
Algorithms and Data Structures

Ulf Leser

Amortized Analysis



Ulf Leser: Algorithms and Data Structures 2

• Two Examples
• Two Analysis Methods
• Dynamic Tables
• SOL - Analysis

• This lecture is not covered in [OW93] but, for instance, in 
[Cor09]



Ulf Leser: Algorithms and Data Structures 3

Setting

• SOL: Sequences of operations influencing each other
– We have a sequence Q of operations on a data structure

• Searching SOL and rearranging a SOL
– Operations are not independent – by changing the data structure, 

costs of subsequent operations are influenced
• Conventional WC-analysis produces misleading results

– Assumes all operations to be independent
– Search order in workload does not influence WC result

• Amortized analysis analyzes the complexity of a sequence 
of interfering operations
– In other terms: We seek the worst average cost of each operation 

in any sequence



Ulf Leser: Algorithms and Data Structures 4

„Amortizing“

• Economics: How long does it take until a (high) initial 
investment pays off because it leads to continuous 
business improvements (less costs, more revenue)?

• Example 
– Investment of 6000€ leads to 

daily rev. increase from 500 to 560€
– Investment amortized after 100 days 

• WC: Look at all days independently
– Look at difference cost / revenue
– Compare 560-6000 to 500-0
– Do not invest! Never!



Ulf Leser: Algorithms and Data Structures 5

Algorithmic Example 1: Multi-Pop (mpop)

• Assume a stack S with a special operation: mpop(k)
– mpop(k) pops min(k, |S|) elements from S
– Implementation: mpop calls pop k times

• Assume any sequence Q of operations push, pop, mpop
– E.g. Q={push,push,mpop(k),push,pop,push,mpop(k),…}

• Assume costs c(push)=1, c(pop)=1, c(mpop(k))=k
• What cost do we expect for a given Q with |Q|=n?

– Cost of ops in Q: 1 (push) or 1 (pop) or k (mpop)
– In the worst case, k can be n 

• n-1 times push, then one mpop(n)
• Worst case of a single operation is O(n)

– For n operations: Total worst-case cost: O(n2)

Note: True costs
only ~2*n



Ulf Leser: Algorithms and Data Structures 6

Problem

• Clearly, the cost of Q is in O(n2), but this is not tight
• A simple thought shows: The cost of Q is in O(n)

– Every element can be popped only once
• No matter if this happens through a pop or a mpop

– Pushing an element costs 1, popping it costs 1
– A given Q can at most push n elements and pop n elements

• Every pushed element can be popped only once
– Thus, the total cost is in O(n)

• It is maximally ~2n

• We want to derive such a result in a systematic manner 
– Analyzing SOLs is not that easy



Ulf Leser: Algorithms and Data Structures 7

Example 2: Bit-Counter

• We want to generate bitstrings by iteratively adding 1 
– Starting from 0
– Assume bitstrings of length k
– Roll-over counter if we exceed 2k-1

• Q is a sequence of „+1“
• We count as cost of an operation

the number of bits we have to flip
• Classical WC analysis

– A single operation can flip up to k bits
• “1111111” +1

– Worst case cost for Q: O(k*n)

00000000
00000001 1 1
00000010 2 3
00000011 1 4
00000100 3 7
00000101 1 8
00000110 2 10
00000111 1 11
00001000 4 15
00001001 1 16
00001010 2 18
…



Ulf Leser: Algorithms and Data Structures 8

Problem

• Again, this complexity is overly pessimistic / not tight
• Cost actually is in O(n)

– The right-most bit is flipped in every operation: cost=n
– The second-rightmost bit is flipped every second time: n/2
– The third …: n/4
– …
– Together

∑∑
∞

=

−

=

=<
0

1

0
*2

2
1*

2 i
i

k

i
i nnn



Ulf Leser: Algorithms and Data Structures 9

• Two Examples
• Two Analysis Methods 

– Accounting Method
– Potential Method

• Dynamic Tables
• SOL - Analysis



Ulf Leser: Algorithms and Data Structures 10

Accounting Analysis

• Idea: We create an account for Q
• Operations put / withdraw some amounts of “money”
• We choose these amounts such that the current state of 

the account is always (throughout Q) an upper bound of 
the actual cost incurred by Q
– Let ci be the true cost of operation i, di its effect on the account
– We require

– Additional constraint: The account must never become negative
– “≤” gives us more freedom in analysis than “=“

• It follows: An upper bound for the account (d) after Q is 
also an upper bound for the true cost (c) of Q

∑∑
==

≤≤≤∀
k

i
i

k

i
i dcnk

11
:1



Ulf Leser: Algorithms and Data Structures 11

Application to mpop

• Assume dpush=2, dpop=0, dmpop=0
• Upper bounds?

