

What “Provably Fast” Can Mean in Practice:

A Case Study with a Combinatorial Laplacian Solver∗

Daniel Hoske1,2 Dimitar Lukarski3 Michael Wegner1

Henning Meyerhenke1,4

1 Faculty of Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, D-76131 Karlsruhe, Germany

2 Google Inc., Mountain View, CA, USA

3 Paralution Labs UG & Co. KG, Gaggenau, Germany

4 Corresponding author, email: meyerhenke@kit.edu , phone: +49-721-608-41876, fax: +49-721-608-44211

Abstract

Linear system solving is a main workhorse in applied mathematics. Recently, theoretical

computer scientists contributed sophisticated algorithms for solving linear systems with sym-

metric diagonally dominant (SDD) matrices in provably nearly-linear time. These algorithms

are very interesting from a theoretical perspective, but their practical performance was unclear.

Here we address this gap. We provide the first implementation of the combinatorial solver

by Kelner et al. [STOC 2013], which is appealing for implementation due to its conceptual

simplicity. The algorithm exploits that a Laplacian matrix (which is SDD) corresponds to a

graph; solving symmetric Laplacian linear systems amounts to finding an electrical flow in this

graph with the help of cycles induced by a spanning tree with the low-stretch property.

The results of our experiments are ambivalent. While they confirm the predicted nearly-

linear running time, the constant factors make the solver much slower for reasonable inputs

than basic methods with higher asymptotic complexity. We were also not able to use the solver

effectively as smoother or preconditioner. Moreover, while spanning trees with lower stretch

indeed reduce the solver’s running time, we experience again a discrepancy in practice: In our

experiments simple spanning tree algorithms perform better than those with a guaranteed low

stretch.

1 Introduction

Solving square linear systems Ax = b , where A ∈ Rn × n and x, b ∈ Rn, is one of the most important

problems in applied mathematics with wide applications in science and engineering. In practice

system matrices are often sparse , i. e. they contain O (n) nonzeros. Ideally, the required time for

solving sparse systems would grow linearly with the number of nonzeros 2 m . Most direct solvers,

however, show cubic running times and do not exploit sparsity. Also, approximate solutions usually

∗Parts of this paper have been published in a preliminary form in the Proceedings of the 14th International Sympo-

sium on Experimental Algorithms (SEA 2015) [17]. Most work was done while D. Hoske was with KIT. This work

was partially supported by the Ministry of Science, Research and the Arts Baden-Württemberg.

suffice due to the imprecision of floating point arithmetic. Exploiting this fact with sparse iterative

solvers such as conjugate gradient (CG) still yields a running time that is clearly superlinear in n .

Spielman and Teng [31], following an approach proposed by Vaidya [34], achieved a major

breakthrough in this direction by devising a nearly-linear time algorithm for solving linear systems

in symmetric diagonally dominant matrices. Nearly-linear means O

(
m · polylog(n) · log(1 /ϵ)

)

here, where polylog(n) is the set of real polynomials in log(n) and ϵ is the relative error ∥ x −

xopt

∥A

/ ∥ xopt

∥A

we want for the solution x ∈ Rn. Here ∥ · ∥A

is the norm ∥ x ∥A

:=

√

xT Ax given

by A , and xopt

:= A+ b is an exact solution (where A+ refers to the pseudoinverse of A). A matrix

A = (aij)i,j ∈ [n]

∈ Rn × n is diagonally dominant if | aii

| ≥

∑

j ̸ = i

| aij

| for all i ∈ [n] .

Symmetric matrices that are diagonally dominant (SDD matrices) have many applications, e.g.

in elliptic PDEs [7], maximum flows [11], and sparsifying graphs [30]; also see [18]. Thus, the

problem INV - SDD of solving linear systems Ax = b for x on SDD matrices A is of significant

importance. We focus here on Laplacian matrices (which are SDD) due to their rich applications in

algorithms for undirected graphs, e. g. load balancing [13, 25], but this is no major limitation [19].

Related work. Spielman and Teng’s seminal paper [31] requires a lot of sophisticated machin-

ery: a multilevel approach [34, 28] using recursive preconditioning, preconditioners based on low-

stretch spanning trees [32] and spectral graph sparsifiers [30, 21]. Later papers extended this ap-

proach, both by making it simpler and by reducing the exponents of the polylogarithmic time

factors.1 We focus on a simplified algorithm by Kelner et al. [19] that reinterprets the problem of

solving an SDD linear system as finding an electrical flow in a graph. It only needs low-stretch

spanning trees and achieves O

(
m log2 n log log n log(1 /ϵ)

)

time. Another interesting nearly-linear

time SDD solver is the recursive sparsification approach by Peng and Spielman [27]. Together with

a parallel sparsification algorithm (e.g. [20]) it yields a nearly-linear work parallel algorithm.

Spielman and Teng’s algorithm crucially uses the low-stretch spanning trees first introduced by

Alon et al. [3]. (For a definition of stretch see Section 2.) Elkin et al. [14] provide an algorithm

for computing spanning trees with polynomial stretch in nearly-linear time. Specifically, they get

a spanning tree with O (m log2 n log log n) stretch in O (m log2 n) time. Abraham et al. [1, 2] later

showed how to get rid of some of the logarithmic factors in both stretch and time. Papp [26]

tested these algorithms in practice and showed that they do not usually result in spanning trees with

lower stretch than a simple minimum-weight spanning tree computed with Kruskal’s algorithm [22]

and that Elkin et al.’s original algorithm [14] achieves the best results among the provably good

approaches. We use these low-stretch spanning trees in our implementation of Kelner et al’s. [19]

algorithm and compare their effectiveness for the solver.

Motivation, Outline, and Contribution. Although several extensions and simplifications to

Spielman and Teng’s nearly-linear time solver [31] have been proposed, there is a lack of results

how they all perform in practice. We seek to fill this gap by implementing and evaluating an algo-

rithm proposed by Kelner et al. [19] that is fascinating due to its simple description and easier to

implement (and thus more promising in practice) than the original Spielman-Teng algorithm.

Hence, in this paper we implement the KOSZ solver (the acronym follows from the authors’

last names) by Kelner et al. [19] and investigate its practical performance. To this end, we start

1Spielman provides a comprehensive overview of later work at https://sites.google.com/a/yale.

edu/laplacian/ (accessed on November 18, 2015).

2

https://sites.google.com/a/yale.edu/laplacian/
https://sites.google.com/a/yale.edu/laplacian/

in Section 2 by describing important notation and outlining KOSZ. In Section 3 we elaborate on

the design choices one can make when implementing KOSZ. In particular, we explain when these

choices result in a provably nearly-linear time algorithm. Section 4 contains the experimental

evaluation of the Laplacian solver KOSZ. We consider the configuration options of the algorithm,

its asymptotics, its convergence and its use as a preconditioner or as a smoother. Our results confirm

a nearly-linear running time, but are otherwise disappointing from a practical point of view: The

asymptotics hide very high constant factors, in part due to memory accesses. We conclude the

paper in Section 5 by summarizing the results and discussing future research directions.

