Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2013/14

Definition

- Sei A eine nichtleere Menge, R ist eine k-stellige Relation auf A, wenn $R \subseteq A^k = \underbrace{A \times \cdots \times A}$ ist.
- Für i = 1, ..., n sei R_i eine k_i -stellige Relation auf A. Dann heißt $(A; R_1, ..., R_n)$ Relationalstruktur.
- Die Menge A heißt der Individuenbereich, die Trägermenge oder die Grundmenge der Relationalstruktur.

Bemerkung

- Wir werden hier hauptsächlich den Fall n = 1, $k_1 = 2$, also (A, R) mit $R \subseteq A \times A$ betrachten.
- Man nennt dann R eine (binäre) Relation auf A.
- Oft wird für $(a, b) \in R$ auch die Infix-Schreibweise aRb benutzt.

Beispiel

- (F, M) mit $F = \{f \mid f \text{ ist Fluss in Europa}\}$ und
 - $M = \{(f,g) \in F \times F \mid f \text{ mündet in } g\},\$
- (U, B) mit $U = \{x \mid x \text{ ist Berliner }\}$ und

$$B = \{(x, y) \in U \times U \mid x \text{ ist Bruder von } y\},\$$

- $(\mathcal{P}(M), \subseteq)$, wobei M eine beliebige Menge und \subseteq die Inklusionsrelation auf den Teilmengen von M ist,
- (A, Id_A) mit $Id_A = \{(x, x) \mid x \in A\}$ (die Identität auf A),
- \bullet (\mathbb{R}, \leq) ,
- $(\mathbb{Z}, |)$, wobei | die "teilt"-Relation bezeichnet (d.h. a|b, falls ein $c \in \mathbb{Z}$ mit b = ac existiert).

 Da Relationen Mengen sind, können wir den Schnitt, die Vereinigung, die Differenz und das Komplement von Relationen bilden:

$$R \cap S = \{(x, y) \in A \times A \mid xRy \land xSy\},\$$

$$R \cup S = \{(x, y) \in A \times A \mid xRy \lor xSy\},\$$

$$R - S = \{(x, y) \in A \times A \mid xRy \land \neg xSy\},\$$

$$\overline{R} = (A \times A) - R.$$

• Sei $\mathcal{M} \subseteq \mathcal{P}(A \times A)$ eine beliebige Menge von Relationen auf A. Dann sind der Schnitt über \mathcal{M} und die Vereinigung über \mathcal{M} folgende Relationen:

$$\bigcap \mathcal{M} = \bigcap_{R \in \mathcal{M}} R = \{(x, y) \mid \forall R \in \mathcal{M} : xRy\},\$$

$$\bigcup \mathcal{M} = \bigcup_{R \in \mathcal{M}} R = \{(x, y) \mid \exists R \in \mathcal{M} : xRy\}.$$

Definition

• Die transponierte (konverse) Relation zu R ist

$$R^{T} = \{(y, x) \mid xRy\}.$$

- R^T wird oft auch mit R^{-1} bezeichnet.
- Zum Beispiel ist $(\mathbb{R}, \leq^T) = (\mathbb{R}, \geq)$.
- ullet Das Produkt (oder die Komposition) zweier Relationen R und S ist

$$R \circ S = \{(x, z) \in A \times A \mid \exists y \in A : xRy \land ySz\}.$$

Beispiel

Ist B die Relation "ist Bruder von", V "ist Vater von", M "ist Mutter von" und $E = V \cup M$ "ist Elternteil von", so ist $B \circ E$ die Onkel-Relation.

Das Relationenprodukt

Notation

- Für $R \circ S$ wird auch R; S, $R \cdot S$ oder einfach RS geschrieben.
- Für $\underbrace{R \circ \cdots \circ R}_{n-\text{mal}}$ schreiben wir auch R^n . Dabei ist $R^0 = Id$.

Vorsicht!

Das Relationenprodukt R^n sollte nicht mit dem kartesischen Produkt

$$\underbrace{R \times \cdots \times R}_{\text{n-mal}}$$

verwechselt werden.

Vereinbarung

Wir vereinbaren, dass \mathbb{R}^n das n-fache Relationenprodukt bezeichnen soll, falls \mathbb{R} eine Relation ist.

Eigenschaften von Relationen

Definition

gilt.