– Clearly, dpush is an upper bound on cpush (which is 1)
– But neither dpop nor dmpop are upper bounds for cpop / cmpop

• Let’s try: dpush=2, dpop=1, dmpop=n
– Now all individual d’s are upper bounds for their c’s
– But this doesn’t help (worst-case analysis)

• But: We only have to show that the sum of d’s for any 
prefix of Q is higher than the sum of c’s

)(* 2

11
nOnndc

n

i
i

n

i
i ∈≤≤∑∑

==

We again assumed
independence of ops



Ulf Leser: Algorithms and Data Structures 12

Application to mpop

• Assume again: dpush=2, dpop=0, dmpop=0
• Summing these up along a sequence of ops yields an upper 

bound on the real cost
– Idea: Whenever we push an element, we pay 1 for the push and 1 

for the operation that will (sometime later) pop exactly this element
• It doesn’t matter whether this will be through a pop or a mpop
• Recall: For every pop, there must have been a push before

– Thus, when it comes to a pop or mpop, there is always “enough 
money” on the account 

• Deposited by previous push’s
• “enough”: Enough such that the sum remains an upper bound

• This proves
)(*2

11
nOndc

n

i
i

n

i
i ∈≤≤∑∑

==



Ulf Leser: Algorithms and Data Structures 13

Choose d‘s carefully

• Assume dpush=1, dpop=1, dmpop=1
– Assume Q={push,push,push,mpop(3)}
– ∑c=6 > ∑d = 4

• Assume dpush=1, dpop=0, dmpop=0
– Assume Q={push,push,mpop(2)}
– ∑c=4 > ∑d = 2

• Assume dpush=3, dpop=0, dmpop=0
– Fine as well, but not as tight (but also leads to O(n))

• Take-Away: We must chose d such that the upper bound 
inequality always holds



Ulf Leser: Algorithms and Data Structures 14

Application to Bit-Counter

• Look at the sequence Q‘ of flips generated by a sequence Q
– Every +1 creates a sequence of [0…k] flip-to-0 and [0…1] flip-to-1

• There is no „flip to 1“ if we roll-over
– Since only flips cost, Q’ can be used to study the cost of Q

• Let’s set dflip-to-1=2 and dflip-to-0=0
– Note: We start with only 0 and can flip-to-0 any 1 only once 

• Before we flip-to-1 again, again enabling one flip-to-0 etc.
– Idea: When we flip-to-1, we pay 1 for flipping and 1 for the back-

flip-to-0 that might happen at some later time in Q’
• There can be only one flip-to-0 per single flip-to-1

– Thus, the account is always an upper bound on the actual cost
• Same idea: No flip-to-0 (pop) without prev. flip-to-1 (push)



Ulf Leser: Algorithms and Data Structures 15

Application to Bit-Counter -2-

• We know that the account is always an upper bound on the 
actual cost for any prefix of Q

• Every step of Q creates a sequence of flip-to-1  (at most 
one) and flip-to-0 in Q’

• This sequence in Q’ costs at most 2 
– There can be only on flip-to-1, and all flip-to-0 are free

• Every step in Q creates a sequence in Q’ costing at most 2
• Thus, Q is bound by O(n)
• qed.