2 Preliminaries

Fundamentals. We consider undirected simple graphs G = (V , E) with n vertices and m edges.

A graph is weighted if we have an additional function w : E → R> 0. Where necessary we consider

unweighted graphs to be weighted with we

= 1 ∀ e ∈ E . We usually write an edge { u, v } ∈ E

as uv and its weight as wuv. Moreover, we define the set operations ∪ , ∩ and \ on graphs by

applying them to the set of vertices and the set of edges separately. For every node u ∈ V its

neighborhood NG(u) is the set NG(u) := { v ∈ V : uv ∈ E } of vertices v with an edge to u

and its degree du

is du

=

∑

v ∈ NG(u)

wuv. The Laplacian matrix of a graph G = (V , E) is defined

as Lu,v

:= − wuv

if uv ∈ E ,

∑

x ∈ NG(u)

wux

if u = v , and 0 otherwise for u, v ∈ V . A Laplacian

matrix is always an SDD matrix. Another useful property of the Laplacian is the factorization

L = B

T R

− 1 B , where B ∈ RE × V is the incidence matrix and R ∈ RE × E is the resistance matrix

defined by Bab,c

= 1 if a = c , = − 1 if b = c , and 0 otherwise. Re1

,e2

= 1 /we1

if e1

= e2

and 0

otherwise. This holds for all e1

, e2

∈ E and a, b, c ∈ V , where we arbitrarily fix a start and end

node for each edge when defining B . With xT Lx = (B x)T R

− 1(B x) =

∑

e ∈ E(B x)2

e

· we

≥ 0

(every summand is non-negative), one can see that L is positive semidefinite . (A matrix A ∈ Rn × n

is positive semidefinite if xT Ax ≥ 0 for all x ∈ Rn.)

Cycles, Spanning Trees, and Stretch. A cycle in a graph is usually defined as a simple path that

returns to its starting point and a graph is called Eulerian if there is a cycle that visits every edge

exactly once. In this work we will interpret cycles somewhat differently: We say that a cycle in G

is a subgraph C of G such that every vertex in G is incident to an even number of edges in C , i. e. a

cycle is a union of Eulerian graphs. It is useful to define the addition C1

⊕ C2

of two cycles C1

, C2

to

be the set of edges that occur in exactly one of the two cycles, i. e. C1

⊕ C2

:= (C1

\ C2) ∪ (C2

\ C1) .

In algebraic terms we can regard a cycle as a vector C ⊆ FE

2

(F2

is the finite field of order 2) such

that

∑

v ∈ NC(u) 1 = 0 in F2

for all u ∈ V and the cycle addition as the usual addition on FE

2

. We

call the resulting linear space of cycles C (G) .

In a spanning tree (ST) T = (V , ET) of G there is a unique path PT (u, v) from every node u to

every node v . For any edge e = uv ∈ E \ ET

(an off-tree-edge with respect to T), the subgraph

e ∪ PT (u, v) is a cycle, the basis cycle induced by e . One can easily show that the basis cycles form

a basis of C (G) . Thus, the basis cycles are very useful in algorithms that need to consider all the

cycles of a graph. Another notion we need is a measure of how well a spanning tree approximates

the original graph. We capture this by the stretch st(e) =

(∑

e′ ∈ PT (u,v)

we′

)
/we

of an edge e =

uv ∈ E . This stretch is the detour you need in order to get from one endpoint of the edge to the

other if you stay in T , compared to the length of the original edge. In the literature the stretch

3

1

5

2

1

5

2

1 V

5 V

2 V

1 / 1Ω

1 / 5Ω

1 / 2Ω

(5 V − 1 V) / 1Ω = 4 A

Figure 1: Transformation into an electrical network.

is sometimes defined slightly differently, but we follow the definition in [19] using we. The total

stretch of the whole tree T is the sum of the individual stretches st(T) =

∑

e ∈ E

st(e) . Finally, we

define the average stretch as the total stretch divided by the total edge weight. Finding a spanning

tree with low stretch is crucial for proving the fast convergence of the KOSZ solver.

Electrical Network Analogy. We can regard G as an electrical network where each edge uv

corresponds to a resistor with conductance wuv

and x as an assignment of potentials to the nodes

of G (cf. Figure 1). L operates on every vector x ∈ Rn via (Lx)u

=

∑

v ∈ N (u)(xu

− xv) · wuv

for each u ∈ V . Then xu

− xv

is the voltage across uv and (xu

− xv) · wuv

is the result-

ing current along uv . Thus, (Lx)u

is the current flowing out of u that we want to be equal to

the right-hand side bu. Furthermore, one can reduce solving SDD systems to the related prob-

lem INV - LAPLACIAN - CURRENT [19]: Given a Laplacian L = L (G) and a vector b ∈ im(L) ,

compute a function f : Ẽ → R with (i) f being a valid graph flow on G with demand b and

(ii) the potential drop along every cycle in G being zero, where a valid graph flow means that

the sum of the incoming and outgoing flow at each vertex respects the demand in b and that

f (u, v) = − f (v , u) ∀ uv ∈ E . Also, Ẽ is a bidirected copy of E and the potential drop of cy-

cle C is

∑

e ∈ C

f (e) re.

KOSZ (Simple) Solver. The idea of the algorithm is to start with any valid flow and successively

adjust the flow such that every cycle has potential zero. We need to transform the flow back to

potentials at the end, but this can be done consistently, as all potential drops along cycles are zero.

Regarding the crucial question of what flow to start with and how to choose the cycle to be

repaired in each iteration, Kelner et al. [19] suggest using the cycle basis induced by a spanning

Input : Laplacian L = L (G) and vector b ∈ im(L) .

Output : Solution x to Lx = b .

1 T ← a spanning tree of G

2 f ← unique flow with demand b that is only nonzero on T

3 while there is a cycle with potential drop ̸ = 0 in f do

4 c ← cycle in C (T) chosen randomly weighted by stretch

5 f ← f −

cT R f

cT R c

c

6 return vector of potentials in f with respect to the root of T

Algorithm 1: INV - LAPLACIAN - CURRENT solver KOSZ.

4

tree T of G and prove that the convergence of the resulting solver depends on the stretch of T .

More specifically, they suggest starting with a flow that is nonzero only on T and weighting the

basis cycles proportionate to their stretch when sampling them. The resulting algorithm is shown

as Algorithm 1; note that we may stop before all potential drops along cycles are zero and we can

consistently compute the potentials induced by f at the end by only looking at T .