Sei R eine Relation auf A. Dann heißt R

```
falls \forall x \in A : xRx
                                                                                          (also Id_A \subseteq R)
reflexiv.
                                                                                          (also Id_A \subseteq \overline{R})
irreflexiv.
                          falls \forall x \in A : \neg xRx
                                                                                          (also R \subseteq R^T)
symmetrisch.
                         falls \forall x, y \in A : xRy \Rightarrow yRx
                                                                                          (also R \subseteq \overline{R^T})
asymmetrisch,
                         falls \forall x, y \in A : xRy \Rightarrow \neg yRx
antisymmetrisch, falls \forall x, y \in A : xRy \land yRx \Rightarrow x = y (also R \cap R^T \subseteq Id)
                                                                            (also A \times A \subseteq R \cup R^T)
                          falls \forall x, y \in A : xRy \lor yRx
konnex.
                          falls \forall x, y \in A : x \neq y \Rightarrow xRy \lor yRx (also \overline{Id} \subseteq R \cup R^T)
semikonnex.
                                                                                          (also R^2 \subseteq R)
                          falls \forall x, y, z \in A : xRy \land yRz \Rightarrow xRz
transitiv.
```

Überblick über Relationalstrukturen

Äquivalenz- und Ordnungsrelationen

	refl.	sym.	trans.	antisym.	asym.	konnex	semikon.
Äquivalenzrelation	\checkmark	\checkmark	\checkmark				
(Halb-)Ordnung	√		√	√			
Striktordnung			\checkmark		\checkmark		
lineare Ordnung			\checkmark	√		√	
lin. Striktord.			√		√		√
Quasiordnung	√		√				

Bemerkung

In der Tabelle sind nur die definierenden Eigenschaften durch ein " \checkmark " gekennzeichnet. Das schließt nicht aus, dass noch weitere Eigenschaften vorliegen.

Eigenschaften von Relationen

Beispiel

- Die Relation "ist Schwester von" ist zwar in einer reinen Damengesellschaft symmetrisch, i.a. jedoch weder symmetrisch noch asymmetrisch noch antisymmetrisch.
- Die Relation "ist Geschwister von" ist zwar symmetrisch, aber weder reflexiv noch transitiv und somit keine Äquivalenzrelation.
- \bullet ($\mathbb{R},<$) ist irreflexiv, asymmetrisch, transitiv und semikonnex und somit eine lineare Striktordnung.
- (\mathbb{R}, \leq) und $(\mathcal{P}(M), \subseteq)$ sind reflexiv, antisymmetrisch und transitiv und somit Ordnungen.
- ullet (\mathbb{R},\leq) ist auch konnex und somit eine lineare Ordnung.
- $(\mathcal{P}(M), \subseteq)$ ist zwar im Fall $||M|| \le 1$ konnex, aber im Fall $||M|| \ge 2$ weder semikonnex noch konnex.

Graphische Darstellung

$$A = \{a, b, c, d\}$$

$$R = \{(b, c), (b, d), (c, a), (c, d), (d, d)\}$$

- Eine Relation R auf einer (endlichen) Menge A kann durch einen gerichteten Graphen (kurz Digraphen) G = (A, R) mit Knotenmenge A und Kantenmenge R veranschaulicht werden.
- Hierzu stellen wir jedes Element $x \in A$ als einen Knoten dar und verbinden jedes Knotenpaar $(x, y) \in R$ durch eine gerichtete Kante (Pfeil).
- Zwei durch eine Kante verbundene Knoten heißen adjazent oder benachbart.

Definition

Sei R eine binäre Relation auf A.

• Die Menge der Nachfolger bzw. Vorgänger von x ist

$$R[x] = \{ y \in A \mid xRy \} \text{ bzw. } R^{-1}[x] = \{ y \in A \mid yRx \}.$$

- Der Ausgangsgrad eines Knotens x ist $deg^+(x) = ||R[x]||$.
- Der Eingangsgrad von x ist $deg^{-}(x) = ||R^{-1}[x]||$.
- Ist R symmetrisch, so können wir die Pfeilspitzen auch weglassen.
- In diesem Fall heißt $deg(x) = deg^{-}(x) = deg^{+}(x)$ der Grad von x und $R[x] = R^{-1}[x]$ die Nachbarschaft von x in G.
- *G* ist schleifenfrei, falls *R* irreflexiv ist.
- Ist R irreflexiv und symmetrisch, so nennen wir G = (A, R) einen (ungerichteten) Graphen.

Matrixdarstellung (Adjazenzmatrix)

Eine Relation R auf $A = \{a_1, \ldots, a_n\}$ lässt sich auch durch die boolesche $(n \times n)$ -Matrix $M_R = (m_{ij})$ darstellen mit

$$m_{ij} = \begin{cases} 1, a_i R a_j, \\ 0, \text{ sonst.} \end{cases}$$

Beispiel

Die Relation $R = \{(b, c), (b, d), (c, a), (c, d), (d, d)\}$ auf $A = \{a, b, c, d\}$ hat beispielsweise die Matrixdarstellung

$$M_R = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

<

Tabellendarstellung (Adjazenzliste)

R lässt sich auch durch eine Tabelle darzustellen, die jedem Element $x \in A$ seine Nachfolger in Form einer Liste zuordnet.

