Hybridization

 Discretize, visualize and correct errors and biases

Laser-illumination

Normal distribution assumption

Lecture 7

Gene Expression Analysis

Make heterogeneous data great again

Structure

- * Differential expression
 - Fold-change
 - * T-test

* Clustering

* Databases

Differential gene expression - Etiology

Identify causes and evolution of e.g. cancer (etiology)

Adapt treatment

Example: Understand development of cancer

Differential gene expression - Biomarker

Ovarian cancer antigen CA125: a prospective clinical assessment of its role as a tumour marker.

P. A. Canney, M. Moore, P. M. Wilkinson, and R. D. James

Find early-presence-marker of cancer

Find marker for e.g. drug-response

Example: Increasesed angiogenesis signals

Differential gene expression - Personalized medicine

- Sequence patient
- Determine similarity to known cases
- Administer best drug
 - And avoid side-effects!

'Milestone' prostate cancer drug

By James Gallagher Health editor, BBC News website

© 29 October 2015 | Health

Basic concept differential expression

Problem definition

We have:

$$N_1,...,N_m$$
: normale samples $T_1,...,T_n$: tumor samples

We **look for**: genes with significant differences between N and T

Compare values of gene X from group N with those of group T

$$N = \{n_{1},...,n_{m}\}$$
$$T = \{t_{1},...,t_{n}\}$$

many methods, here: Fold change t-test

Scatterplot vs. differential expression

Fold-Change

$$FC = \log_2(\frac{mean(T)}{mean(N)}) = \log_2(mean(T)) - \log_2(mean(N))$$

Thresholds (common but arbitrary)

- * |FC| < 1 not interesting
- * |FC| > 2 very interesting

	mean(tumor)	mean(normal)	mean(t) / mean(n)	FC
gene a	16	1	16	4
gene b gene c gene d	0.0625 10 200	1 10 1	0.0625 1 200	-4 0 7.65

Identification differential expression

Gene expression matrix:

Gene	N1	N2	N3	N4	N5	N6	N7	T1	T2	Т3	T4	T5	Т6	T7	FC
Α	5.06	5.22	8.3	8.03	6.95	6.43	7.39	10.1	9.89	11.7	11.6	11.4	9.58	12.1	-4.14
В	3.58	4.14	3.49	3.37	5.29	5.06	3.6	3.7	10.9	10.3	3.57	10.5	8.18	3.27	-3.13

High abs(FC) for Gene A and Gene B

But: variance very high in the tumor samples of Gene B

Log FC differential expression

Identify differentially expressed genes

Fold-change problematic

Same FC but different likelihood to be dif. exp.

Probability meassure

Meassure likelihood for truely dif. exp genes to show these distributions

Example probability meassure

P-value & statistical error types

true null hypotheses (non-diff. genes)

false null hypotheses (diff. genes)

From Benjamini & Hochberg (1995).

m-R

R

m

Statistical Hypothesis testing

- 1. Formulate: null and alternative hypothesis
- 2. Select a significance level alpha
- 3. Sample population/cohort
- 4. Calculate test statistic
- 5. P-value-based decision

$$\mathbf{ar{x}} = rac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$

Requires known variance + mean

$$\operatorname{Var}(X) = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

Central Limit Theorem

Assume normal distribution for mean-probabilities

(empirically expected value)

$$\mathbf{ar{x}} = rac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$

The probability distribution of the mean of i.i.d. random variables tends to the normal distribution

* i.i.d. = independent and identically distributed

Likelihood sum of *n* 6-sided dice

Student's t-test

- * Compare mean & variance of cohorts
- * Equal variances
- Probality to be dif. exp. follows
 t-probability meassure

$$H_0: \mu=\mu_0$$
 vs. $H_1: \mu
eq\mu_0$

Test on rejection of equality

t-value calculation in general omega_0 = 0

Problem variance & sub-sampling

Why not use assume normal distribution for <u>variance</u>?