The solver described in Algorithm 1 is actually just the SimpleSolver in Kelner et al.’s [19]

paper. They also show how to improve this solver by adapting preconditioning to the setting of

electrical flows. In informal experiments we could not determine a strategy that is consistently

better than the SimpleSolver , so we do not pursue this scheme any further here. Eventually,

Kelner et al. derive the following running time for the KOSZ (simple) solver:

Theorem 1. [19, Thm. 3.2] SimpleSolver can be implemented to run in time

O (m log2 n log log n log(ϵ− 1 n)) for computing an ϵ -approximation of x .

3 Implementation

While Algorithm 1 provides the basic idea of the KOSZ solver, it leaves open several implementa-

tion decisions that we elaborate on in this section.

3.1 Spanning trees

As suggested by the convergence result in Theorem 1, the KOSZ solver depends on low-stretch

spanning trees. The notion of stretch was introduced by Alon et al. [3] along with an algorithm

to compute a spanning tree with low stretch. Unfortunately, the stretch guaranteed by their algo-

rithm is super-polynomial. Elkin et al. [14] presented an algorithm requiring nearly-linear time

and yielding nearly-linear average stretch. The basic idea is to recursively form a spanning tree

using a star of balls in each recursion step. We use Dijkstra with binary heaps for growing the balls

and take care not to need more work than necessary to grow the ball. In particular, ball growing

is output-sensitive and growing a ball B (x, r) := { v ∈ V : distance from x to v is ≤ r } should

require O (d log n) time where d is the sum of the degrees of the nodes in B (x, r) . The exponents

of the logarithmic factors of the stretch of this algorithm were improved by subsequent papers, but

Papp [26] showed experimentally that these improvements do not yield better stretch in practice.

In fact, his experiments suggest that the stretch of the provably good algorithms is usually not bet-

ter than just taking a minimum-weight spanning tree. Therefore, we additionally use two simpler

spanning trees without stretch guarantees: A minimum-distance spanning tree with Dijkstra’s algo-

rithm (the tree built implicitly during the search) and binary heaps; as well as a minimum-weight

spanning tree with Kruskal’s algorithm using union-find with union-by-size and path compression.

To test how dependent the algorithm is on the stretch of the ST, we also look at a special

ST for n1

× n2

grids. As depicted in Figure 2, we construct this spanning tree by subdividing the

n1

× n2

grid into four subgrids as evenly as possible (the subgrid sizes are shown in Figure 2(a)), re-

cursively building the STs in the subgrids (the termination of the recursion is shown in Figure 2(b))

and connecting the subgrids by a U-shape in the middle.

Proposition 2. Let G be an n1

× n2

grid with n1

, n2

≥ 4 . Then the special ST has O

((n1+ n2)2 log(n1+ n2)

n1

n2

)

average stretch on G .

5

(a) Recursive construction

(b) ST for n1

= n2

= 4

Figure 2: Special spanning tree with O

((n1+ n2)2 log(n1+ n2)

n1

n2

)

average stretch for the n1

× n2

grid.

Proof. First note that, by the recursive construction, the total stretch of the four subgrids remains

the same if such a subgrid is treated separately. Moreover, the stretches of the O (n1

+ n2) off-tree

edges between the rows ⌊ n1

/ 2 ⌋ and ⌊ n1

/ 2 ⌋ + 1 as well as the columns ⌊ n2

/ 2 ⌋ and ⌊ n2

/ 2 ⌋ + 1 are

in O (n1

+ n2) each. To see this, let s and t be the source and target vertices of such an off-tree

edge, respectively. Then, by construction, it is possible to reach the center from s in O (n1

+ n2)

steps and t from the center likewise. Consequently, S

(
n1

, n2

)

= 4 · S

(
n1

/ 2 , n2

/ 2
)
+ O

(
n1

+ n2

)2

when disregarding rounding. After solving this recurrence (note that S (n1

/ 2 , n2

/ 2) is essentially

one fourth in size compared to S (n1

, n2) as long as n1

, n2

≥ 4), we get

S

(
n1

, n2

)

= O

(
(n1

+ n2)
2 log(n1

+ n2)
)
.

Since the number of edges is Θ(n1

n2) , the claim for the average stretch follows.

In case of a square grid (n1

= n2) with N = n1

× n2

vertices, we get S (N) = 4 S (N / 4) +

O (N) = O (N log N) = O (n2

1 log(n1)) and thus O (log n1) average stretch. A logarithmic average

stretch (and thus detour) is noteworthy since the average distance between a random pair of nodes

in the square grid is Ω(n1) . Also, for this special case, our result slightly improves on the general

low-stretch spanning tree algorithms. Later on in this paper, we will use it in comparison to other

spanning trees to assess their effect on the KOSZ solver.

3.2 Flows on trees

Since every basis cycle contains exactly one off-tree-edge, the flows on off-tree-edges can simply

be stored in a single vector. To be able to efficiently get the potential drop of every basis cycle and

to be able to add a constant amount of flow to it, the core problem is to efficiently store and update

flows in T . We want to support the following operations for all u, v ∈ V and α ∈ R on the flow f :

• query(u, v) : return the potential drop

∑

e ∈ PT (u,v)

f (e) re

• update(u, v , α) : set f (e) := f (e) + α for all e ∈ PT (u, v)

}

(1)

We can simplify the operations by fixing v to be the root r of T :

6

• query(u) : return the potential drop

∑

e ∈ PT (u,r)

f (e) re

and

• update(u, α) : set f (e) := f (e) + α for all e ∈ PT (u, r) .

}

(2)

The itemized two-node operations can then be supported with query(u, v) := query(u) −

query(v) and update(u, v , α) :=

{
update(u, α) and update(v , − α)

}

since the changes on the

subpath PT

(
r, LCA(u, v)

)

cancel out. Here LCA(u, v) is the lowest common ancestor of the nodes

u and v in T , the node farthest from r that is an ancestor of both u and v . We provide two approaches

for implementing the operations; they are described next in some detail.

Linear time updates. The trivial implementation of (2) directly stores the flows in the tree and

implements each operation in (2) with a single traversal from the node u to the root r . We can

improve this implementation by only traversing up to LCA(u, v) in (1). Of course, this does not

help with the worst-case time O (n) , but could be quite significant in practice since basis cycles are

often short. Data structures that answer LCA queries for pairs of nodes after some precomputation

are a classical topic, optimal solutions are known [16, 6]. In our implementation we use a simpler

implementation with higher (but still insignificant) preprocessing time that transforms an LCA

query into a range minimum query (RMQ), the problem of determining the minimum in a subrange

of an array. We can then solve the RMQ problem by precomputing the RMQ of every range

whose length is a power of two, i. e. for each i with 2i ≤ n and every j ∈ [n] we compute

prec [i, j] := argmin v [j . . . j + 2i − 1] . This can be done in O

(
n log n

)

time.