Beispiel

Die Relation $R = \{(b,c), (b,d), (c,a), (c,d), (d,d)\}$ auf $A = \{a,b,c,d\}$ hat beispielsweise die Tabellendarstellung

Х	R[x]				
а	-				
b	c, d				
С	a, d				
d	d				

<

Berechnung von $R \circ S$

• Sind $M_R = (r_{ij})$ und $M_S = (s_{ij})$ boolesche $n \times n$ -Matrizen für R und S, so erhalten wir für $T = R \circ S$ die Matrix $M_T = (t_{ij})$ mit

$$t_{ij} = \bigvee_{k=1,\ldots,n} (r_{ik} \wedge s_{kj}).$$

• Die Nachfolgermenge T[x] von x bzgl. der Relation $T = R \circ S$ berechnet sich zu

$$T[x] = \bigcup_{y \in R[x]} S[y].$$

Das Relationenprodukt

Beispiel

Betrachte die Relationen $R = \{(a, a), (a, c), (c, b), (c, d)\}$ und $S = \{(a, b), (d, a), (d, c)\}$ auf der Menge $A = \{a, b, c, d\}$.

Relation	R	5	R∘S	S∘R
Digraph	$ \begin{array}{c} a & b \\ c & d \end{array} $	\overrightarrow{a} \xrightarrow{b} \overrightarrow{b}	$ \begin{array}{c} $	(a) (b) (c) (d) (d)
Adjazenz- matrix	1010 0000 0101 0000	0100 0000 0000 1010	0100 0000 1010 0000	0000 0000 0000 1111
Adjazenz- liste	a:a,c b:- c:b,d d:-	a:b b:- c:- d:a,c	a:b b:- c:a,c d:-	a:- b:- c:- d:a,b,c,d

Das Relationenprodukt

Beobachtung

Das Relationenprodukt ist nicht kommutativ, d.h. i.a. gilt nicht $R \circ S = S \circ R$.

Relationenalgebra

Als nächstes zeigen wir, dass die Menge $\mathcal{R} = \mathcal{P}(A \times A)$ aller binären Relationen auf A mit dem Relationenprodukt \circ als binärer Operation ein Monoid (also eine Halbgruppe mit neutralem Element) bildet.

Satz

Seien Q, R, S Relationen auf A. Dann gilt

- 2 $Id \circ R = R \circ Id = R$, d.h. Id ist neutrales Element.

Relationenalgebra

Satz

Seien Q, R, S Relationen auf A. Dann gilt

- 2 $Id \circ R = R \circ Id = R$, d.h. Id ist neutrales Element.

Beweis.

$$\begin{array}{cccc}
\bullet & x (Q \circ R) \circ S y & \Leftrightarrow & \exists u : x (Q \circ R) u \wedge u S y \\
& \Leftrightarrow & \exists u : (\exists v : x Q v R u) \wedge u S y \\
& \Leftrightarrow & \exists u, v : x Q v R u S y \\
& \Leftrightarrow & \exists v : x Q v \wedge (\exists u : v R u \wedge u S y)
\end{array}$$

$$\Leftrightarrow \exists v : x \ Q \ v \ (R \circ S) \ y$$
$$\Leftrightarrow x \ Q \circ (R \circ S) \ v$$

② Wegen $x Id \circ R y \Leftrightarrow \exists z : x = z \land z R y \Leftrightarrow x R y$ folgt $Id \circ R = R$. Die Gleichheit $R \circ Id = R$ folgt analog.

Frage

Wieviele Paare muss man zu einer Relation R mindestens hinzufügen, damit sie transitiv wird?

Antwort

- Es ist leicht zu sehen, dass der Schnitt von transitiven Relationen wieder transitiv ist.
- Die transitive Hülle von R ist

$$R^+ = \bigcap \{ S \subseteq A \times A \mid S \text{ ist transitiv und } R \subseteq S \}.$$

- R^+ ist also eine transitive Relation, die R enthält.
- Da R^+ zudem in jeder Relation mit diesen Eigenschaften enthalten ist, gibt es keine transitive Relation mit weniger Paaren, die R enthält.
- Da auch die Reflexivität und die Symmetrie bei der Schnittbildung erhalten bleiben, lassen sich nach demselben Muster weitere Hüllenoperatoren definieren.