Problem variance & sub-sampling

u = true mean, x = empirical mean

Variance of dif. exp. not normaldistributed for sub-sampled data

Bummer for normal distribution

T-distribution

Definition

* Variance of sub-samples follows t-distribution

* Thus, apply *t-test* and not normal-test

Probability density function t-distribution

Example T-statistic

T-test statistic

- * Retrieve t-values from *test* statistics
- * Based on | cohorts 1 | (n) and | cohort 2 | (m)

P-value acquisition

t-statistic

Volcano Plot

* Combines log-FC and p-value (here as negative log 10)

Discretizes two-parameter cutoff

* Identifies dif. exp. genes

Volcano plot Note higher (right) and lower (left) expression

Example hypothesis testing

 $T = \{3.7, 10.9, 10.3, 3.57,$ 10.5, 8.18, 3.27}

Hypothesis

$$H_0: m_N - m_T = 0$$

$$H_0: m_N - m_T = 0$$
 $H_1: m_N - m_T != 0$

Significance level

$$\alpha = 0.05$$

Test statistic

$$t = \frac{mean(T) - mean(N)}{\sqrt{\frac{sd(T)^2}{m} + \frac{sd(N)^2}{n}}} = -2.27 \quad \text{(Critical value |T| = 2.45)}$$

p-Value

p-value = 0.06 — We cannot reject H₀, gene B ist not significantly differentially expressed!

Multiple Testing Problem

Thousands of hypotheses are tested simultaneously

- Increased chance of false positives
- 10,000 genes á chip, 10k * 0.01 = 100 have a p-value < 0.01 by chance
- Multiple testing methods allow to assess the statistical significance of findings

Corrected **P**-values := **Q**-values

Multiple Testing Problem

Approach 1: FWER

Family—wise error rate (FWER) is defined as the probability of at least one Type I error (false positive) among the genesselected as significant

FWER = Pr(V > 0)

Multiple Testing Problem

Approach 2: FDR

False discovery rate (FDR), the expected proportion of true null hypotheses rejected in the total number of rejections

$$FDR = E(Q),$$

$$Q = \begin{cases} V/R, & \text{if } R > 0, \\ 0, & \text{if } R = 0. \end{cases}$$

Bonferoni-Correction

Q-value = P-value * # P-values

- * Adjusted p-value is smaller than the pre-chosen significance value, probe is differentially expressed
- Very conservative (many failures to reject a false H0), rarely used
- Bonferoni assumes independence between the tests (usually wrong)
- * Appropriate when a single false positive in a set of tests would be a problem (e.g., drug development)

Benjamini-Hochberger

- 1. Choose α (e.g. α =0.05)
- 2. Sort p-values from small to large
- 3. Correct p-values: BH(p_i)

$$i=1,...,m = pi * m/i$$

4. BH (p) = significant if BH(p) $\leq \alpha$

Area under curve holds 5% of p-values

Genes	p-value	rank	BH(p)	Significant? (α=0.05)
Gene A	0.00001	1	0.00001*1000/1=0.01	yes
Gene B	0.0004	2	0.0004*1000/2=0.20	no
Gene C	0.01	3	0.01*1000/3=3.3 → 1.0	no

ROC-curve

Receiver Operating Characteristic-curve

* Determine optimal e.g. q-values

* Trained on goldstandard

Estimation of (future)
 sensitivity and specificity

Linear regression

* Model data

* Predict e.g. cancer-risk

Identify correlated parameters B

$$X = egin{pmatrix} \mathbf{x}_1^{ op} \ \mathbf{x}_2^{ op} \ dots \ \mathbf{x}_n^{ op} \end{pmatrix} = egin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \ 1 & x_{21} & \cdots & x_{2p} \ dots & dots & \ddots & dots \ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}$$

$$\mathbf{y} = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix}$$

Data

Dependent variable

$$oldsymbol{eta} = egin{pmatrix} eta_0 \ eta_1 \ eta_2 \ dots \ eta_p \end{pmatrix}, \quad oldsymbol{arepsilon} = egin{pmatrix} arepsilon_1 \ arepsilon_2 \ dots \ eta_n \end{pmatrix}$$

Correlated features

Linear regression

Linear regression equation (without error)

$$\hat{Y} = bX + a$$

predicted values of Y

b = slope = rate of
predicted ↑/↓ for Y
scores for each unit
increase in X

Y-intercept = level of Y when X is 0

$$y_i = eta_0 \mathbb{1} + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

Y (effect) = X (data) * B (linear parameters)

Robust Multi-array Average

Abreviated RMA

Utilized match & mismatch probes

- 1. Corrected, log 2 data
- 2. Rank expression
- 3. Replace ranked expressionvalues by mean
- 4. Linear (regression) expression-model

RMA example

		Background-Corrected and Log- Transformed Perfect-Match Intensity				
Probe Set	Probe	GeneChip 1	GeneChip 2	GeneChip3		
1	1	7	9	19		
1	2	3	5	14		
1	3	2	6	11		
2	1	4	8	8		
2	2	10	11	16		
2	3	12	10	15		