Logarithmic time updates. While the data structure presented above allows fast repairs for short

basis cycles, the worst-case time is still in O (n) . We therefore also implement the data structure by

Kelner et al. [19] with O (log n) worst-case time repairs. It is based on link-cut trees [29]. The first

observation it uses is that every rooted tree T on n nodes can be decomposed into edge-disjoint

subtrees intersecting in exactly one node such that each subtree has ≤ n/ 2 nodes. Equivalently, we

find a vertex in T all of whose induced subtrees have size ≤ n/ 2 . We call such a vertex a good

vertex separator . By recursively finding good vertex separators on the subtrees, we get a recursive

decomposition of the whole tree into subtrees. Since the size of the trees halves in each step, the

depth of this decomposition is at most O (log n) .

Remark 3. We can implement query and update efficiently by storing several values: (i) ddrop:

the total potential drop on the path PT (r, d) , (ii) dext: the total flow contribution to PT (r, d) from

vertices below d , and (iii) height(u) :=

∑

e ∈ PT (r, a) ∩ RT (r,d)

re

for every u ∈ V (T) , i. e. the accumu-

lated resistance in common between the PT (r, d) path and the PT (r, a) path.

Then we can compute query(u) as follows: If u ∈ T0, the potential drop consists of the potential

drop query T0
(u) in T0

and the part dext

· height(u) of the potential drop caused by vertices beyond d .

If, however, u ∈ Ti

and u ̸ = d , then we have the complete potential drop ddrop

along PT (d, r) and a

recursive potential drop query Ti
(u) .

The update(u, α) operation can be implemented similarly: If u ̸∈ T0, we need to adjust dext

by α . In all cases we need to update ddrop

by the height(u) part of the PT (r, u) path in common

with T0. Unless u = d , we then need to recursively update the tree Ti

with u ∈ Ti. While we

could directly implement this recursion, we unroll it to get a more efficient implementation. We

can store the complete state of the data structure in a dense vector x containing the ddrop

and dext

7

values for all recursion levels. For each u ∈ T , query is then a dot product q (u) · x with a vector

q (u) containing the appropriate coefficients and update(u, α) is a vector addition x := x + α l (u)

with a vector l (u) . The vectors q (u) and l (u) are sparse with at most O (log n) nonzero entries and

can be determined directly from the recursive decomposition in O

(
n log(n)

)

time (their entries are

either height(u) or 1). Kelner et al. [19] provide more details about the unrolling.

Results. In our experiments (details omitted due to space constraints) the cost of querying the

LCA-based data structure (LCAFlow) strongly depends on the structure of the used spanning tree,

while the logarithmic-time data structure (LogFlow) induces costs that stay nearly the same. Sim-

ilarly, the cost of LCAFlow grows far more with the size of the graph than LogFlow and LogFlow

wins for the larger graphs in both classes. For these reasons, we only use LogFlow in later results.

3.3 Remarks on Initial Solution and Cycle selection

Given x we can compute a flow f via fuv

:= x (u) − x (v) . The potential drop of each cycle in this

flow f is zero. Unfortunately, this flow is not a valid graph flow with demand b – unless x already

fulfills Lx = b . In contrast, in the solver we iteratively establish the zero-cycle-sum property from

the flow originally induced by the spanning tree T . There is an important consequence: We cannot

start from an arbitrary vector x , which may make it harder to use the solver in a larger context.

The easiest way to select a cycle, in turn, is to choose an off-tree edge uniformly at random

in O (1) time. However, to get provably good results, we need to weight the off-tree-edges by

their stretch, i. e. edges chosen with probability proportionate to their stretch. We can use the flow

data structure described above to get the stretches. More specifically, the data structure initially

represents f = 0 . For every off-tree edge uv we first execute update(u, v , 1) , then query(u, v) to

get

∑

e ∈ PT (u,v)

re

and finally update(u, v , − 1) to return to f = 0 . This results in O (m log n) time

to initialize cycle selection. Once we have the weights, we use roulette wheel selection in order

to select a cycle in O (log m) time after an additional O (m) time initialization. Roulette wheel

selection is a simple strategy to sample an arbitrary discrete distribution with finite support: (i) Let

X be a random variable with Prob [X = xi] = pi

for i ∈ [k] . (ii) Precompute the prefix sums

P = (0 , p1

, p1

+ p2

, . . . , p1

+ · · · + pk

= 1) . (iii) To sample, choose a uniform random value

x ∈ [0 , 1) . Then find the index i with Pi

≤ x < Pi +1

using binary search and output xi. The

probability for getting xi

with this scheme is

∣∣∣

[∑i − 1

j =0

pi

,

∑i

j =0

pi

)∣∣∣

= pi

, as desired.

4 Evaluation

4.1 Settings

Software, hardware, and data. We implemented the KOSZ solver in C++ using NetworKit [33],

a tool suite focused on large-scale network analysis. Our code is publicly available.2 As compiler

we use g++ 4.8.3. The benchmark platform is a dual-socket server with two 8-core Intel Xeon E5-

2680 at 2.7 GHz each and 256 GB RAM. We present a representative subset of our experiments,

2Information: http://parco.iti.kit.edu/software-en.shtml ,

code: https://algohub.iti.kit.edu/parco/NetworKit/NetworKit-SDD .

8

http://parco.iti.kit.edu/software-en.shtml
https://algohub.iti.kit.edu/parco/NetworKit/NetworKit-SDD

in which we compare our KOSZ implementation to existing linear solvers as implemented by the

libraries Eigen 3.2.2 [15] and Paralution 0.7.0 [23], both libraries with fast sparse matrix solvers.

We mainly use two graph classes for our tests: (i) Rectangular k × l grids given by Gk ,l

:=(
[k] × [l] ,

{
{ (x1

, y1) , (x2

, y2) } ⊆

(
V

2

)

: | x1

− x2

| = 1 ∨ | y1

− y2

| = 1
})

. Laplacian systems on

grids are, for example, crucial for solving boundary value problems on rectangular domains; Note

that Gk ,l

is very uniform, i. e. most of its nodes have degree 4 . (ii) Barabási-Albert [5] random

graphs with parameter k . These random graphs are parametrized with a so-called attachment k .

Their construction models that the degree distribution in many natural graphs is not uniform at all.

For both classes of graphs, we consider both unweighted and weighted variants (uniform ran-

dom weights in [1 , 8]). We also did informal tests on 3D grids and graphs that were not generated

synthetically. These graphs did not exhibit significantly different behavior than the two graph

classes above and are therefore omitted from the presentation of the results.

Termination and performance counters. In the description of the solver so far we did not state

our termination condition and Kelner et al. [19] only give a theoretical expected number of iter-

ations to achieve a desired error in ∥ · ∥L. We choose, as usual in iterative solvers, to terminate

when the relative residual ∥ Ax − b ∥2

/ ∥ b ∥2

is smaller than a given ϵ > 0 . Unfortunately, the KOSZ

solver cannot keep track of the residual. To get it, we must first compute the dual potential vector x .

