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Abstract 

Linear system solving is a main workhorse in applied mathematics. Recently, theoretical 

computer scientists contributed sophisticated algorithms for solving linear systems with sym- 

metric diagonally dominant (SDD) matrices in provably nearly-linear time. These algorithms 

are very interesting from a theoretical perspective, but their practical performance was unclear. 

Here we address this gap. We provide the first implementation of the combinatorial solver 

by Kelner et al. [STOC 2013], which is appealing for implementation due to its conceptual 

simplicity. The algorithm exploits that a Laplacian matrix (which is SDD) corresponds to a 

graph; solving symmetric Laplacian linear systems amounts to finding an electrical flow in this 

graph with the help of cycles induced by a spanning tree with the low-stretch property. 

The results of our experiments are ambivalent. While they confirm the predicted nearly- 

linear running time, the constant factors make the solver much slower for reasonable inputs 

than basic methods with higher asymptotic complexity. We were also not able to use the solver 

effectively as smoother or preconditioner. Moreover, while spanning trees with lower stretch 

indeed reduce the solver’s running time, we experience again a discrepancy in practice: In our 

experiments simple spanning tree algorithms perform better than those with a guaranteed low 

stretch. 

1 Introduction 

Solving square linear systems Ax = b , where A ∈ Rn × n and x, b ∈ Rn, is one of the most important 

problems in applied mathematics with wide applications in science and engineering. In practice 

system matrices are often sparse , i. e. they contain O ( n ) nonzeros. Ideally, the required time for 

solving sparse systems would grow linearly with the number of nonzeros 2 m . Most direct solvers, 

however, show cubic running times and do not exploit sparsity. Also, approximate solutions usually
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suffice due to the imprecision of floating point arithmetic. Exploiting this fact with sparse iterative 

solvers such as conjugate gradient (CG) still yields a running time that is clearly superlinear in n . 

Spielman and Teng [31], following an approach proposed by Vaidya [34], achieved a major 

breakthrough in this direction by devising a nearly-linear time algorithm for solving linear systems 

in symmetric diagonally dominant matrices. Nearly-linear means O 

(
m · polylog( n ) · log(1 /ϵ )

) 

here, where polylog( n ) is the set of real polynomials in log( n ) and ϵ is the relative error ∥ x − 

xopt 

∥A 

/ ∥ xopt 

∥A 

we want for the solution x ∈ Rn. Here ∥ · ∥A 

is the norm ∥ x ∥A 

:= 

√

 

xT Ax given 

by A , and xopt 

:= A+ b is an exact solution (where A+ refers to the pseudoinverse of A ). A matrix 

A = ( aij)i,j ∈ [ n ] 

∈ Rn × n is diagonally dominant if | aii 

| ≥ 

∑ 

j ̸ = i 

| aij 

| for all i ∈ [ n ] . 

Symmetric matrices that are diagonally dominant (SDD matrices) have many applications, e.g. 

in elliptic PDEs [7], maximum flows [11], and sparsifying graphs [30]; also see [18]. Thus, the 

problem INV - SDD of solving linear systems Ax = b for x on SDD matrices A is of significant 

importance. We focus here on Laplacian matrices (which are SDD) due to their rich applications in 

algorithms for undirected graphs, e. g. load balancing [13, 25], but this is no major limitation [19]. 

Related work. Spielman and Teng’s seminal paper [31] requires a lot of sophisticated machin- 

ery: a multilevel approach [34, 28] using recursive preconditioning, preconditioners based on low- 

stretch spanning trees [32] and spectral graph sparsifiers [30, 21]. Later papers extended this ap- 

proach, both by making it simpler and by reducing the exponents of the polylogarithmic time 

factors.1 We focus on a simplified algorithm by Kelner et al. [19] that reinterprets the problem of 

solving an SDD linear system as finding an electrical flow in a graph. It only needs low-stretch 

spanning trees and achieves O 

(
m log2 n log log n log(1 /ϵ )

) 

time. Another interesting nearly-linear 

time SDD solver is the recursive sparsification approach by Peng and Spielman [27]. Together with 

a parallel sparsification algorithm (e.g. [20]) it yields a nearly-linear work parallel algorithm. 

Spielman and Teng’s algorithm crucially uses the low-stretch spanning trees first introduced by 

Alon et al. [3]. (For a definition of stretch see Section 2.) Elkin et al. [14] provide an algorithm 

for computing spanning trees with polynomial stretch in nearly-linear time. Specifically, they get 

a spanning tree with O ( m log2 n log log n ) stretch in O ( m log2 n ) time. Abraham et al. [1, 2] later 

showed how to get rid of some of the logarithmic factors in both stretch and time. Papp [26] 

tested these algorithms in practice and showed that they do not usually result in spanning trees with 

lower stretch than a simple minimum-weight spanning tree computed with Kruskal’s algorithm [22] 

and that Elkin et al.’s original algorithm [14] achieves the best results among the provably good 

approaches. We use these low-stretch spanning trees in our implementation of Kelner et al’s. [19] 

algorithm and compare their effectiveness for the solver. 

Motivation, Outline, and Contribution. Although several extensions and simplifications to 

Spielman and Teng’s nearly-linear time solver [31] have been proposed, there is a lack of results 

how they all perform in practice. We seek to fill this gap by implementing and evaluating an algo- 

rithm proposed by Kelner et al. [19] that is fascinating due to its simple description and easier to 

implement (and thus more promising in practice) than the original Spielman-Teng algorithm. 