Definition

Sei R eine Relation auf A.

• Die reflexive Hülle von R ist

$$h_{\text{refl}}(R) = \bigcap \{ S \subseteq A \times A \mid S \text{ ist reflexiv und } R \subseteq S \}.$$

• Die symmetrische Hülle von R ist

$$h_{\text{sym}}(R) = \bigcap \{ S \subseteq A \times A \mid S \text{ ist symmetrisch und } R \subseteq S \}.$$

• Die reflexiv-transitive Hülle von R ist

$$R^* = \bigcap \{ S \subseteq A \times A \mid S \text{ ist reflexiv, transitiv und } R \subseteq S \}.$$

• Die Äquivalenzhülle von R ist

$$h_{aq}(R) = \bigcap \{E \subseteq A \times A \mid E \text{ ist eine Äquivalenz relation mit } R \subseteq E\}.$$

Transitive und reflexive Hülle

Satz

$$h_{\text{refl}}(R) = R \cup Id_A$$
, $h_{\text{sym}}(R) = R \cup R^T$, $R^+ = \bigcup_{n \geq 1} R^n$, $R^* = \bigcup_{n \geq 0} R^n$.

Beweis

Siehe Übungen.

Bemerkung

- Ein Paar (a,b) ist also genau dann in der reflexiv-transitiven Hülle R^* von R enthalten, wenn es ein $n \ge 0$ gibt mit aR^nb .
- Dies bedeutet, dass es Elemente $x_0, \dots, x_n \in A$ gibt mit

$$x_0 = a, x_n = b \text{ und } x_0 R x_1 R x_2 \dots x_{n-1} R x_n$$

• x_0, \ldots, x_n heißt Weg der Länge n von a nach b.

Definition

(A, R) heißt Ordnung (auch Halbordnung oder partielle Ordnung), wenn R eine reflexive, antisymmetrische und transitive Relation auf A ist.

Beispiel

- $(\mathcal{P}(M), \subseteq)$, (\mathbb{Z}, \leq) , (\mathbb{R}, \leq) , $(\mathbb{N}, |)$, sind Ordnungen. $(\mathbb{Z}, |)$ ist keine Ordnung, aber eine Quasiordnung.
- Ist R eine Relation auf A und $B \subseteq A$, so ist $R_B = R \cap (B \times B)$ die Einschränkung von R auf B.
- Einschränkungen von (linearen) Ordnungen sind ebenfalls (lineare) Ordnungen.
- Beispielsweise ist (\mathbb{Q}, \leq) die Einschränkung von (\mathbb{R}, \leq) auf \mathbb{Q} und $(\mathbb{N}, |)$ die Einschränkung von $(\mathbb{Z}, |)$ auf \mathbb{N} .

Darstellung einer Ordnung durch ein Hasse-Diagramm

• Sei \leq eine Ordnung auf A und sei < die Relation $\leq \setminus Id_A$, d.h.

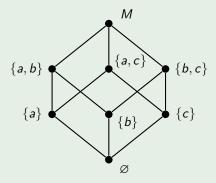
$$x < y \iff x \le y \land x \ne y$$

- Ein Element $x \in A$ heißt unterer Nachbar von y (kurz: x < y), falls x < y gilt und kein $z \in A$ existiert mit x < z < y.
- \lt ist also die Relation $\lt \setminus \lt^2$.
- Um die Ordnung (A, \leq) in einem Hasse-Diagramm darzustellen, wird nur der Digraph der Relation (A, \leq) gezeichnet.
- Weiterhin wird im Fall $x \le y$ der Knoten y oberhalb vom Knoten x gezeichnet, so dass auf die Pfeilspitzen verzichtet werden kann.

Das Hasse-Diagramm für $(\mathcal{P}(M); \subseteq)$

Beispiel

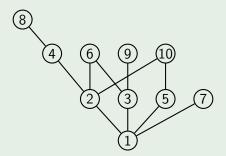
Die Inklusion \subseteq auf $\mathcal{P}(M)$ mit $M = \{a, b, c\}$ lässt sich durch folgendes Hasse-Diagramm darstellen:



Das Hasse-Diagramm der "teilt"-Relation

Beispiel

Die Einschränkung der "teilt"-Relation auf die Menge $\{1,2,\ldots,10\}$ ist durch folgendes Hasse-Diagramm darstellbar:



Maximale, minimale, größte und kleinste Elemente

Definition

- Sei \leq eine Ordnung auf A und sei b ein Element in einer Teilmenge $B \subseteq A$.
- b heißt kleinstes Element oder Minimum von B, falls gilt:

$$\forall b' \in B : b \leq b'.$$

• b heißt größtes Element oder Maximum von B, falls gilt:

$$\forall b' \in B : b' \leq b.$$

- b heißt minimal in B, falls es in B kein kleineres Element gibt:
- $\forall b' \in B : b' \leq b \Rightarrow b' = b.$
- b heißt maximal in B, falls es in B kein größeres Element gibt:

 $\forall b' \in B : b \leq b' \Rightarrow b = b'.$

Bemerkung

Wegen der Antisymmetrie kann es in B höchstens ein kleinstes und höchstens ein größtes Element geben.