Since this takes O

(
m log(n)

)

time, we cannot update the residual every iteration. Therefore, to still

get provably nearly-linear time, we heuristically choose to update it every m iterations. Informal

experiments show that computing the residuals takes less than 3% of the global time and that only

updating every m iterations does not prolong convergence more than 4% in all of our tests.

CPU performance characteristics such as the number of executed FLOPS (floating point opera-

tions), etc. are measured with the PAPI library [10]. Each of our benchmarking runs takes several

seconds (billions of cycles), so we expect the counter values to be quite accurate. Moreover, our

most basic choice to reduce the impact of possible measurement errors is to repeat the bench-

mark multiple times and average the values gathered. In our case, we repeated each measurement

10 times. This number is mainly motivated by time constraints. Since the resulting measurements

are not skewed, we believe that the central limit theorem (an asymptotic theorem) is already appli-

cable for these 10 runs. Given that the measured standard deviations are below 5%, the real counter

values are within − erf(0 . 025) · 5% /
√

10 ≈ 3% of the measured mean value with 95% confidence.

In addition, we take an optimistic approach with regards to cache usage and start each series of

runs with a dry run that fills the caches.

4.2 Results

Spanning tree. Papp [26] tested various low-stretch spanning tree algorithms and found that in

practice the provably good low-stretch algorithms do not yield better stretch than simply using

Kruskal. We confirm and extend this observation by comparing our own implementation of Elkin

et al.’s [14] low-stretch ST algorithm to Kruskal and Dijkstra in Figure 3. Except for the unweighted

100 × 100 grid, Elkin has worse stretch than the other algorithms and Kruskal yields a good ST.

For Barabási-Albert graphs, Elkin is extremely bad (almost factor 20 worse). Interestingly, Kruskal

outperforms the other algorithms even on the unweighted Barabási-Albert graphs, where it degen-

erates to choosing an arbitrary ST. Figure 3 also shows that our special ST yields significantly lower

stretch for the unweighted 2D grid, but it does not help in the weighted case.

9

0 20 40 60 80 100 120

Relative stretch

100× 100 grid, unweighted

100× 100 grid, weighted

Barabasi(25000, 4), unweighted

Barabasi(25000, 4), weighted

Dĳkstra ST
Kruskal ST
Elkin ST
Special ST

Figure 3: Average stretch st(T) /m with different ST algorithms.

Convergence. In Figure 4 we plot the convergence of the residual for different graphs and dif-

ferent algorithm settings. We examine a 100 × 100 grid and a Barabási-Albert graph with 25 , 000

nodes. In this experiment we determine the energy gap ξr(f) − ξr(fopt) by fixing the optimal solu-

tion x and taking Lx as right hand side, i. e. ξr(fopt) = ζr(x) . As expected, the energy in all runs

decreases monotonically. While the residuals can increase, they follow a global downward trend.

Also note that the spikes of the residuals are smaller if the convergence is better and that the order

(by convergence speed) of the residual curves and the energy curves is the same.

In all cases the solver converges exponentially, but the convergence speed crucially depends on

the solver settings. If we select cycles by their stretch, the order of the convergence speeds is the

same as the order of the stretches of the ST (cmp. Figure 3), except for the Dijkstra ST and the

Kruskal ST on the weighted grid. In particular, for the Elkin ST on Barabási-Albert graphs, there

is a significant gap to the other settings where the solver barely converges at all and the special ST

wins. Thus, low-stretch STs are crucial for convergence. In informal experiments we also saw this

behavior for 3D grids and non-synthetic graphs. In contrast, for the uniform cycle selection on the

unweighted grid, the special ST is superior over the Kruskal ST, even though its stretch is smaller.

This is caused by the fact that the basis cycles with the Kruskal ST are longer than the basis cycles

with the special ST and fixing them helps more. Still, the other curves with uniform cycle selection

follow the stretch.

Using the results of all our experiments, we are not able to detect any correlation between the

improvement made by a cycle repair and the stretch of the cycle. Therefore, we cannot fully ex-

plain the different speeds with uniform cycle selection and stretch cycle selection. For the grid

the stretch cycle selection wins, while Barabási-Albert graphs favor uniform cycle selection. An-

other interesting observation is that most of the convergence speeds stay constant after an initial

fast improvement at the start to about residual 1 . That is, there is no significant change of behav-

ior or periodicity. Even though we can hugely improve convergence by choosing the right set-

tings, even the best convergence is still very slow, e.g. we need about 6 million iterations (≈ 3000

sparse matrix-vector multiplications (SpMVs) in time comparison) on a Barabási-Albert graph with

25 , 000 nodes and 100 , 000 edges in order to reach residual 10− 4. In contrast, conjugate gradient

(CG) without preconditioning only needs 204 SpMVs for this graph (preconditioning is explained

in the corresponding subsection below).

10

0.0 0.5 1.0 1.5 2.0

Iteration ×107
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

Re
la

tiv
e

re
si

du
al

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, special ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST
Stretch cycle, log flow, Elkin ST

(a) 100 × 100 grid, unweighted

0.0 0.5 1.0 1.5 2.0

Iteration ×107
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

Re
la

tiv
e

re
si

du
al

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, special ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST
Stretch cycle, log flow, Elkin ST

(b) 100 × 100 grid, weighted

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Iteration ×107
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

Re
la

tiv
e

re
si

du
al

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, Elkin ST

(c) Barabási-Albert, n = 25000 , unweighted

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Iteration ×107
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

107

Re
la

tiv
e

re
si

du
al

Uniform cycle, log flow, Dĳkstra ST
Uniform cycle, log flow, Kruskal ST
Uniform cycle, log flow, Elkin ST
Stretch cycle, log flow, Dĳkstra ST
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, Elkin ST

(d) Barabási–Albert, n = 25000 , weighted

Figure 4: Convergence of the residual. Terminate when residual ≤ 10− 4.

Asymptotics. Now that we know which settings of the algorithm yield the best performance for

2D grids and Barabási-Albert graphs, we proceed by looking at how the performance with these

settings behaves asymptotically and how it compares to conjugate gradient (CG) without precondi-

tioning, a simple and popular iterative solver (often used in its preconditioned form). Since KOSZ

turns out to be not competitive, we do not need to compare it to more sophisticated algorithms.