Hence, in this paper we implement the KOSZ solver (the acronym follows from the authors’ 

last names) by Kelner et al. [19] and investigate its practical performance. To this end, we start

 

1Spielman provides a comprehensive overview of later work at https://sites.google.com/a/yale. 

edu/laplacian/ (accessed on November 18, 2015). 
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in Section 2 by describing important notation and outlining KOSZ. In Section 3 we elaborate on 

the design choices one can make when implementing KOSZ. In particular, we explain when these 

choices result in a provably nearly-linear time algorithm. Section 4 contains the experimental 

evaluation of the Laplacian solver KOSZ. We consider the configuration options of the algorithm, 

its asymptotics, its convergence and its use as a preconditioner or as a smoother. Our results confirm 

a nearly-linear running time, but are otherwise disappointing from a practical point of view: The 

asymptotics hide very high constant factors, in part due to memory accesses. We conclude the 

paper in Section 5 by summarizing the results and discussing future research directions. 

2 Preliminaries 

Fundamentals. We consider undirected simple graphs G = ( V , E ) with n vertices and m edges. 

A graph is weighted if we have an additional function w : E → R> 0. Where necessary we consider 

unweighted graphs to be weighted with we 

= 1 ∀ e ∈ E . We usually write an edge { u, v } ∈ E 

as uv and its weight as wuv. Moreover, we define the set operations ∪ , ∩ and \ on graphs by 

applying them to the set of vertices and the set of edges separately. For every node u ∈ V its 

neighborhood NG( u ) is the set NG( u ) := { v ∈ V : uv ∈ E } of vertices v with an edge to u 

and its degree du 

is du 

= 

∑ 

v ∈ NG( u ) 

wuv. The Laplacian matrix of a graph G = ( V , E ) is defined 

as Lu,v 

:= − wuv 

if uv ∈ E , 

∑ 

x ∈ NG( u ) 

wux 

if u = v , and 0 otherwise for u, v ∈ V . A Laplacian 

matrix is always an SDD matrix. Another useful property of the Laplacian is the factorization 

L = B 

T R 

− 1 B , where B ∈ RE × V is the incidence matrix and R ∈ RE × E is the resistance matrix 

defined by Bab,c 

= 1 if a = c , = − 1 if b = c , and 0 otherwise. Re1 

,e2 

= 1 /we1 

if e1 

= e2 

and 0 

otherwise. This holds for all e1 

, e2 

∈ E and a, b, c ∈ V , where we arbitrarily fix a start and end 

node for each edge when defining B . With xT Lx = ( B x )T R 

− 1( B x ) = 

∑ 

e ∈ E( B x )2 

e 

· we 

≥ 0 

(every summand is non-negative), one can see that L is positive semidefinite . (A matrix A ∈ Rn × n 

is positive semidefinite if xT Ax ≥ 0 for all x ∈ Rn.) 

Cycles, Spanning Trees, and Stretch. A cycle in a graph is usually defined as a simple path that 

returns to its starting point and a graph is called Eulerian if there is a cycle that visits every edge 

exactly once. In this work we will interpret cycles somewhat differently: We say that a cycle in G 

is a subgraph C of G such that every vertex in G is incident to an even number of edges in C , i. e. a 

cycle is a union of Eulerian graphs. It is useful to define the addition C1 

⊕ C2 

of two cycles C1 

, C2 

to 

be the set of edges that occur in exactly one of the two cycles, i. e. C1 

⊕ C2 

:= ( C1 

\ C2) ∪ ( C2 

\ C1) . 

In algebraic terms we can regard a cycle as a vector C ⊆ FE 

2 

( F2 

is the finite field of order 2 ) such 

that 

∑ 

v ∈ NC( u ) 1 = 0 in F2 

for all u ∈ V and the cycle addition as the usual addition on FE 

2 

. We 

call the resulting linear space of cycles C ( G ) . 

In a spanning tree (ST) T = ( V , ET ) of G there is a unique path PT ( u, v ) from every node u to 

every node v . For any edge e = uv ∈ E \ ET 

(an off-tree-edge with respect to T ), the subgraph 

e ∪ PT ( u, v ) is a cycle, the basis cycle induced by e . One can easily show that the basis cycles form 

a basis of C ( G ) . Thus, the basis cycles are very useful in algorithms that need to consider all the 

cycles of a graph. Another notion we need is a measure of how well a spanning tree approximates 

the original graph. We capture this by the stretch st( e ) = 

(∑ 

e′ ∈ PT ( u,v ) 

we′ 

)
/we 

of an edge e = 

uv ∈ E . This stretch is the detour you need in order to get from one endpoint of the edge to the 

other if you stay in T , compared to the length of the original edge. In the literature the stretch 
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Figure 1: Transformation into an electrical network. 

is sometimes defined slightly differently, but we follow the definition in [19] using we. The total 

stretch of the whole tree T is the sum of the individual stretches st( T ) = 

∑ 

e ∈ E 

st( e ) . Finally, we 

define the average stretch as the total stretch divided by the total edge weight. Finding a spanning 

tree with low stretch is crucial for proving the fast convergence of the KOSZ solver. 

Electrical Network Analogy. We can regard G as an electrical network where each edge uv 

corresponds to a resistor with conductance wuv 

and x as an assignment of potentials to the nodes 

of G (cf. Figure 1). L operates on every vector x ∈ Rn via ( Lx )u 

= 

∑ 

v ∈ N ( u )( xu 

− xv) · wuv 

for each u ∈ V . Then xu 

− xv 

is the voltage across uv and ( xu 

− xv) · wuv 

is the result- 

ing current along uv . Thus, ( Lx )u 

is the current flowing out of u that we want to be equal to 

the right-hand side bu. Furthermore, one can reduce solving SDD systems to the related prob- 

lem INV - LAPLACIAN - CURRENT [19]: Given a Laplacian L = L ( G ) and a vector b ∈ im( L ) , 

compute a function f : Ẽ → R with (i) f being a valid graph flow on G with demand b and 

(ii) the potential drop along every cycle in G being zero, where a valid graph flow means that 

the sum of the incoming and outgoing flow at each vertex respects the demand in b and that 

f ( u, v ) = − f ( v , u ) ∀ uv ∈ E . Also, Ẽ is a bidirected copy of E and the potential drop of cy- 

cle C is 

∑ 

e ∈ C 

f ( e ) re. 