Maximale, minimale, größte und kleinste Elemente

Beispiel

Betrachte folgende Ordnung.

В	minimal in <i>B</i>	maximal in <i>B</i>	Minimum von <i>B</i>	Maximum von <i>B</i>		
$\{a,b\}$	a, b	a, b	-	-		
$\{c,d\}$	c, d	c, d	-	-		
$\{a,b,c\}$	С	a, b	С	-		
$\{a,b,c,e\}$	e	a, b	e	-		
$\{a,c,d,e\}$	е	а	e	а		

Definition

Sei \leq eine Ordnung auf A und sei $B \subseteq A$.

- Ein Element $u \in A$ mit $u \le b$ für alle $b \in B$ heißt untere Schranke von B.
- Ein Element $o \in A$ mit $b \le o$ für alle $b \in B$ heißt obere Schranke von B.
- B heißt nach oben beschränkt, wenn B eine obere Schranke hat.
- B heißt nach unten beschränkt, wenn B eine untere Schranke hat.
- B heißt beschränkt, wenn B nach oben und nach unten beschränkt ist.

Obere und untere Schranken

Beispiel (Fortsetzung)

untere obere

В	minimal	maximal	min	max	Schranken	
$\{a,b\}$	a, b	a, b	-	-	c, d, e	-
$\{c,d\}$	c, d	c, d	-	-	e	a, b
$\{a,b,c\}$	С	a, b	С	-	c, e	-
$\{a,b,c,e\}$	е	a, b	e	-	e	-
$\{a,c,d,e\}$	е	а	е	а	e	a

Definition

Sei \leq eine Ordnung auf A und sei $B \subseteq A$.

 Besitzt B eine größte untere Schranke i, d.h. besitzt die Menge U aller unteren Schranken von B ein größtes Element i, so heißt i das Infimum von B (i = inf B):

$$(\forall b \in B : b \ge i) \land [\forall u \in A : (\forall b \in B : b \ge u) \Rightarrow u \le i].$$

• Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge O aller oberen Schranken von B ein kleinstes Element s, so heißt s das Supremum von B ($s = \sup B$):

$$(\forall b \in B : b \le s) \land [\forall o \in A : (\forall b \in B : b \le o) \Rightarrow s \le o]$$

Bemerkung

B kann nicht mehr als ein Supremum und ein Infimum haben.

Infima und Suprema

Beispiel (Schluss)

В	minimal maximal		min max		untere obere Schranken		inf sup	
$\{a,b\}$	a, b	a, b	-	-	c, d, e	-	-	-
$\{c,d\}$	c, d	c, d	-	-	e	a, b	е	-
$\{a,b,c\}$	С	a, b	С	-	c, e	-	С	-
$\{a,b,c,e\}$	e	a, b	e	-	e	-	е	-
$\{a,c,d,e\}$	e	а	e	а	e	а	e	a

Bemerkung

- Auch in linearen Ordnungen muss nicht jede beschränkte Teilmenge ein Supremum oder Infimum besitzen.
- ullet So hat in der linear geordneten Menge (\mathbb{Q},\leq) die Teilmenge

$$B = \{x \in \mathbb{Q} \mid x^2 \le 2\} = \{x \in \mathbb{Q} \mid x^2 < 2\}$$

weder ein Supremum noch ein Infimum.

• Dagegen hat in (\mathbb{R}, \leq) jede beschränkte Teilmenge B ein Supremum und ein Infimum (aber möglicherweise kein Maximum oder Minimum).

Definition

(A, R) heißt Äquivalenzrelation, wenn R eine reflexive, symmetrische und transitive Relation auf A ist.

Beispiel

- ullet Auf der Menge aller Geraden im \mathbb{R}^2 die Parallelität.
- Auf der Menge aller Menschen "im gleichen Jahr geboren wie".
- Auf \mathbb{Z} die Relation "gleicher Rest bei Division durch m".