In Figure 5 each occurrence of c stands for a new instance of a real constant. We expect the cost

of the CG method to scale with O (n1 . 5) on 2D grids [12], while our KOSZ implementation should

scale nearly-linearly. This expectation is confirmed in the plot: Using Levenberg-Marquardt [24]

to approximate the curves for CG with a function of the form axb + c , we get b ≈ 1 . 5 for FLOPS

and memory accesses, while the (more technical) wall time and cycle count yield a slightly higher

exponent b ≈ 1 . 6 . We also see that the curves for our KOSZ implementation are almost linear from

about 650 × 650 . Unfortunately, the hidden constant factor is so large that our algorithm cannot

compete with CG even for a 1000 × 1000 grid. Note that the difference between the algorithms

in FLOPS is significantly smaller than the difference in memory accesses and that the difference

in running time is larger still. This suggests that the practical performance of our algorithm is

particularly bounded by memory access patterns and not by floating point operations. This is

noteworthy when we look at our special spanning tree for the 2D grid. We see that using the special

11

0 200000 400000 600000 800000 1000000

Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

W
al

lt
im

e
[m

s]

×107

1× 10−5 · x1.62 + c

8.4× 10−6 · x1.61 + c

12 · x+ c

2.7 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

(a) Wall time

0 200000 400000 600000 800000 1000000

Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
ro

fc
yc

le
s

×1013

36 · x1.62 + c

30 · x1.61 + c

4.2× 107 · x+ c

9.4× 106 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

(b) Cycles

0 200000 400000 600000 800000 1000000
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Nu
m

be
ro

fF
LO

PS

×1012

76 · x1.49 + c
49 · x1.51 + c
1.7× 106 · x + c
2× 105 · x + c
Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

(c) FLOPS

0 200000 400000 600000 800000 1000000

Number of nodes

0

1

2

3

4

5

6

Nu
m

be
ro

fm
em

or
y

ac
ce

ss
es

×1012

1.3× 102 · x1.50 + c

96 · x1.50 + c

6.7× 106 · x+ c

3.1× 106 · x+ c

Eigen: CG without preconditioner
Paralution: CG without preconditioner
Stretch cycle, log flow, Kruskal ST
Stretch cycle, log flow, special ST

(d) Memory accesses

Figure 5: Asymptotic behavior for 2 D grids. Termination when relative residual was ≤ 10− 4. The

error bars give the standard deviation.

ST always results in performance that is better by a constant factor. In particular, we save a lot of

FLOPS (factor 10), while the savings in memory accesses (factor 2) are a lot smaller. Even though

the FLOPS when using the special ST are within a factor of 2 of CG, we still have a wide chasm

in running time. But note that later in this section we see that the micro-performance of the solver

is actually very competitive with CG. Thus, the bad running time is mainly caused by memory

accesses and the very slow convergence that we have already seen before.

The results for the Barabási-Albert graphs are basically the same (and hence not shown in

detail): Even though the growth is approximately linear from about 400 , 000 nodes, there is still a

large gap between KOSZ and CG since the constant factor is enormous. Also, the results for the

number of FLOPS are again much better than the result for the other performance counters.

In conclusion, although we have nearly-linear growth, even for 1 , 000 , 000 graph nodes, the

KOSZ algorithm is still not competitive with CG because of huge constant factors, in particular a

large number of iterations and memory accesses.

Preconditioning. The convergence of most iterative linear solvers on a linear system Ax = b

depends on the condition number κ (A) of A . The smaller the condition number is, the better the

12

0 500 1000 1500 2000 2500

Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Re
la
tiv
e
re
si
du

al

No preconditioner
Jacobi preconditioner
Laplacian preconditioner, 0 iterations
Laplacian preconditioner, 1 iteration
Laplacian preconditioner, 3 iterations
Laplacian preconditioner, 10 iterations

(a) CG method, Kruskal ST

0 500 1000 1500 2000 2500

Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Re
la
tiv
e
re
si
du

al

No preconditioner
Jacobi preconditioner
Laplacian preconditioner, 0 iterations
Laplacian preconditioner, 1 iteration
Laplacian preconditioner, 3 iterations
Laplacian preconditioner, 10 iterations

(b) CG method, special ST

0 500 1000 1500 2000 2500

Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Re
la
tiv
e
re
si
du

al

No preconditioner
Jacobi preconditioner
Laplacian preconditioner, 0 iterations
Laplacian preconditioner, 1 iteration
Laplacian preconditioner, 3 iterations
Laplacian preconditioner, 10 iterations

(c) FGMRES method, Kruskal ST

0 500 1000 1500 2000 2500

Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Re
la
tiv
e
re
si
du

al

No preconditioner
Jacobi preconditioner
Laplacian preconditioner, 0 iterations
Laplacian preconditioner, 1 iteration
Laplacian preconditioner, 3 iterations
Laplacian preconditioner, 10 iterations

(d) FGMRES method, special ST

Figure 6: Convergence of the residual when using the Laplacian solver as a preconditioner on an

unweighted 100 × 100 grid.

solvers converge. A common way to improve the condition number is to find a matrix P such that

κ (P

− 1 A) < κ (A) and then solve the system P

− 1 Ax = P

− 1 b instead of Ax = b (preconditioning).

Some linear solvers, such as Gauss-Seidel, are good preconditioners even though they are slow

when used on their own. Thus we check whether this is also true for KOSZ.

In iterative methods we usually do not explicitly compute P

− 1 A but apply P

− 1 and A separately

to the current vector in each iteration. In our case we use a few KOSZ iterations as a preconditioner

in each iteration instead of taking a fixed matrix P . Since the solver only works for SDD matrices,

we need to use an iterative solver that only passes SDD matrices to the preconditioner. We choose

the CG method and the FGMRES method on an unweighted 100 × 100 grid. The convergence of

the residual with these solvers is plotted in Figure 6.

For the CG method we see that, unfortunately, the more iterations we use, the more slowly

the methods converge. Since the cycle repairs depend crucially on the right hand side and the

solver is probabilistic, using the Laplacian solver as preconditioner means that the preconditioner

matrix is not fixed but changes from iteration to iteration. Axelsson and Vassilevski [4] show

why this behavior leads to convergence problems and propose a CG method with variable-step

preconditioning to cope with it. In practice the flexible GMRES method is often more resistant

13

to these convergence problems. Since the initial vector on the special ST is very good, we get

good convergence in Figure 6 when using zero iterations of the solver in FGMRES, a behavior

that is obviously not generalizable. For more iterations of the Laplacian solver, FGMRES still has

convergence problems, but it is somewhat better than CG.

We conclude that KOSZ is not suitable as a preconditioner for common iterative methods. It

would be an interesting extension to check if the solver works in a specialized variable-step method.

Smoothing. One way of combining the good qualities of two different solvers is smoothing .

Smoothing means to dampen the high-frequency components of the error, which is usually done

in combination with another solver that dampens the low-frequency error components. It is known

that in CG and most other solvers, the low-frequency components of the error converge very

quickly, while the high-frequency components converge slowly. Thus, we are interested in finding

an algorithm that dampens the high-frequency components, a good smoother. This smoother does

not necessarily need to reduce the error, it just needs to make its frequency distribution more favor-

able. Smoothers are particularly often applied at each level of multigrid or multilevel schemes [9]

that turn a good smoother into a good solver by applying it at different levels of a matrix hierarchy.