Probe Set	Probe	GeneChip 1	GeneChip 2	GeneChip3
Lione Ser	Flone	Geneciip i	Geneciip 2	Genechips
1	1	7	9	14
1	2	3	5	14
1	3	2	6	11
2	1	4	8	8
2	2	10	14	16
2	3	14	10	15

RMA example

		Background-Corrected and Log- Transformed Perfect-Match Intensity		
Probe Set	Probe	GeneChip 1	GeneChip 2	GeneChip3
1	1	7	9	14
1	2	3	5	14
1	3	2	6	11
2	1	4	8	8
2	2	12	14	12
2	3	14	12	15

2 ... n

Linear (regression) model

- * a_j = (single) probe's affinity
- * e_ij = error term
- * i = Sample
- * j = Probe

Normalized single probe expression

Note distinction between perfect and mismatch probes

Clustering

* Identify subgroups

Quality control

Similarity-based

Distance metric critical

Colors == spacial-clustering

Overview Clustering

Today's topic

Unsupervised vs. supervised

Example Clustering

Colors := hierarchical tree-cut

Hierarchie pair-wise similarity based

Hierarchical Clustering

1. Choose distance metric

Euclidean

Pearson, etc.

2. Compute similarity matrix S

Hierarchical Clustering

1. Choose distance metric

Euclidean

Pearson, etc.

2. Compute similarity matrix S

3. While |S|>1:

Determine pair (X,Y) with minimal distance

Compute new value Z = avg(X,Y),

(single, average, or complete linkage)

Delete X and Y in S, insert Z in S

Compute new distances of Z to all elements in S

Visualize X and Y as pair

Example hierarchical clustering

Distance metrics

 Define ,distance' i.e. which data (dots) are merged

Linear vs. non-linear distances

* Differ especially w.r.t. outliersensitivity * Euclidian

$$\|a-b\|_2=\sqrt{\sum_i(a_i-b_i)^2}$$

* Squared

$$\|a-b\|_2^2 = \sum_i (a_i-b_i)^2$$

* Manhattan

$$\|a-b\|_1=\sum_i|a_i-b_i|$$

* Maximum

$$\|a-b\|_{\infty}=\max_i|a_i-b_i|$$

* Mahalinobis

$$\sqrt{(a-b)^\top S^{-1}(a-b)}$$

* S = Correlation matrix

Linkage Rules

Define <u>how</u> to cluster data (dots)

- * Represent desired ,definition' of a cluster
 - * E.g. ,mean'-linkage will generall yield more balanced clusters

- * Single
- $\min\,\{\,d(a,b):a\in A,\,b\in B\,\}$
- * Complete
- $\max\,\{\,d(a,b):a\in A,\,b\in B\,\}$
- * Average

* Cluster-centers

* c = cluster-centroids

K-Means clustering

 Partitions n observations into k clusters

* Minimize the distance of the n data points from their respective cluster centres.

Cluster on proximity of k-centers

Difference hierarchical clustering: No pair-wise clustering

K-Means clustering

- 1. Choose k random cluster centers μ1,...μk
- 2. Assign for each point x in dataset S the closest cluster center
- 3. Compute a new center µi for every cluster Ci
- 4. Repeat 2-3. until cluster centers do not change

Maximum-likelihood

- Find optimal cluster-centers
- * Convergence not assured
- Initialization and number of centers (centroids) critical

Maximum likelihood centroids

Databases - GEO

Databases - GEO

NCBI public repository http://www.ncbi.nlm.nih.gov/geo/ archives microarray, NGS, and other high-throughput genomics data submitted by the research community

GPL (GEO platform) platform description

GSM

(GEO sample)
raw-processed
intensities from a
single or chip

GSE

(GEO series) grouping of chip data, a single experiment

GDS

(GEO dataset) grouping of experiments

submitted by experimentalist

curated by NCBI

MIAME checklist

- 1. Raw data present
- 2. Processed data present
- 3. Sample annotation present (e.g. experimental factors, values & protocols)
- 4. Experimental design explained (e.g. what samples are replicates and why)
- 5. Annotation of the array (e.g., gene identifiers & genomic coordinates)
- 6. Laboratory and data processing protocols (e.g. normalisation method)

Take-home messages

Differential expression

Combination Log-FC and P-values (Volcano plot)

* T-test identifies significantly differentially expressed genes

Multiple-testing correction

Take-home messages

Clustering

* Identifies subgroups

* Depends on distance metric & linkage function

* GEO databases offer public expression data