Äquivalenzrelationen

• Ist E eine Äquivalenzrelation, so nennt man die Nachbarschaft E[x] die von x repräsentierte Äquivalenzklasse und bezeichnet sie auch mit $[x]_E$ (oder einfach mit [x], falls E aus dem Kontext ersichtlich ist):

$$[x]_E = [x] = E[x] = \{y \mid xEy\}.$$

- Wie wir sehen werden, bilden die Äquivalenzklassen eine Zerlegung (Partition) von A, d.h. je zwei Äquivalenzklassen sind entweder disjunkt oder gleich und ihre Vereinigung ergibt A.
- Die Zerlegung von A in Äquivalenzklassen wird Quotienten- oder Faktormenge von A bzgl. E genannt und mit A/E bezeichnet:

$$A/E = \{ [x]_E \mid x \in A \}.$$

- Die Anzahl $\|A/E\|$ der Äquivalenzklassen von E wird auch als der Index von E bezeichnet.
- Eine Menge $S \subseteq A$ heißt Repräsentantensystem, falls sie genau ein Element aus jeder Äquivalenzklasse enthält.

Äquivalenzrelationen

Beispiel

Für die weiter oben betrachteten Äquivalenzrelationen erhalten wir folgende Klasseneinteilungen:

- ullet Für die Parallelität auf der Menge aller Geraden im \mathbb{R}^2 : alle Geraden mit derselben Richtung (oder Steigung) bilden jeweils eine Äquivalenzklasse.
- Ein Repräsentantensystem wird beispielsweise durch die Menge aller Ursprungsgeraden gebildet.
- Für die Relation "im gleichen Jahr geboren wie" auf der Menge aller Menschen: jeder Jahrgang bildet eine Äquivalenzklasse.
- Für die Relation "gleicher Rest bei Division durch m" auf \mathbb{Z} : jede der m Restklassen $[0], [1], \ldots, [m-1]$ mit

$$[r] = \{a \in \mathbb{Z} \mid a \bmod m = r\}$$

bildet eine Äquivalenzklasse.

• Repräsentantensystem: $\{0, 1, \dots, m-1\}$.

<

Verfeinerung und Vergröberung von Äquivalenzrelationen

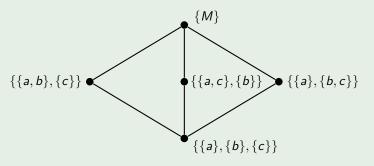
Bemerkungen

- Die kleinste Äquivalenzrelation auf A ist die Identität Id_A , die größte ist die Allrelation $A \times A$.
- Die Äquivalenzklassen der Identität enthalten jeweils nur ein Element, d.h. $A/Id_A = \{\{x\} \mid x \in A\}$.
- Die Allrelation erzeugt nur eine Äquivalenzklasse, nämlich A, d.h. $A/(A \times A) = \{A\}$.
- Für zwei Äquivalenzrelationen $E \subseteq E'$ sind auch die Äquivalenzklassen $[x]_F$ von E in den Klassen $[x]_{E'}$ von E' enthalten.
- Folglich ist jede Äquivalenzklasse von E' die Vereinigung von (evtl. mehreren) Äquivalenzklassen von E.
- Im Fall $E \subseteq E'$ sagt man auch, E bewirkt eine feinere Zerlegung von A als E'.
- Demnach ist die Identität die feinste und die Allrelation die gröbste Äquivalenzrelation.

Das Hasse-Diagramm der Feiner-Relation

Beispiel

Die "feiner als" Relation auf der Menge aller Partitionen von $M = \{a, b, c\}$ ist durch folgendes Hasse-Diagramm darstellbar:



<1

Partition einer Menge

Definition

Eine Familie $\{B_i \mid i \in I\}$ von nichtleeren Teilmengen $B_i \subseteq A$ heißt Partition der Menge A, falls gilt:

- die Mengen B_i überdecken A_i , d.h. $A = \bigcup_{i \in I} B_i$ und
- die Mengen B_i sind paarweise disjunkt, d.h. für je zwei verschiedene Mengen $B_i \neq B_j$ gilt $B_i \cap B_j = \emptyset$.

Satz

- Sei E eine Relation auf A. Dann sind folgende Aussagen äquivalent:
- E ist eine Äquivalenzrelation auf A,
- 2 Für alle $x, y \in A$ gilt $xEy \Leftrightarrow E[x] = E[y]$,
- **3** Es gibt eine Partition $\{B_i \mid i \in I\}$ von A mit $xEy \Leftrightarrow \exists i \in I : x, y \in B_i$.