To test whether the Laplacian solver is a good smoother, we start with a fixed x with Lx = b and

add white uniform noise in [− 1 , 1] to each of its entries in order to get an initial vector x0. Then we

execute a few iterations of our Laplacian solver and check whether the high-frequency components

of the error have been reduced. Unfortunately, we cannot directly start at the vector x0

in the solver.

Our solution is to use Richardson iteration . That is, we transform the residual r = b − Lx0

back to

the source space by computing L− 1 r with the Laplacian solver, get the error e = x − x0

= L− 1 r

and then the output solution x1

= x0

+ L− 1 r.

Figure 7 shows the error vectors of the solver for a 32 × 32 grid together with their transfor-

mations into the frequency domain for different numbers of iterations of our solver. We see that

the solver may indeed be useful as a smoother since the energies for the large frequencies (on the

periphery) decrease rapidly, while small frequencies (in the middle) in the error remain.

In the solver we start with a flow that is nonzero only on the ST. Therefore, the flow values on

the ST are generally larger at the start than in later iterations, where the flow will be distributed

among the other edges. Since we construct the output vector by taking potentials on the tree, after

one iteration x1

will, thus, have large entries compared to the entries of b . In subplot (c) of Figure 7

we see that the start vector of the solver has the same structure as the special ST and that its error

is very large. For the 32 × 32 grid we, therefore, need about 10000 iterations (≈ 150 SpMVs in

running time comparison) to get an error of x1

similar to x0

even though the frequency distribution

is favorable. Note that the number of SpMVs the 10000 iterations correspond to depends on the

graph size, e.g. for an 100 × 100 grid the 10000 iterations correspond to 20 SpMVs.

While testing the Laplacian solver in a multigrid scheme could be worthwhile, the bad initial

vector creates robustness problems when applying the Richardson iteration multiple times with a

fixed number of iterations of our solver. In informal tests multiple Richardson steps lead to ever

increasing errors without improved frequency behavior unless our solver already yields an almost

perfect vector in a single run.

Micro-performance and parallelism. The nearly-linear running time of the Laplacian solver

was proved in the RAM machine model. To get good practical performance on modern out-of-

14

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
2
.0

−
1
.5

−
1
.0

−
0
.5

0
.00
.51
.01
.52
.0

(a
) I

ni
tia

l e
rr

or

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(b
) I

ni
tia

l f
re

qu
en

cy

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
1
0
0

−
5
005
0

1
0
0

(c
) 1

ite

ra
tio

n,

er

ro
r

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(d
) 1

ite

ra
tio

n,

fr

eq
ue

nc
y

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
1
0
0

−
5
005
0

1
0
0

(e
) 1

0
ite

ra
tio

ns
, e

rr
or

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(f
) 1

0
ite

ra
tio

ns
, f

re
qu

en
cy

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
1
0
0

−
5
005
0

1
0
0

(g
) 1

00

ite

ra
tio

ns
, e

rr
or

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(h
) 1

00

ite

ra
tio

ns
, f

re
qu

en
cy

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
1
0
0

−
5
005
0

1
0
0

(i
) 1

00
0

ite
ra

tio
ns

, e
rr

or

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(j
) 1

00
0

ite
ra

tio
ns

, f
re

qu
en

cy

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

−
2
.0

−
1
.5

−
1
.0

−
0
.5

0
.00
.51
.01
.52
.0

(k
) 1

00
00

ite

ra
tio

ns
, e

rr
or

-1
6

0
15

Fr
eq
ue
nc
y
in
x-
di
re
ct
io
n

-1
6015

Frequencyiny-direction

02
0

4
0

6
0

8
0

1
0
0

(l
) 1

00
00

ite

ra
tio

ns
, f

re
qu

en
cy

Figure 7: The Laplacian solver with the special ST as a smoother on a 32 × 32 grid. For each number

of iterations of the solver we plot the current error and the absolute values of its transformation into

the frequency domain. Note that (a) and (k) have a different scale.

15

order superscalar computers, one has to take their complex execution behavior into account, too.

One particular problem indicated by our experiments is that the number of cache misses in-

creases in the LogFlow data structure when a bad spanning tree is used. Note that querying and

updating the flow with this data structure corresponds to a dot product and an addition, respectively,

of a dense vector and a sparse vector. The sparse vectors are stored as lists of pairs of indexes (into

the dense vector) and values. Thus, the cache behavior depends on the distribution of the indexes,

which is determined by the subtree decomposition of the spanning tree and the order of the subtrees.

We managed to consistently improve the time by about 6% by doing the decomposition in BFS

order, so that the indexes are grouped together at the front of the vector. In contrast, the actual

decomposition only depends on the spanning tree. Furthermore, we could save an additional 10%

of time by using 256-bit AVX instructions to do four double precision operations at the same time

in LogFlow, but this vectorized implementation still uses (vectorized) indirect accesses.

In our experiments we get about 5% cache misses by using the minimum weight ST on the

2D grid, compared with 1% when using CG. In contrast, the special ST yields competitive cache

behavior. Not surprsingly, since the Barabási-Albert graph has a much more complex structure, its

cache misses using the sparse matrix representation increase to 5%. In contrast, the cache misses

improve for larger graphs with LogFlow since the diameter of the spanning tree is smaller than on

grids and the decomposition, thus, groups most indexes at the start of the vector.

From the benchmarks we can infer that the micro-performance suffers from indirect accesses

just as in the case of the usual sparse matrix representations. Furthermore, the micro-performance

crucially depends on the quality of the spanning tree. For good spanning trees or more complex

graphs, the micro-performance of the Laplacian solver is competitive with CG.

A discussion of its parallelization may seem unjustified given that the KOSZ solver was not de-

signed for parallelism. Yet, a short treatment is appropriate since most performance improvements

are achieved today by putting more cores on a chip, and other linear solvers are often executed in

parallel. There are two basic ways of parallelizing the solver in a shared-memory setting, both of

which do not scale well without changing its main loop or the flow data structure significantly:

First, we can parallelize each single query/update of the LogFlow data structure. Unfortunately,

even for larger graphs the vectors involved are so sparse that parallelizing the operations never

outweighed the cost of the barrier synchronization after each operation in our tests.

Second, we could also update multiple cycles at the same time. When we store each flow

on an edge directly, each update consists of a query phase where we determine the amount of

current to be added to the cycle and a cycle update phase. Between the phases the flow on the

cycle needs to remain fixed. Thus, we need to lock whole cycles; atomic updates on single edges

do not suffice. This would create significant synchronization overhead, but could still result in

a viable parallelization if we manage to find many independent cycles. But we need to use the

LogFlow data structure to get good provable and practical performance. This data structure works

by decomposing a tree-path into two root-node paths in the decomposition tree. Since all of these

paths intersect in the original tree, we cannot update them in parallel.