Ulf Leser: Algorithms and Data Structures 16

• Two Examples
• Two Analysis Methods 

– Accounting Method
– Potential Method

• Dynamic Tables
• SOL - Analysis



Ulf Leser: Algorithms and Data Structures 17

Potential Method: Idea

• In the accounting method, we assign a cost to every 
operation and compare aggregated accounting costs of ops 
with aggregated real costs of ops

• In the potential method, we assign a potential Φ(D) to the 
data structure D manipulated by Q
– Think of the potential as potential future cost

• As ops from Q change D, they also change D’s potential
• The trick is to design Φ such that we can use it to derive 

an upper bound on the real cost of Q

• “Accounting” and “potential” methods are quite similar –
use whatever is easier to apply for a given problem



Ulf Leser: Algorithms and Data Structures 18

Potential Function

• Let D0, D1, … Dn be the states of D when applying Q
• We define the amortized cost di of the i‘th operation as

di = ci + Φ(Di) – Φ(Di-1)
• We derive the amortized cost of Q as

• Idea: If we find a Φ such that (a) we can obtain formulas 
for the amortized costs for all individual di and (b) 
Φ(Dn)≥Φ(D0), we have an upper bound for the real costs
– Because then:

∑∑∑
==

−
=

−+=−+=
n

i
ni

n

i
iii

n

i
i DDcDDcd

1
0

1
1

1
)()())()(( φφφφ

∑∑∑
===

≥−+=
n

i
in

n

i
i

n

i
i cDDcd

1
0

11
)()( φφ



Ulf Leser: Algorithms and Data Structures 19

Details: Always Pay in Advance

• Operations raise or lower the potential of D
• We need to find a function Φ such that

– Req. 1: Φ(Di) depends on a property of Di (future cost)
– Req. 2: Φ(Dn)≥Φ(D0) [here we will always have Φ(D0)=0]
– Req. 3: We can compute di = ci + Φ(Di) – Φ(Di-1)

• As within a sequence we do not know its future, we also 
have to require that Φ(Di) never is negative
– Otherwise, the amortized cost of the prefix Q[1…i] would not be an 

upper bound of the real costs at step i
• Idea: Always pay in advance



Ulf Leser: Algorithms and Data Structures 20

Example: mpop

• We use the number of objects on the stack as its potential
• Then

– Req. 1: Φ(Di) depends on a property of Di
• Future cost: To empty a stack with n elements, we need cost n

– Req. 2: Φ(Dn)≥Φ(D0) and Φ(D0)=0
– Req. 3: Compute di = ci + Φ(Di) – Φ(Di-1) for all ops:

• Assume x=Φ(Di)
• If op is push: di = ci + (x – (x-1)) = 1 + 1 = 2
• If op is pop: di = ci + (x – (x+1)) = 1 – 1 = 0
• If op is mpop(k): di = ci + (x – (x+k)) = k – k = 0

• Thus, 2*n ≥ Σdi ≥ Σci and Q is in O(n)



Ulf Leser: Algorithms and Data Structures 21

Example: Bit-Counter

• We use the number of „1“ in the bitstring as its potential
• Then 

– Req. 1: Φ(Di) depends on a property of Di
– Req. 2: Φ(Dn)≥Φ(D0) and Φ(D0)=0
– Req. 3: We compute di = ci + Φ(Di) – Φ(Di-1) for all ops

• Let the i’th operation incur ti flip-to-0 and 0 or 1 flip-to-1
• Thus, ci ≤ ti + 1
• If Φ(Di)=0, then operation i has flipped all positions to 0; this implies 

that previously they were all 1, which means that Φ(Di-1)=k
• If Φ(Di)>0, then Φ(Di)=Φ(Di-1)-ti+1
• In both cases, we have Φ(Di) ≤ Φ(Di-1)-ti+1
• Thus, di = ci + Φ(Di) – Φ(Di-1) ≤ (ti+1) + (Φ(Di-1)-ti+1) - Φ(Di-1) ≤ 2

• Thus, 2*n ≥ Σdi ≥ Σci and Q is in O(n)



Ulf Leser: Algorithms and Data Structures 22

• Two Examples
• Two Analysis Methods 
• Dynamic Tables

– SOL will be complicated … we still try to get familiar with the 
analysis method using simpler problems …

• SOL - Analysis



Ulf Leser: Algorithms and Data Structures 23

Dynamic Tables

• We use amortized analysis for something more useful: 
Complexity of operations on a dynamic table