KOSZ (Simple) Solver. The idea of the algorithm is to start with any valid flow and successively 

adjust the flow such that every cycle has potential zero. We need to transform the flow back to 

potentials at the end, but this can be done consistently, as all potential drops along cycles are zero. 

Regarding the crucial question of what flow to start with and how to choose the cycle to be 

repaired in each iteration, Kelner et al. [19] suggest using the cycle basis induced by a spanning

 

Input : Laplacian L = L ( G ) and vector b ∈ im( L ) . 

Output : Solution x to Lx = b . 

1 T ← a spanning tree of G 

2 f ← unique flow with demand b that is only nonzero on T 

3 while there is a cycle with potential drop ̸ = 0 in f do

 

4 c ← cycle in C ( T ) chosen randomly weighted by stretch 

5 f ← f − 

cT R f

 

cT R c 

c

 

6 return vector of potentials in f with respect to the root of T

 

Algorithm 1: INV - LAPLACIAN - CURRENT solver KOSZ. 
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tree T of G and prove that the convergence of the resulting solver depends on the stretch of T . 

More specifically, they suggest starting with a flow that is nonzero only on T and weighting the 

basis cycles proportionate to their stretch when sampling them. The resulting algorithm is shown 

as Algorithm 1; note that we may stop before all potential drops along cycles are zero and we can 

consistently compute the potentials induced by f at the end by only looking at T . 

The solver described in Algorithm 1 is actually just the SimpleSolver in Kelner et al.’s [19] 

paper. They also show how to improve this solver by adapting preconditioning to the setting of 

electrical flows. In informal experiments we could not determine a strategy that is consistently 

better than the SimpleSolver , so we do not pursue this scheme any further here. Eventually, 

Kelner et al. derive the following running time for the KOSZ (simple) solver: 

Theorem 1. [19, Thm. 3.2] SimpleSolver can be implemented to run in time 

O ( m log2 n log log n log( ϵ− 1 n )) for computing an ϵ -approximation of x . 

3 Implementation 

While Algorithm 1 provides the basic idea of the KOSZ solver, it leaves open several implementa- 

tion decisions that we elaborate on in this section. 

3.1 Spanning trees 

As suggested by the convergence result in Theorem 1, the KOSZ solver depends on low-stretch 

spanning trees. The notion of stretch was introduced by Alon et al. [3] along with an algorithm 

to compute a spanning tree with low stretch. Unfortunately, the stretch guaranteed by their algo- 

rithm is super-polynomial. Elkin et al. [14] presented an algorithm requiring nearly-linear time 

and yielding nearly-linear average stretch. The basic idea is to recursively form a spanning tree 

using a star of balls in each recursion step. We use Dijkstra with binary heaps for growing the balls 

and take care not to need more work than necessary to grow the ball. In particular, ball growing 

is output-sensitive and growing a ball B ( x, r ) := { v ∈ V : distance from x to v is ≤ r } should 

require O ( d log n ) time where d is the sum of the degrees of the nodes in B ( x, r ) . The exponents 

of the logarithmic factors of the stretch of this algorithm were improved by subsequent papers, but 

Papp [26] showed experimentally that these improvements do not yield better stretch in practice. 

In fact, his experiments suggest that the stretch of the provably good algorithms is usually not bet- 

ter than just taking a minimum-weight spanning tree. Therefore, we additionally use two simpler 

spanning trees without stretch guarantees: A minimum-distance spanning tree with Dijkstra’s algo- 

rithm (the tree built implicitly during the search) and binary heaps; as well as a minimum-weight 

spanning tree with Kruskal’s algorithm using union-find with union-by-size and path compression. 

To test how dependent the algorithm is on the stretch of the ST, we also look at a special 

ST for n1 

× n2 

grids. As depicted in Figure 2, we construct this spanning tree by subdividing the 

n1 

× n2 

grid into four subgrids as evenly as possible (the subgrid sizes are shown in Figure 2(a)), re- 

cursively building the STs in the subgrids (the termination of the recursion is shown in Figure 2(b)) 

and connecting the subgrids by a U-shape in the middle. 

Proposition 2. Let G be an n1 

× n2 

grid with n1 

, n2 

≥ 4 . Then the special ST has O 

( ( n1+ n2)2 log( n1+ n2)

 

n1 

n2 

) 

average stretch on G . 
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(a) Recursive construction

 

(b) ST for n1 

= n2 

= 4 

Figure 2: Special spanning tree with O 

( ( n1+ n2)2 log( n1+ n2)

 

n1 

n2 

) 

average stretch for the n1 

× n2 

grid. 

Proof. First note that, by the recursive construction, the total stretch of the four subgrids remains 

the same if such a subgrid is treated separately. Moreover, the stretches of the O ( n1 

+ n2) off-tree 

edges between the rows ⌊ n1 

/ 2 ⌋ and ⌊ n1 

/ 2 ⌋ + 1 as well as the columns ⌊ n2 

/ 2 ⌋ and ⌊ n2 

/ 2 ⌋ + 1 are 

in O ( n1 

+ n2) each. To see this, let s and t be the source and target vertices of such an off-tree 

edge, respectively. Then, by construction, it is possible to reach the center from s in O ( n1 

+ n2) 

steps and t from the center likewise. Consequently, S 

(
n1 

, n2 

) 

= 4 · S 

(
n1 

/ 2 , n2 

/ 2
)
+ O 

(
n1 

+ n2 

)2 

when disregarding rounding. After solving this recurrence (note that S ( n1 

/ 2 , n2 

/ 2) is essentially 

one fourth in size compared to S ( n1 

, n2) as long as n1 

, n2 

≥ 4 ), we get 

S 

(
n1 

, n2 

) 

= O 

(
( n1 

+ n2)
2 log( n1 

+ n2)
)
. 