5 Conclusions

At the time of writing the conference version of this paper, we provided the first comprehensive ex-

perimental study of a Laplacian solver with provably nearly-linear running time. In the meantime,

16

our results regarding KOSZ have been recently confirmed and in some aspects extended [8].

Our study supports the theoretical result that the convergence of KOSZ crucially depends on

the stretch of the chosen spanning tree, with low stretch generally resulting in faster convergence.

This particularly suggests that it is crucial to build algorithms that yield spanning trees with lower

stretch. Since we have confirmed and extended Papp’s [26] observation that algorithms with prov-

ably low stretch do not yield good stretch in practice, improving the low-stretch ST algorithms is an

important future research direction. Even though KOSZ proves to grow nearly linearly as predicted

by theory, the constant seems to be too large to make it competitive, even compared to the CG

method without preconditioner. Hence, regarding the paper title, we can say that the running time

is nearly linear indeed and thus fast in the O -notation, but the constant factors prevent usefulness in

practice so far. While the negative results predominate, we hope to deliver insights that lead to fur-

ther improvements, both in theory and practice. It seems promising to repair cycles other than just

the basis cycles in each iteration, but this would necessitate significantly different data structures.

References

[1] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch spanning trees. In 49th Annual Sympo-

sium on Foundations of Computer Science , pages 781–790, 2008.

[2] I. Abraham and O. Neiman. Using petal-decompositions to build a low stretch spanning tree. In 44th

ACM Symposium on Theory of Computing , pages 395–406, 2012.

[3] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game and its application to the k-server

problem. SIAM Journal on Computing , 24:78–100, 1995.

[4] O. Axelsson and P. Vassilevski. A black box generalized conjugate gradient solver with inner iterations

and variable-step preconditioning. SIAM J. on Matrix Analysis and Applications , 12(4):625–644, 1991.

[5] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science , 286(5439):509–512,

1999.

[6] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN 2000: Theoretical Infor-

matics , volume 1776 of Lecture Notes in Computer Science , pages 88–94. Springer, 2000.

[7] E. Boman, B. Hendrickson, and S. Vavasis. Solving elliptic finite element systems in near-linear time

with support preconditioners. SIAM Journal on Numerical Analysis , 46(6):3264–3284, 2008.

[8] E. G. Boman, K. Deweese, and J. R. Gilbert. Evaluating the potential of a laplacian linear solver.

CoRR , abs/1505.00875, 2015.

[9] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial . SIAM, 2000.

[10] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming interface for per-

formance evaluation on modern processors. Int. J. High Perform. Comput. Appl. , 14(3):189–204, Aug.

2000.

[11] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng. Electrical flows, laplacian

systems, and faster approximation of maximum flow in undirected graphs. In Proc. 43rd ACM Symp.

on Theory of Computing (STOC) , pages 273–282. ACM, 2011.

[12] J. W. Demmel. Applied Numerical Linear Algebra . Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 1997.

[13] R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor load balancing.

Parallel Computing , 25(7):789–812, 1999.

[14] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng. Lower-stretch spanning trees. In Proc. of the 37th

Annual ACM Symp. on Theory of Computing (STOC) , pages 494–503. ACM, 2005.

17

[15] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[16] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J. Comput. ,

13(2):338–355, May 1984.

[17] D. Hoske, D. Lukarski, H. Meyerhenke, and M. Wegner. Is nearly-linear the same in theory and prac-

tice? A case study with a combinatorial laplacian solver. In E. Bampis, editor, Experimental Algorithms

- 14th International Symposium, SEA 2015, Paris, France, June 29 - July 1, 2015, Proceedings , volume

9125 of Lecture Notes in Computer Science , pages 205–218. Springer, 2015.

[18] J. A. Kelner and A. Madry. Faster generation of random spanning trees. In Proc.50th Annual IEEE

Symp. on Foundations of Computer Science (FOCS) , pages 13–21. IEEE Computer Society, 2009.

[19] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. A simple, combinatorial algorithm for solving

SDD systems in nearly-linear time. In Proceedings of the Forty-fifth Annual ACM Symposium on

Theory of Computing , pages 911–920, New York, NY, USA, 2013.

[20] I. Koutis. Simple parallel and distributed algorithms for spectral graph sparsification. In Proc. 26th

ACM Symp. on Parallelism in algorithms and architectures (SPAA) , pages 61–66. ACM, 2014.

[21] I. Koutis, A. Levin, and R. Peng. Improved spectral sparsification and numerical algorithms for SDD

matrices. In Proc. Symp. on Theoretical Aspects of Computer Science (STACS) , pages 266–277, 2012.

[22] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem.

Proceedings of the American Mathematical Society , 7:48–50, Feb. 1956.

[23] D. Lukarski. Paralution - library for iterative sparse methods. 2015. http://www.paralution.

com , last access: Nov 20, 2015.

[24] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society

for Industrial and Applied Mathematics , 11(2):431–441, 1963.

[25] H. Meyerhenke and S. Schamberger. A parallel shape optimizing load balancer. In Proc. 12th Interna-

tional Euro-Par Conference (Euro-Par 2006) , pages 232–242. Springer, 2006.

[26] P. A. Papp. Low-Stretch Spanning Trees, 2014. Bachelor thesis, Eötvös Loránd University.

[27] R. Peng and D. A. Spielman. An efficient parallel solver for SDD linear systems. In Proceedings of the

46th Annual ACM Symposium on Theory of Computing , STOC ’14, pages 333–342, New York, NY,

USA, 2014. ACM.

[28] J. Reif. Efficient approximate solution of sparse linear systems. Computers & Mathematics with

Applications , 36(9):37 – 58, 1998.

[29] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of Computer and System

Sciences , 26(3):362 – 391, 1983.

[30] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM J. Comput. ,

40(6):1913–1926, 2011.

[31] D. A. Spielman and S. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,

and solving linear systems. In Proc. 36th Annual ACM Symp. on Theory of Computing (STOC) , pages

81–90, 2004.

[32] D. A. Spielman and J. Woo. A note on preconditioning by low-stretch spanning trees. CoRR ,

abs/0903.2816, 2009.

[33] C. L. Staudt, A. Sazonovs, and H. Meyerhenke. NetworKit: A tool suite for large-scale complex

network analysis. arXiv:1403.3005 , 2014.

[34] P. M. Vaidya. Solving linear equations with symmetric diagonally dominant matrices by constructing

good preconditioners. Technical report, University of Illinois at Urbana-Champaign, Urbana, IL, 1990.

18

http://www.paralution.com
http://www.paralution.com
http://www.cs.elte.hu/blobs/diplomamunkak/bsc_alkmat/2014/papp_pal_andras.pdf

	Introduction
	Preliminaries
	Implementation
	Spanning trees
	Flows on trees
	Remarks on Initial Solution and Cycle selection

	Evaluation
	Settings
	Results

	Conclusions