Äquivalenzrelationen und Partitionen

Satz

Sei E eine Relation auf A. Dann sind folgende Aussagen äquivalent:

- \bullet E ist eine Äquivalenzrelation auf A,
- 2 Für alle $x, y \in A$ gilt $xEy \Leftrightarrow E[x] = E[y]$,
- **3** Es gibt eine Partition $\{B_i \mid i \in I\}$ von A mit $xEy \Leftrightarrow \exists i \in I : x, y \in B_i$.

Beweis.

- impliziert •: Sei E eine Äquivalenzrelation auf A.
- Da E transitiv ist, impliziert xEy die Inklusion $E[y] \subseteq E[x]$:

$$z \in E[y] \Rightarrow yEz \stackrel{\times Ey}{\Rightarrow} xEz \Rightarrow z \in E[x].$$

- Da E symmetrisch ist, folgt aus xEy aber auch $E[x] \subseteq E[y]$.
- Umgekehrt folgt aus E[x] = E[y] wegen der Reflexivität von E, dass $y \in E[y] = E[x]$ enthalten ist, und somit xEy.

Äquivalenzrelationen und Partitionen

Satz

Sei E eine Relation auf A. Dann sind folgende Aussagen äquivalent:

- E ist eine Äquivalenzrelation auf A,
- 2 Für alle $x, y \in A$ gilt $xEy \Leftrightarrow E[x] = E[y]$,
- **3** Es gibt eine Partition $\{B_i \mid i \in I\}$ von A mit $xEy \Leftrightarrow \exists i \in I : x, y \in B_i$.

Beweis.

- **2** impliziert **3**: Wir zeigen, dass $\{E[x] | x \in A\}$ eine Partition von A bildet, falls E die Bedingung $xEy \Leftrightarrow E[x] = E[y]$ erfüllt.
 - Wegen E[x] = E[x] folgt xEx und somit $x \in E[x]$.
 - Folglich überdecken die Mengen E[x] die Menge A.
 - Ist $E[x] \cap E[y] \neq \emptyset$ und z ein Element in $E[x] \cap E[y]$, so gilt xEz und yEz und daher folgt E[x] = E[z] = E[y].

Äquivalenzrelationen und Partitionen

Satz

Sei E eine Relation auf A. Dann sind folgende Aussagen äquivalent:

- E ist eine Äquivalenzrelation auf A,
- 2 Für alle $x, y \in A$ gilt $xEy \Leftrightarrow E[x] = E[y]$,
- **3** Es gibt eine Partition $\{B_i \mid i \in I\}$ von A mit $xEy \Leftrightarrow \exists i \in I : x, y \in B_i$.

Beweis.

- **③** impliziert **④**: Existiert schließlich eine Partition $\{B_i \mid i \in I\}$ von A mit $xEy \Leftrightarrow \exists i \in I : x, y \in B_i$, so ist E
 - reflexiv, da zu jedem $x \in A$ eine Menge B_i mit $x \in B_i$ existiert,
 - symmetrisch, da aus $x, y \in B_i$ auch $y, x \in B_i$ folgt, und
 - transitiv, da aus $x, y \in B_i$ und $y, z \in B_j$ wegen $y \in B_i \cap B_j$ die Gleichheit $B_i = B_i$ und somit $x, z \in B_i$ folgt.

Sei R eine binäre Relation auf einer Menge M.

• R heißt rechtseindeutig, falls für alle $x, y, z \in M$ gilt:

$$xRy \wedge xRz \Rightarrow y = z$$
.

• R heißt linkseindeutig, falls für alle $x, y, z \in M$ gilt:

$$xRz \land yRz \Rightarrow x = y$$
.

• Der Nachbereich N(R) und der Vorbereich V(R) von R sind

$$N(R) = \bigcup_{x \in M} R[x]$$
 und $V(R) = \bigcup_{x \in M} R^{T}[x]$.

Abbildungen

Abbildungen ordnen jedem Element ihres Definitionsbereichs genau ein Element zu.

Definition

Eine rechtseindeutige Relation R mit V(R) = A und $N(R) \subseteq B$ heißt Abbildung oder Funktion von A nach B (kurz $R : A \rightarrow B$).

Bemerkung

- Wie üblich werden wir Abbildungen meist mit kleinen Buchstaben f, g, h, ... bezeichnen und für $(x, y) \in f$ nicht xfy sondern f(x) = y oder $f: x \mapsto y$ schreiben.
- Ist f: A → B eine Abbildung, so wird der Vorbereich V(f) = A der Definitionsbereich und die Menge B der Wertebereich oder Wertevorrat von f genannt.
- Der Nachbereich N(f) wird als Bild von f bezeichnet.

