Humboldt-Universität zu Berlin Prof. Dr. Johannes Köbler Einführung in die Theoretische Informatik 23. Januar 2013

Übungsblatt 13

Besprechung der mündlichen Aufgaben am 28.01.–1.02.2013 Abgabe der schriftlichen Lösungen bis 15:00 am 6.2.2013

Aufgabe 99 Zeigen Sie:

 $m\ddot{u}ndlich$

mündlich, optional

- (a) Das Äquivalenzproblem für RE liegt in Π_2 .
- (b) Das Ausschöpfungsproblem für RE ist Π_2 -hart.
- (c) Folgern Sie, dass das Ausschöpfungs-, das Äquivalenz- und das Inklusionsproblem für RE Π_2 -vollständig sind.

Aufgabe 100 mündlich

Für ein Wort $w \in \{0, 1, \#\}^*$ sei d(w) das längste Präfix von w in $\{0, 1\}^*$. Weiter sei

$$D_{i+1} = \begin{cases} \{w \in \{0, 1, \#\}^* \mid w \in L(M_{d(w)})\}, & i = 0 \\ \exists \overline{D}_i, & i \ge 1. \end{cases}$$

- (a) Zeigen Sie mittels Diagonalisierung, dass $D_i \in \Sigma_i \setminus \Pi_i$ für alle $i \geq 1$ gilt.
- (b) Folgern Sie $\Sigma_i \subseteq \Delta_{i+1} \subseteq \Sigma_{i+1}$ und $\Pi_i \subseteq \Delta_{i+1} \subseteq \Pi_{i+1}$ für alle $i \ge 1$.

Aufgabe 101 mündlich

Geben Sie LOOP-, WHILE- und GOTO-Programme für die Funktionen f(x,y) = x MOD y und g(x,y) = x DIV y an. Hierbei ist x MOD y die kleinste Zahl $r \ge 0$, so dass x - r = dy für ein d > 0 ist, und x DIV y das entsprechende d.

Aufgabe 102

(a) Sei b(n) die maximale Anzahl von Rechenschritten, die ein GOTO-Programm, das aus höchstens n+1 Befehlen besteht und keine Konstante c>n enthält, bei Eingabe 0 machen kann, ohne in eine Endlosschleife zu geraten. Zeigen Sie, dass b(n) total und nicht GOTO-berechenbar ist.

(b) Überlegen Sie, wie sich aus der Kenntnis einer Schranke $s \ge b(100)$ konstruktiv ein Algorithmus zur Entscheidung der Goldbachvermutung gewinnen lässt.

Aufgabe 103 mündlich

Für eine Reihe von algorithmischen Problemstellungen wurden 6 verschiedene Algorithmen mit folgenden Laufzeiten entworfen ($\log n$ steht als Abkürzung für $\lceil \log_2 n \rceil$):

Algorithmus	A_1	A_2	A_3	A_4	A_5	A_6
Laufzeit	$5 \cdot 10^8 n$	$10^5 n \log n$	$10^{3}n^{2}$	$10 \cdot 2^{n/2}$	2^{2n}	n!

Die Algorithmen werden auf einem Rechner implementiert, der mit einer Geschwindigkeit von 10⁹ Operationen pro Sekunde arbeitet.

- (a) Bestimmen Sie jeweils die maximale Länge n_1 der Probleminstanzen, die mit diesen Algorithmen innerhalb einer Minute lösbar sind.
- (b) Sei n_2 die maximale Eingabelänge, die ein Rechner mit k-facher Geschwindigkeit in dieser Zeit bewältigt. Welche Beziehung besteht jeweils zwischen n_1 und n_2 ?

Aufgabe 104

mündlich, optional

Betrachten Sie die Menge der Palindrome $L = \{x \in \Sigma^* \mid x = x^R\}$. Beschreiben Sie eine möglichst zeiteffiziente 1-DTM M und eine möglichst zeiteffiziente 2-DTM M' für L. Vergleichen Sie die asymptotischen Laufzeiten von M und M'.

Aufgabe 105 Seien $f, g: \mathbb{N} \to [0, \infty)$. Stimmen folgende Aussagen? 10 Punkte

(a)
$$\sum_{i=1}^{n} i = \mathcal{O}(n^2)$$
 (mündlich)

(b)
$$f(n) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$$
 (mündlich)

(c)
$$\mathcal{O}(f(n) + g(n)) = f(n) + \mathcal{O}(g(n))$$
 (mündlich)

(d)
$$2^{n+\mathcal{O}(1)} = \mathcal{O}(2^n)$$
 (mündlich)

(e)
$$f(n) + g(n) = \mathcal{O}(\max\{f(n), g(n)\})$$
 (mündlich)

(f) Wenn
$$f(n) = \mathcal{O}(g(n))$$
, dann gilt $f^2(n) = \mathcal{O}(g^2(n))$ (mündlich)

(g) Wenn
$$f(n) = \mathcal{O}(g(n))$$
, dann gilt $f(n^2) = \mathcal{O}(g(n^2))$ (5 Punkte)

(h)
$$2^{\mathcal{O}(n)} = \mathcal{O}(2^n)$$
 (5 Punkte)

Aufgabe 106 Stimmen folgende Aussagen? Begründen Sie.

- (a) Jede Sprache $L \in \mathsf{RE}$ mit $L \leq \overline{L}$ ist entscheidbar.
- (b) Jede Sprache $L\subseteq\{0,1\}^*$ mit $\overline{L}\leq L$ ist entscheidbar.

(c)
$$P = NP \Rightarrow NP = \text{co-NP}$$
, (mündlich)

$$(\mathrm{d}) \ \mathsf{NP} \subseteq \mathsf{co}\text{-}\mathsf{NP} \Leftrightarrow \mathsf{co}\text{-}\mathsf{NP} \subseteq \mathsf{NP}, \qquad \qquad (\mathit{m\"{u}ndlich})$$

(g)
$$NPC = P \Rightarrow EXP = P$$
. (5 Punkte)

Aufgabe 107 Zeigen Sie:

 $10 \ Punkte$

10 Punkte

(a)
$$CFL \subsetneq P$$
, (mündlich)

(b)
$$REG \subseteq L$$
 und $L \not\subseteq CFL$. (5 Punkte)

(c)
$$\leq^p$$
 ist reflexiv und transitiv, aber nicht antisymmetrisch. (5 Punkte)