• Assume an array T and a sequence Q of inserts/deletes
• Dynamic Tables: Keep the array small, yet avoid overflows

– Start with a table T of size 1
– When inserting and T is full, we double |T|; upon deleting and T is 

only half-full, we reduce |T| by 50%
– “Doubling”, “reducing” means: Copying data to a new array
– Assumption: Copying an element of an array costs 1

• Thus, any operation (ins or del) costs either 1 or |T|



Ulf Leser: Algorithms and Data Structures 24

Example

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6 7

1 2 3 4

insert(1)

insert(3)

insert(2)

insert(4)

insert(5)

delete(6); delete(7)

delete(5)

• Conventional WC 
analysis
– Complexity of any 

operation is O(n)
– Complexity of any Q 

is O(n2)
• But (again)

– Ops not independent
– When we double 

(costly) at some time, 
we don’t have to do 
so again for quite a 
while

Create 

Double, 
copy 2

Shrink, 
copy 4

Double, 
copy 1 
value

insert(6); insert(7)

Double, 
copy 4

1 2 3 4 5



Ulf Leser: Algorithms and Data Structures 25

With Potential Method

• Let num(T) be the current number of elements in T
• We use potential Φ(T) = 2*num(T) - |T|

– Intuitively a “potential”
• Immediately before an expansion, num(T)=|T| and Φ(T)=|T|, so there 

is much potential in T (we saved for the expansion to come)
• Immediately after an expansion, num(T)=|T|/2+1 and Φ(T)=2; almost 

all potential has been used, we need to save again for next expansion
– Formally

• Requirement 1: Of course
• Requirement 2: As T is always at least half-full, Φ(T) is always ≥0; 

we start with |T|=0, and thus Φ(Tn)-Φ(T0)≥0

1: Φ(Di) depends on a property of Di
2: Φ(Dn)≥Φ(D0)
3: di = ci + Φ(Di) – Φ(Di-1) 

1 2 3 4 5 6 |T|=8; num(T)=6



Ulf Leser: Algorithms and Data Structures 26

Continuation

• Req. 3: Let’s look at di = ci + Φ(Ti) – Φ(Ti-1) for insertions
• Without expansion

di = 1 + (2*num(Ti)-|Ti|) - (2*num(Ti-1)-|Ti-1|) 
= 1 + 2*num(Ti)-2*num(Ti-1) - |Ti| + |Ti-1|
= 1 +                  2              +       0 
= 3

• With expansion
di = num(Ti) +        (2*num(Ti)-|Ti|) - (2*num(Ti-1)-|Ti-1|) 

= num(Ti) + 2*num(Ti) – |Ti|        - 2*num(Ti-1)  +  |Ti-1| 
= num(Ti) + 2*num(Ti) - 2*(num(Ti)-1) - 2*(num(Ti)-1) +num(Ti)-1 
= 3*num(Ti) - 2*num(Ti) + 2 - 2*num(Ti) + 2 + num(Ti) – 1
= 3

• Thus, 3*n ≥ Σdi ≥ Σci and Q is in O(n) (for only insertions)

1: Φ(Di) depends on a property of Di
2: Φ(Dn)≥Φ(D0)
3: di = ci + Φ(Di) – Φ(Di-1) 



Ulf Leser: Algorithms and Data Structures 27

Intuition

• For inserts, we deposit 3 because
– 1 for the insertion (the real cost)
– 1 for the time when we need to copy 

this new element at the next 
expansion

• These 1’s fill the account with |Ti|/2 
before the next expansion

– 1 for one of the |Ti|/2 elements 
already in A after the last expansion

• These fill the account with another 
|Ti|/2 before the next expansion

• Thus, we have enough credit at 
the next expansion

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 0 1 2 3

1 2 3 4 5 6 7 8 9 0 1 2 3

1 2 3 4 5 6 7 8 9 0 1 2 3



Ulf Leser: Algorithms and Data Structures 28

Problem: Deletions

• Our strategy for deletions so far is not very clever
– Assume a table with num(T)=|T|
– Assume a sequence Q = {I,D,I,D,I,D,I …}
– This sequence will perform |T|+|T|/2+|T|+|T|/2+ … real ops
– As |T| is O(n), this Q really is in O(n2) and not in O(n)

• Simple trick: Do only contract when num(T)=|T|/4
– Leads to amortized cost of O(n) for any sequence of operations
– We omit the proof (see [Cor03])



Ulf Leser: Algorithms and Data Structures 29

• Two Examples
• Two Analysis Methods 
• Dynamic Tables
• SOL – Analysis

– Goal and idea
– Preliminaries
– A short proof



Ulf Leser: Algorithms and Data Structures 30

???