Since the number of edges is Θ( n1 

n2) , the claim for the average stretch follows.

 

In case of a square grid ( n1 

= n2) with N = n1 

× n2 

vertices, we get S ( N ) = 4 S ( N / 4) + 

O ( N ) = O ( N log N ) = O ( n2 

1 log( n1)) and thus O (log n1) average stretch. A logarithmic average 

stretch (and thus detour) is noteworthy since the average distance between a random pair of nodes 

in the square grid is Ω( n1) . Also, for this special case, our result slightly improves on the general 

low-stretch spanning tree algorithms. Later on in this paper, we will use it in comparison to other 

spanning trees to assess their effect on the KOSZ solver. 

3.2 Flows on trees 

Since every basis cycle contains exactly one off-tree-edge, the flows on off-tree-edges can simply 

be stored in a single vector. To be able to efficiently get the potential drop of every basis cycle and 

to be able to add a constant amount of flow to it, the core problem is to efficiently store and update 

flows in T . We want to support the following operations for all u, v ∈ V and α ∈ R on the flow f : 

• query( u, v ) : return the potential drop 

∑ 

e ∈ PT ( u,v ) 

f ( e ) re 

• update( u, v , α ) : set f ( e ) := f ( e ) + α for all e ∈ PT ( u, v )

 

} 

(1)

 

We can simplify the operations by fixing v to be the root r of T : 
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• query( u ) : return the potential drop 

∑ 

e ∈ PT ( u,r ) 

f ( e ) re 

and 

• update( u, α ) : set f ( e ) := f ( e ) + α for all e ∈ PT ( u, r ) .

 

} 

(2)

 

The itemized two-node operations can then be supported with query( u, v ) := query( u ) − 

query( v ) and update( u, v , α ) := 

{
update( u, α ) and update( v , − α )

} 

since the changes on the 

subpath PT 

(
r, LCA( u, v )

) 

cancel out. Here LCA( u, v ) is the lowest common ancestor of the nodes 

u and v in T , the node farthest from r that is an ancestor of both u and v . We provide two approaches 

for implementing the operations; they are described next in some detail. 

Linear time updates. The trivial implementation of (2) directly stores the flows in the tree and 

implements each operation in (2) with a single traversal from the node u to the root r . We can 

improve this implementation by only traversing up to LCA( u, v ) in (1). Of course, this does not 

help with the worst-case time O ( n ) , but could be quite significant in practice since basis cycles are 

often short. Data structures that answer LCA queries for pairs of nodes after some precomputation 

are a classical topic, optimal solutions are known [16, 6]. In our implementation we use a simpler 

implementation with higher (but still insignificant) preprocessing time that transforms an LCA 

query into a range minimum query (RMQ), the problem of determining the minimum in a subrange 

of an array. We can then solve the RMQ problem by precomputing the RMQ of every range 

whose length is a power of two, i. e. for each i with 2i ≤ n and every j ∈ [ n ] we compute 

prec [ i, j ] := argmin v [ j . . . j + 2i − 1] . This can be done in O 

(
n log n

) 

time. 

Logarithmic time updates. While the data structure presented above allows fast repairs for short 

basis cycles, the worst-case time is still in O ( n ) . We therefore also implement the data structure by 

Kelner et al. [19] with O (log n ) worst-case time repairs. It is based on link-cut trees [29]. The first 

observation it uses is that every rooted tree T on n nodes can be decomposed into edge-disjoint 

subtrees intersecting in exactly one node such that each subtree has ≤ n/ 2 nodes. Equivalently, we 

find a vertex in T all of whose induced subtrees have size ≤ n/ 2 . We call such a vertex a good 

vertex separator . By recursively finding good vertex separators on the subtrees, we get a recursive 

decomposition of the whole tree into subtrees. Since the size of the trees halves in each step, the 

depth of this decomposition is at most O (log n ) . 

Remark 3. We can implement query and update efficiently by storing several values: (i) ddrop: 

the total potential drop on the path PT ( r, d ) , (ii) dext: the total flow contribution to PT ( r, d ) from 

vertices below d , and (iii) height( u ) := 

∑ 

e ∈ PT ( r, a ) ∩ RT ( r,d ) 

re 

for every u ∈ V ( T ) , i. e. the accumu- 

lated resistance in common between the PT ( r, d ) path and the PT ( r, a ) path. 

Then we can compute query( u ) as follows: If u ∈ T0, the potential drop consists of the potential 

drop query T0
( u ) in T0 

and the part dext 

· height( u ) of the potential drop caused by vertices beyond d . 

If, however, u ∈ Ti 

and u ̸ = d , then we have the complete potential drop ddrop 

along PT ( d, r ) and a 

recursive potential drop query Ti
( u ) . 

The update( u, α ) operation can be implemented similarly: If u ̸∈ T0, we need to adjust dext 

by α . In all cases we need to update ddrop 

by the height( u ) part of the PT ( r, u ) path in common 

with T0. Unless u = d , we then need to recursively update the tree Ti 

with u ∈ Ti. While we 

could directly implement this recursion, we unroll it to get a more efficient implementation. We 

can store the complete state of the data structure in a dense vector x containing the ddrop 

and dext 
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values for all recursion levels. For each u ∈ T , query is then a dot product q ( u ) · x with a vector 

q ( u ) containing the appropriate coefficients and update( u, α ) is a vector addition x := x + α l ( u ) 

with a vector l ( u ) . The vectors q ( u ) and l ( u ) are sparse with at most O (log n ) nonzero entries and 

can be determined directly from the recursive decomposition in O 

(
n log( n )

) 

time (their entries are 

either height( u ) or 1 ). Kelner et al. [19] provide more details about the unrolling. 