Sei $f: A \rightarrow B$ eine Abbildung.

- Im Fall N(f) = B heißt f surjektiv.
- Ist f linkseindeutig, so heißt f injektiv.
- In diesem Fall impliziert f(x) = f(y) die Gleichheit x = y.
- Eine injektive und surjektive Abbildung heißt bijektiv.
- Ist f injektiv, so ist auch $f^{-1}: N(f) \to A$ eine Abbildung, die als die zu f inverse Abbildung bezeichnet wird.

Bemerkung

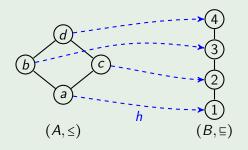
Man beachte, dass der Definitionsbereich $V(f^{-1}) = N(f)$ von f^{-1} nur dann gleich B ist, wenn f auch surjektiv, also eine Bijektion ist.

Seien (A_1, R_1) und (A_2, R_2) Relationalstrukturen.

• Eine Abbildung $h: A_1 \to A_2$ heißt Homomorphismus, falls für alle $a, b \in A_1$ gilt:

$$aR_1b \Rightarrow h(a)R_2h(b).$$

- Sind (A_1, R_1) und (A_2, R_2) Ordnungen, so spricht man auch von Ordnungshomomorphismen oder einfach von monotonen Abbildungen.
- Injektive Ordnungshomomorphismen werden auch streng monotone Abbildungen genannt.



- Die Abbildung $h: A \rightarrow B$ ist ein bijektiver Ordnungshomomorphismus.
- Die Umkehrabbildung h^{-1} ist jedoch kein Homomorphismus, da h^{-1} nicht monoton ist.
- Es gilt nämlich $2 \subseteq 3$, aber $h^{-1}(2) = b \nleq c = h^{-1}(3)$.

- Seien (A_1, R_1) und (A_2, R_2) Relationalstrukturen.
- Ein bijektiver Homomorphismus $h: A_1 \to A_2$, bei dem auch h^{-1} ein Homomorphismus ist, d.h. es gilt für alle $a, b \in A_1$,

$$aR_1b \Leftrightarrow h(a)R_2h(b)$$
.

heißt Isomorphismus.

• In diesem Fall heißen die Strukturen (A_1, R_1) und (A_2, R_2) isomorph (kurz: $(A_1, R_1) \cong (A_2, R_2)$).

Sind (A_1, R_1) und (A_2, R_2) isomorph, so bedeutet dies, dass sich die beiden Strukturen nur in der Benennung ihrer Elemente unterscheiden.

- Die Bijektion $h: x \mapsto e^x$ ist ein Ordnungsisomorphismus zwischen (\mathbb{R}, \leq) und (\mathbb{R}^+, \leq) .
- Für $n \in \mathbb{N}$ sei

$$T_n = \{k \in \mathbb{N} \mid k \text{ teilt } n\}$$

und

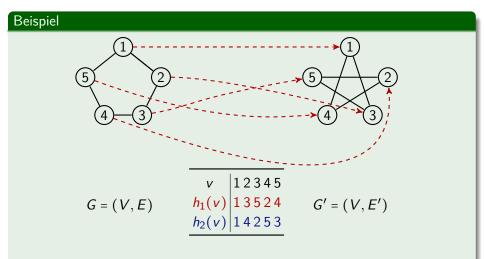
$$P_n = \{ p \in T_n \mid p \text{ ist prim} \}.$$

Dann ist die Abbildung

$$h: k \mapsto P_k$$

ein Ordnungshomomorphismus von $(T_n, |)$ auf $(\mathcal{P}(P_n), \subseteq)$.

h ist sogar ein Isomorphismus, falls n quadratfrei ist (d.h. es gibt keine Primzahl p, so dass p^2 die Zahl n teilt).

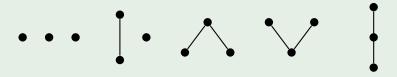


- Die beiden Graphen G und G' sind isomorph.
- Zwei Isomorphismen sind beispielsweise h_1 und h_2 .

• Während auf der Knotenmenge $V = \{1, 2, 3\}$ insgesamt $2^{\binom{3}{2}} = 2^3 = 8$ verschiedene Graphen existieren, gibt es auf dieser Menge nur 4 verschiedene nichtisomorphe Graphen:

_

• Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elementen:



 Anders ausgedrückt: Die Klasse aller dreielementigen Ordnungen zerfällt unter der Isomorphierelation ≅ in fünf Äquivalenzklassen, die durch obige fünf Hasse-Diagramme repräsentiert werden.

<