• Einen Beweis findet man erst in der dritten Cormen
Aussgabe (2009) (vorher steht aber Accounting / potential 
method drin)

• Was der beweist, weis ich icht
• Im Web )Folien Leiserson, selbes Buch) findet man auch

einfachere Beweise, die eine 4-competitiveness fest 
beweist
– Auch in das Verezcihnis kopiert

• Sollte ich anpassen



Ulf Leser: Algorithms and Data Structures 31

Re-Organization Strategies

• Recall self-organizing lists (SOL)
– Accessing the i’th element costs i
– After searching an element, we change the list L

• Three strategies

– MF, move-to-front: 

– T, transpose: 

– FC, frequency count:



Ulf Leser: Algorithms and Data Structures 32

Notation

• Assume we have a strategy A and a workload S on list L
• After accessing element i, A may move i by swapping

– Swap with predecessor (to-front) or successor (to-back)
– Let FA(l) be the number of front-swaps and XA(l) the number of 

back-swaps of step l when using strategy A
• This means: FMF/XMF for strategy MF, FT/XT … FFC/XFC
• Note: Our three strategies never back-swap: ∀l: XMF(l)=XT(l)=XFC(l)=0

– But a new strategy A could

• Let CA(S) be the total access cost of A incurred by S
– Again: CMF for strategy MF, CT for T, CFC for FC

• With conventional worst-case analysis, we can only derive 
that CA(S) is in O(|S|*|L|) – for any A
– Searched element always at last positions, swaps ignored



Ulf Leser: Algorithms and Data Structures 33

Theorem

• Theorem (Amortized costs)
Let A be any self-organizing strategy for a SOL L, MF be 
the move-to-front strategy, and S be a sequence of 
accesses to L. Then

CMF(S) ≤ 2*CA(S) + XA(S) – FA(S) - |S|

• What does this mean?
– We don‘t learn more about the absolute complexity of SOLs
– But we learn that MF is quite good
– Any strategy with the same constraints (only series of swaps) will 

at best be roughly twice as good as MF
• Assuming CA(S)>>|S| and for |S|→∞: X(S)<F(S) for any strategy

– Despite its simplicity, MF is a fairly safe bet for all workloads



Ulf Leser: Algorithms and Data Structures 34

Idea of the Proof 

• We will compare access costs in L between MF and any A
• Think of both strategies (MF, A) running S on two copies of 

the same initial list L
– After each step, A and MF perform different swaps, so all list states 

except the first very likely are different
• We will compare list states by looking at the number of 

inversions (“Fehlstellungen”)
– Actually, we only analyze how the number of inversions changes

• We will show that the number of inversions defines a 
potential of a pair of lists that helps to derive an upper 
bound on the differences in real costs



Ulf Leser: Algorithms and Data Structures 35

Content of this Lecture

• Two Examples
• Two Analysis Methods 
• Dynamic Tables
• SOL - Analysis

– Goal and idea
– Preliminaries
– A short proof



Ulf Leser: Algorithms and Data Structures 36

Inversions

• Let L and L‘ be permutation of the set {1, 2, …, n} 
• Definition 

– A pair (i,j) is called an inversion of L and L‘ iff i and j are in different 
order in L than in L‘ (for 1 ≤ i,j ≤ n and i≠j)

– The number of inversions between L and L‘ is denoted by inv(L, L‘)
• Remarks

– Different order: Once i before j, once i after j
– Obviously, inv(L, L’) = inv( L’, L)
– Example: inv( {4,3,1,5,7,2,6}, {3,6,2,5,1,4,7} ) = 12

• Without loss of generality, we assume that L={1,…,n}
– Because we only look at changes in number of inversions and not at 

the actual set of inversions



Ulf Leser: Algorithms and Data Structures 37

Sequences of Changes

• Assume we applied l-1 steps of S on L, creating LMF using 
MF and LA using A

• Let us consider the next step l, creating LMF’ and LA’

1 2 3 . . . . . . . . . . .