Results. In our experiments (details omitted due to space constraints) the cost of querying the 

LCA-based data structure (LCAFlow) strongly depends on the structure of the used spanning tree, 

while the logarithmic-time data structure (LogFlow) induces costs that stay nearly the same. Sim- 

ilarly, the cost of LCAFlow grows far more with the size of the graph than LogFlow and LogFlow 

wins for the larger graphs in both classes. For these reasons, we only use LogFlow in later results. 

3.3 Remarks on Initial Solution and Cycle selection 

Given x we can compute a flow f via fuv 

:= x ( u ) − x ( v ) . The potential drop of each cycle in this 

flow f is zero. Unfortunately, this flow is not a valid graph flow with demand b – unless x already 

fulfills Lx = b . In contrast, in the solver we iteratively establish the zero-cycle-sum property from 

the flow originally induced by the spanning tree T . There is an important consequence: We cannot 

start from an arbitrary vector x , which may make it harder to use the solver in a larger context. 

The easiest way to select a cycle, in turn, is to choose an off-tree edge uniformly at random 

in O (1) time. However, to get provably good results, we need to weight the off-tree-edges by 

their stretch, i. e. edges chosen with probability proportionate to their stretch. We can use the flow 

data structure described above to get the stretches. More specifically, the data structure initially 

represents f = 0 . For every off-tree edge uv we first execute update( u, v , 1) , then query( u, v ) to 

get 

∑ 

e ∈ PT ( u,v ) 

re 

and finally update( u, v , − 1) to return to f = 0 . This results in O ( m log n ) time 

to initialize cycle selection. Once we have the weights, we use roulette wheel selection in order 

to select a cycle in O (log m ) time after an additional O ( m ) time initialization. Roulette wheel 

selection is a simple strategy to sample an arbitrary discrete distribution with finite support: (i) Let 

X be a random variable with Prob [ X = xi] = pi 

for i ∈ [ k ] . (ii) Precompute the prefix sums 

P = (0 , p1 

, p1 

+ p2 

, . . . , p1 

+ · · · + pk 

= 1) . (iii) To sample, choose a uniform random value 

x ∈ [0 , 1) . Then find the index i with Pi 

≤ x < Pi +1 

using binary search and output xi. The 

probability for getting xi 

with this scheme is 

∣∣∣ 

[∑i − 1 

j =0 

pi 

, 

∑i 

j =0 

pi 

)∣∣∣ 

= pi 

, as desired. 

4 Evaluation 

4.1 Settings 

Software, hardware, and data. We implemented the KOSZ solver in C++ using NetworKit [33], 

a tool suite focused on large-scale network analysis. Our code is publicly available.2 As compiler 

we use g++ 4.8.3. The benchmark platform is a dual-socket server with two 8-core Intel Xeon E5- 

2680 at 2.7 GHz each and 256 GB RAM. We present a representative subset of our experiments,

 

2Information: http://parco.iti.kit.edu/software-en.shtml , 

code: https://algohub.iti.kit.edu/parco/NetworKit/NetworKit-SDD . 
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in which we compare our KOSZ implementation to existing linear solvers as implemented by the 

libraries Eigen 3.2.2 [15] and Paralution 0.7.0 [23], both libraries with fast sparse matrix solvers. 

We mainly use two graph classes for our tests: (i) Rectangular k × l grids given by Gk ,l 

:=(
[ k ] × [ l ] , 

{
{ ( x1 

, y1) , ( x2 

, y2) } ⊆ 

(
V 

2 

) 

: | x1 

− x2 

| = 1 ∨ | y1 

− y2 

| = 1
})

. Laplacian systems on 

grids are, for example, crucial for solving boundary value problems on rectangular domains; Note 

that Gk ,l 

is very uniform, i. e. most of its nodes have degree 4 . (ii) Barabási-Albert [5] random 

graphs with parameter k . These random graphs are parametrized with a so-called attachment k . 

Their construction models that the degree distribution in many natural graphs is not uniform at all. 

For both classes of graphs, we consider both unweighted and weighted variants (uniform ran- 

dom weights in [1 , 8] ). We also did informal tests on 3D grids and graphs that were not generated 

synthetically. These graphs did not exhibit significantly different behavior than the two graph 

classes above and are therefore omitted from the presentation of the results. 

Termination and performance counters. In the description of the solver so far we did not state 

our termination condition and Kelner et al. [19] only give a theoretical expected number of iter- 

ations to achieve a desired error in ∥ · ∥L. We choose, as usual in iterative solvers, to terminate 

when the relative residual ∥ Ax − b ∥2 

/ ∥ b ∥2 

is smaller than a given ϵ > 0 . Unfortunately, the KOSZ 

solver cannot keep track of the residual. To get it, we must first compute the dual potential vector x . 

Since this takes O 

(
m log( n )

) 

time, we cannot update the residual every iteration. Therefore, to still 

get provably nearly-linear time, we heuristically choose to update it every m iterations. Informal 

experiments show that computing the residuals takes less than 3% of the global time and that only 

updating every m iterations does not prolong convergence more than 4% in all of our tests. 