LA LMF

1 2 3 . . . . . . . . . . .

2 . . . 1 . . . 3 . . . . . . 2 . . . 3 . . . 1 . . . .

LA’ LMF’2 . 1 . . . . . 3 . . . . . 1 . 2 . . . 3 . . . . . . .

l-1

1



Ulf Leser: Algorithms and Data Structures 38

Inversion Changes

• How does step l change the number of inv’s between LMF/LA? 
• We compute inv(LMF’, LA’) from inv(LMF, LA)

– Assume step l accesses element i from LA
– We may assume it is at position i
– Let this element i be at some position k in LMF
– Access in LA costs i, access in LMF costs k
– After step l, A performs an unknown number of swaps; MF performs 

exactly k-1 front-swaps

1 2 3 . . . . . i . . . . . a . . . b i . . . . . . . .LA LMF

position kposition i

i a . . . b . . . . . . . .LMF’?LA’

k-1 front-swaps? front-swaps

? ? ? . . . . . ? . . . . .

? back-swaps



Ulf Leser: Algorithms and Data Structures 39

Counting Inversion Changes 1

• Let Xl be the set of values
that are before position k in 
LMF and after position i in LA

• Let Yl be the values before pos. k in LMF and before i in LA
– Clearly, |Xl| + |Yl| = k-1

• All pairs (i,c) with c∈Xl are inversions between LA and LMF
– There may be more; but only inv’s with i are affected in this step

• After step l, MF moves element i to the front 
– Assume first that A does simply nothing
– All inversions (i,c) with c∈Xl disappear (there are |Xl| many)
– But |Yl|=k-1-|Xl| new inversions appear
– Thus: inv(LMF’,LA’) = inv(LMF,LA) - |Xl| + k-1-|Xl|
– But A does something

1 2 3 . . . . . i . . . . .

. . . . . i . . . . . . . .

LA

LMF

XlYl

k-1



Ulf Leser: Algorithms and Data Structures 40

Counting Inversion Changes 2

• Assume: In step l, let A perform 
FA(l) front-swaps and 
XA(l) back-swaps

• Every front-swap (swapping i before any j) in LA decreases 
inv(LMF’,LA’) by 1
– Before step l, j must be before i in LA (it is a front-swap), but after i

in LMF’ (because i now is the first element in LMF’)
– After step l, i is before j in both LA’ and LMF’ – inversion removed

• Equally, every back-swap increases inv(LMF’,LA’) by 1
• Together: After step l, we have

inv(LMF’,LA’) = inv(LMF,LA) - |Xl| + k-1-|Xl| - FA(l) + XA(l)

1 2 3 . . . j . i . . . . .

i . . . . . . . . . . . . .

LA

LMF‘

Before step l through MF through A



Ulf Leser: Algorithms and Data Structures 41

Amortized Costs

• Let tMF(l) be the real cost of strategy MF for step l
• We use the number of inversions as potential function 

Φ(LA,LMF)=inv(LA, LMF) on the pair LA, LMF
• Definition

– The amortized costs of step l, called al, are
al = tMF(l) + inv(LA(l), LMF(l)) – inv(LA(l-1), LMF(l-1))

– Accordingly, the amortized costs of sequence S, |S|=m, are
∑al = ∑tMF(l) + inv(LA(m), LMF(m)) – inv(LA(0), LMF(0))

• This is a proper potential function
– 1: Φ depends on a property of the pair LA, LMF
– 2: inv() can never be negative, so ∀l: Φ(LA(l), LMF(l)) ≥ Φ(L,L)=0

• Let’s look at how operations change the potential

Was cl … was dl … we switch to Cor09 notation



Ulf Leser: Algorithms and Data Structures 42

Content of this Lecture

• Two Examples
• Two Analysis Methods 
• Dynamic Tables
• SOL - Analysis

– Goal and idea
– Preliminaries
– A short proof (after much preparatory work)



Ulf Leser: Algorithms and Data Structures 43

Putting it Together

• We know for every step l from S accessing some i:
inv(LMF’,LA’) = inv(LMF,LA) - |Xl| + k-1-|Xl| - FA(l) + XA(l)
and thus
inv(LMF’,LA’) - inv(LMF,LA) = -|Xl|+k-1-|Xl| - FA(l) + XA(l)

• Since tMF(l)=k, we get amortized costs of
al = tMF(l) + inv(LA’, LMF’) – inv(LA, LMF)

al = k - |Xl|+k-1-|Xl| - FA(l) + XA(l)
= 2(k-|Xl|) - 1 - FA(l) + XA(l)

• Recall that Yl (|Yl|=k-1-|Xl|) are those elements before i in 
both lists. This implies that k-1-|Xl| ≤ i-1 or k-|Xl|≤i
– There can be at most i-1 elements before position i in LA

• Therefore: al ≤ 2i - 1 - FA(l) + XA(l)



Ulf Leser: Algorithms and Data Structures 44

Putting it Together

• This is the central trick!
• Because we only looked at inversions (and hence the 

sequence of values), we can draw a connection between 
the value that is accessed and the number of inversions 
that are affected

• Recall that Yl (|Yl|=k-1-|Xl|) are those elements before i in 
both lists. This implies that k-1-|Xl| ≤ i-1 or k-|Xl|≤i
– There can be at most i-1 elements before position i in LA

• Therefore: al ≤ 2i - 1 - FA(l) + XA(l)



Ulf Leser: Algorithms and Data Structures 45

Aggregating

• We also know the real cost of accessing i using A: tA(l)=i
• Together: al ≤ 2tA(l) - 1 - FA(l) + XA(l)
• Aggregating this inequality over all al in S, we get

∑al ≤ 2*CA(S) – |S| – FA(S) + XA(S)
• By definition, we also have (m=|S|)

∑al = ∑tMF(l) + inv(LA
m, LMF

m) – inv(LA
0, LMF

0)
• Since ∑tMF(l) = CMF(S) and inv(LA

0, LMF
0)=0, we get

CMF(S) + inv(LA
m, LMF

m) ≤ 2*CA(S) – |S| – FA(S) + XA(S)
• It finally follows (inv()≥0)

CMF(S) ≤ 2*CA(S) – |S| – FA(S) + XA(S)



Ulf Leser: Algorithms and Data Structures 46

Summary

• Looking at sequences of operations with self-organization 
creates a new class of problem
– Things change during a workload
– These changes (positively) influence future costs of operations
– Not at random – we follow a strategy

• Analysis is none-trivial, but
– Helped to find a elegant and surprising conjecture
– Very interesting in itself: We showed relationships between 

measures we never counted (and could not count easily)
– But beware the assumptions (e.g., only single swaps)
– Original work: Sleator, D. D. and Tarjan, R. E. (1985). "Amortized 

efficiency of list update and paging rules." Communications of the 
ACM 28(2): 202-208.


	Foliennummer 1
	Foliennummer 2
	Setting
	„Amortizing“
	Algorithmic Example 1: Multi-Pop (mpop)
	Problem
	Example 2: Bit-Counter
	Problem
	Foliennummer 9
	Accounting Analysis
	Application to mpop
	Application to mpop
	Choose d‘s carefully
	Application to Bit-Counter
	Application to Bit-Counter -2- 
	Foliennummer 16
	Potential Method: Idea
	Potential Function
	Details: Always Pay in Advance
	Example: mpop
	Example: Bit-Counter
	Foliennummer 22
	Dynamic Tables
	Example
	With Potential Method
	Continuation
	Intuition
	Problem: Deletions
	Foliennummer 29
	???
	Re-Organization Strategies
	Notation
	Theorem
	Idea of the Proof 
	Content of this Lecture
	Inversions
	Sequences of Changes
	Inversion Changes
	Counting Inversion Changes 1
	Counting Inversion Changes 2
	Amortized Costs
	Content of this Lecture
	Putting it Together
	Putting it Together
	Aggregating
	Summary