CPU performance characteristics such as the number of executed FLOPS (floating point opera- 

tions), etc. are measured with the PAPI library [10]. Each of our benchmarking runs takes several 

seconds (billions of cycles), so we expect the counter values to be quite accurate. Moreover, our 

most basic choice to reduce the impact of possible measurement errors is to repeat the bench- 

mark multiple times and average the values gathered. In our case, we repeated each measurement 

10 times. This number is mainly motivated by time constraints. Since the resulting measurements 

are not skewed, we believe that the central limit theorem (an asymptotic theorem) is already appli- 

cable for these 10 runs. Given that the measured standard deviations are below 5%, the real counter 

values are within − erf(0 . 025) · 5% /
√

 

10 ≈ 3% of the measured mean value with 95% confidence. 

In addition, we take an optimistic approach with regards to cache usage and start each series of 

runs with a dry run that fills the caches. 

4.2 Results 

Spanning tree. Papp [26] tested various low-stretch spanning tree algorithms and found that in 

practice the provably good low-stretch algorithms do not yield better stretch than simply using 

Kruskal. We confirm and extend this observation by comparing our own implementation of Elkin 

et al.’s [14] low-stretch ST algorithm to Kruskal and Dijkstra in Figure 3. Except for the unweighted 

100 × 100 grid, Elkin has worse stretch than the other algorithms and Kruskal yields a good ST. 

For Barabási-Albert graphs, Elkin is extremely bad (almost factor 20 worse). Interestingly, Kruskal 

outperforms the other algorithms even on the unweighted Barabási-Albert graphs, where it degen- 

erates to choosing an arbitrary ST. Figure 3 also shows that our special ST yields significantly lower 

stretch for the unweighted 2D grid, but it does not help in the weighted case. 
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Figure 3: Average stretch st( T ) /m with different ST algorithms. 

Convergence. In Figure 4 we plot the convergence of the residual for different graphs and dif- 

ferent algorithm settings. We examine a 100 × 100 grid and a Barabási-Albert graph with 25 , 000 

nodes. In this experiment we determine the energy gap ξr( f ) − ξr( fopt) by fixing the optimal solu- 

tion x and taking Lx as right hand side, i. e. ξr( fopt) = ζr( x ) . As expected, the energy in all runs 

decreases monotonically. While the residuals can increase, they follow a global downward trend. 

Also note that the spikes of the residuals are smaller if the convergence is better and that the order 

(by convergence speed) of the residual curves and the energy curves is the same. 

In all cases the solver converges exponentially, but the convergence speed crucially depends on 

the solver settings. If we select cycles by their stretch, the order of the convergence speeds is the 

same as the order of the stretches of the ST (cmp. Figure 3), except for the Dijkstra ST and the 

Kruskal ST on the weighted grid. In particular, for the Elkin ST on Barabási-Albert graphs, there 

is a significant gap to the other settings where the solver barely converges at all and the special ST 

wins. Thus, low-stretch STs are crucial for convergence. In informal experiments we also saw this 

behavior for 3D grids and non-synthetic graphs. In contrast, for the uniform cycle selection on the 

unweighted grid, the special ST is superior over the Kruskal ST, even though its stretch is smaller. 

This is caused by the fact that the basis cycles with the Kruskal ST are longer than the basis cycles 

with the special ST and fixing them helps more. Still, the other curves with uniform cycle selection 

follow the stretch. 

Using the results of all our experiments, we are not able to detect any correlation between the 

improvement made by a cycle repair and the stretch of the cycle. Therefore, we cannot fully ex- 

plain the different speeds with uniform cycle selection and stretch cycle selection. For the grid 

the stretch cycle selection wins, while Barabási-Albert graphs favor uniform cycle selection. An- 

other interesting observation is that most of the convergence speeds stay constant after an initial 

fast improvement at the start to about residual 1 . That is, there is no significant change of behav- 

ior or periodicity. Even though we can hugely improve convergence by choosing the right set- 

tings, even the best convergence is still very slow, e.g. we need about 6 million iterations ( ≈ 3000 

sparse matrix-vector multiplications (SpMVs) in time comparison) on a Barabási-Albert graph with 

25 , 000 nodes and 100 , 000 edges in order to reach residual 10− 4. In contrast, conjugate gradient 

(CG) without preconditioning only needs 204 SpMVs for this graph (preconditioning is explained 

in the corresponding subsection below). 
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(a) 100 × 100 grid, unweighted
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(b) 100 × 100 grid, weighted
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(c) Barabási-Albert, n = 25000 , unweighted
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(d) Barabási–Albert, n = 25000 , weighted 

Figure 4: Convergence of the residual. Terminate when residual ≤ 10− 4. 

Asymptotics. Now that we know which settings of the algorithm yield the best performance for 

2D grids and Barabási-Albert graphs, we proceed by looking at how the performance with these 

settings behaves asymptotically and how it compares to conjugate gradient (CG) without precondi- 

tioning, a simple and popular iterative solver (often used in its preconditioned form). Since KOSZ 

turns out to be not competitive, we do not need to compare it to more sophisticated algorithms. 

In Figure 5 each occurrence of c stands for a new instance of a real constant. We expect the cost 

of the CG method to scale with O ( n1 . 5) on 2D grids [12], while our KOSZ implementation should 

scale nearly-linearly. This expectation is confirmed in the plot: Using Levenberg-Marquardt [24] 

to approximate the curves for CG with a function of the form axb + c , we get b ≈ 1 . 5 for FLOPS 

and memory accesses, while the (more technical) wall time and cycle count yield a slightly higher 

exponent b ≈ 1 . 6 . We also see that the curves for our KOSZ implementation are almost linear from 

about 650 × 650 . Unfortunately, the hidden constant factor is so large that our algorithm cannot 

compete with CG even for a 1000 × 1000 grid. Note that the difference between the algorithms 

in FLOPS is significantly smaller than the difference in memory accesses and that the difference 

in running time is larger still. This suggests that the practical performance of our algorithm is 

particularly bounded by memory access patterns and not by floating point operations. This is 

noteworthy when we look at our special spanning tree for the 2D grid. We see that using the special 
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(a) Wall time
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(b) Cycles
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(c) FLOPS

0 200000 400000 600000 800000 1000000

Number of nodes

0

1

2

3

4

5

6

Nu
m

be
ro

fm
em

or
y

ac
ce

ss
es

×1012

1.3× 102 · x1.50 + c

96 · x1.50 + c

6.7× 106 · x+ c

3.1× 106 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

 

(d) Memory accesses 

Figure 5: Asymptotic behavior for 2 D grids. Termination when relative residual was ≤ 10− 4. The 

error bars give the standard deviation. 

ST always results in performance that is better by a constant factor. In particular, we save a lot of 

FLOPS (factor 10 ), while the savings in memory accesses (factor 2 ) are a lot smaller. Even though 

the FLOPS when using the special ST are within a factor of 2 of CG, we still have a wide chasm 

in running time. But note that later in this section we see that the micro-performance of the solver 

is actually very competitive with CG. Thus, the bad running time is mainly caused by memory 

accesses and the very slow convergence that we have already seen before. 

The results for the Barabási-Albert graphs are basically the same (and hence not shown in 

detail): Even though the growth is approximately linear from about 400 , 000 nodes, there is still a 

large gap between KOSZ and CG since the constant factor is enormous. Also, the results for the 

number of FLOPS are again much better than the result for the other performance counters. 

In conclusion, although we have nearly-linear growth, even for 1 , 000 , 000 graph nodes, the 

KOSZ algorithm is still not competitive with CG because of huge constant factors, in particular a 

large number of iterations and memory accesses. 

Preconditioning. The convergence of most iterative linear solvers on a linear system Ax = b 

depends on the condition number κ ( A ) of A . The smaller the condition number is, the better the 
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(a) CG method, Kruskal ST
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(b) CG method, special ST
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(c) FGMRES method, Kruskal ST
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(d) FGMRES method, special ST 

Figure 6: Convergence of the residual when using the Laplacian solver as a preconditioner on an 

unweighted 100 × 100 grid. 

solvers converge. A common way to improve the condition number is to find a matrix P such that 

κ ( P 

− 1 A ) < κ ( A ) and then solve the system P 

− 1 Ax = P 

− 1 b instead of Ax = b ( preconditioning ). 

Some linear solvers, such as Gauss-Seidel, are good preconditioners even though they are slow 

when used on their own. Thus we check whether this is also true for KOSZ. 

In iterative methods we usually do not explicitly compute P 

− 1 A but apply P 

− 1 and A separately 

to the current vector in each iteration. In our case we use a few KOSZ iterations as a preconditioner 

in each iteration instead of taking a fixed matrix P . Since the solver only works for SDD matrices, 

we need to use an iterative solver that only passes SDD matrices to the preconditioner. We choose 

the CG method and the FGMRES method on an unweighted 100 × 100 grid. The convergence of 

the residual with these solvers is plotted in Figure 6. 

For the CG method we see that, unfortunately, the more iterations we use, the more slowly 

the methods converge. Since the cycle repairs depend crucially on the right hand side and the 

solver is probabilistic, using the Laplacian solver as preconditioner means that the preconditioner 

matrix is not fixed but changes from iteration to iteration. Axelsson and Vassilevski [4] show 

why this behavior leads to convergence problems and propose a CG method with variable-step 

preconditioning to cope with it. In practice the flexible GMRES method is often more resistant 
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to these convergence problems. Since the initial vector on the special ST is very good, we get 

good convergence in Figure 6 when using zero iterations of the solver in FGMRES, a behavior 

that is obviously not generalizable. For more iterations of the Laplacian solver, FGMRES still has 

convergence problems, but it is somewhat better than CG. 

We conclude that KOSZ is not suitable as a preconditioner for common iterative methods. It 

would be an interesting extension to check if the solver works in a specialized variable-step method. 

Smoothing. One way of combining the good qualities of two different solvers is smoothing . 

Smoothing means to dampen the high-frequency components of the error, which is usually done 

in combination with another solver that dampens the low-frequency error components. It is known 

that in CG and most other solvers, the low-frequency components of the error converge very 

quickly, while the high-frequency components converge slowly. Thus, we are interested in finding 

an algorithm that dampens the high-frequency components, a good smoother. This smoother does 

not necessarily need to reduce the error, it just needs to make its frequency distribution more favor- 

able. Smoothers are particularly often applied at each level of multigrid or multilevel schemes [9] 

that turn a good smoother into a good solver by applying it at different levels of a matrix hierarchy. 

To test whether the Laplacian solver is a good smoother, we start with a fixed x with Lx = b and 

add white uniform noise in [ − 1 , 1] to each of its entries in order to get an initial vector x0. Then we 

execute a few iterations of our Laplacian solver and check whether the high-frequency components 

of the error have been reduced. Unfortunately, we cannot directly start at the vector x0 

in the solver. 

Our solution is to use Richardson iteration . That is, we transform the residual r = b − Lx0 

back to 

the source space by computing L− 1 r with the Laplacian solver, get the error e = x − x0 

= L− 1 r 

and then the output solution x1 

= x0 

+ L− 1 r. 

Figure 7 shows the error vectors of the solver for a 32 × 32 grid together with their transfor- 

mations into the frequency domain for different numbers of iterations of our solver. We see that 

the solver may indeed be useful as a smoother since the energies for the large frequencies (on the 

periphery) decrease rapidly, while small frequencies (in the middle) in the error remain. 

In the solver we start with a flow that is nonzero only on the ST. Therefore, the flow values on 

the ST are generally larger at the start than in later iterations, where the flow will be distributed 

among the other edges. Since we construct the output vector by taking potentials on the tree, after 

one iteration x1 

will, thus, have large entries compared to the entries of b . In subplot (c) of Figure 7 

we see that the start vector of the solver has the same structure as the special ST and that its error 

is very large. For the 32 × 32 grid we, therefore, need about 10000 iterations ( ≈ 150 SpMVs in 

running time comparison) to get an error of x1 

similar to x0 

even though the frequency distribution 

is favorable. Note that the number of SpMVs the 10000 iterations correspond to depends on the 

graph size, e.g. for an 100 × 100 grid the 10000 iterations correspond to 20 SpMVs. 

While testing the Laplacian solver in a multigrid scheme could be worthwhile, the bad initial 

vector creates robustness problems when applying the Richardson iteration multiple times with a 

fixed number of iterations of our solver. In informal tests multiple Richardson steps lead to ever 

increasing errors without improved frequency behavior unless our solver already yields an almost 

perfect vector in a single run. 

Micro-performance and parallelism. The nearly-linear running time of the Laplacian solver 

was proved in the RAM machine model. To get good practical performance on modern out-of- 
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Figure 7: The Laplacian solver with the special ST as a smoother on a 32 × 32 grid. For each number 

of iterations of the solver we plot the current error and the absolute values of its transformation into 

the frequency domain. Note that (a) and (k) have a different scale. 
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order superscalar computers, one has to take their complex execution behavior into account, too. 

One particular problem indicated by our experiments is that the number of cache misses in- 

creases in the LogFlow data structure when a bad spanning tree is used. Note that querying and 

updating the flow with this data structure corresponds to a dot product and an addition, respectively, 

of a dense vector and a sparse vector. The sparse vectors are stored as lists of pairs of indexes (into 

the dense vector) and values. Thus, the cache behavior depends on the distribution of the indexes, 

which is determined by the subtree decomposition of the spanning tree and the order of the subtrees. 

We managed to consistently improve the time by about 6% by doing the decomposition in BFS 

order, so that the indexes are grouped together at the front of the vector. In contrast, the actual 

decomposition only depends on the spanning tree. Furthermore, we could save an additional 10% 

of time by using 256-bit AVX instructions to do four double precision operations at the same time 

in LogFlow, but this vectorized implementation still uses (vectorized) indirect accesses. 

In our experiments we get about 5% cache misses by using the minimum weight ST on the 

2D grid, compared with 1% when using CG. In contrast, the special ST yields competitive cache 

behavior. Not surprsingly, since the Barabási-Albert graph has a much more complex structure, its 

cache misses using the sparse matrix representation increase to 5%. In contrast, the cache misses 

improve for larger graphs with LogFlow since the diameter of the spanning tree is smaller than on 

grids and the decomposition, thus, groups most indexes at the start of the vector. 

From the benchmarks we can infer that the micro-performance suffers from indirect accesses 

just as in the case of the usual sparse matrix representations. Furthermore, the micro-performance 

crucially depends on the quality of the spanning tree. For good spanning trees or more complex 

graphs, the micro-performance of the Laplacian solver is competitive with CG. 

A discussion of its parallelization may seem unjustified given that the KOSZ solver was not de- 

signed for parallelism. Yet, a short treatment is appropriate since most performance improvements 

are achieved today by putting more cores on a chip, and other linear solvers are often executed in 

parallel. There are two basic ways of parallelizing the solver in a shared-memory setting, both of 

which do not scale well without changing its main loop or the flow data structure significantly: 

First, we can parallelize each single query/update of the LogFlow data structure. Unfortunately, 

even for larger graphs the vectors involved are so sparse that parallelizing the operations never 

outweighed the cost of the barrier synchronization after each operation in our tests. 

Second, we could also update multiple cycles at the same time. When we store each flow 

on an edge directly, each update consists of a query phase where we determine the amount of 

current to be added to the cycle and a cycle update phase. Between the phases the flow on the 

cycle needs to remain fixed. Thus, we need to lock whole cycles; atomic updates on single edges 

do not suffice. This would create significant synchronization overhead, but could still result in 

a viable parallelization if we manage to find many independent cycles. But we need to use the 

LogFlow data structure to get good provable and practical performance. This data structure works 

by decomposing a tree-path into two root-node paths in the decomposition tree. Since all of these 

paths intersect in the original tree, we cannot update them in parallel. 

5 Conclusions 

At the time of writing the conference version of this paper, we provided the first comprehensive ex- 

perimental study of a Laplacian solver with provably nearly-linear running time. In the meantime, 
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our results regarding KOSZ have been recently confirmed and in some aspects extended [8]. 

Our study supports the theoretical result that the convergence of KOSZ crucially depends on 

the stretch of the chosen spanning tree, with low stretch generally resulting in faster convergence. 

This particularly suggests that it is crucial to build algorithms that yield spanning trees with lower 

stretch. Since we have confirmed and extended Papp’s [26] observation that algorithms with prov- 

ably low stretch do not yield good stretch in practice, improving the low-stretch ST algorithms is an 

important future research direction. Even though KOSZ proves to grow nearly linearly as predicted 

by theory, the constant seems to be too large to make it competitive, even compared to the CG 

method without preconditioner. Hence, regarding the paper title, we can say that the running time 

is nearly linear indeed and thus fast in the O -notation, but the constant factors prevent usefulness in 

practice so far. While the negative results predominate, we hope to deliver insights that lead to fur- 

ther improvements, both in theory and practice. It seems promising to repair cycles other than just 

the basis cycles in each iteration, but this would necessitate significantly different data structures. 
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