
Challenges in Modelling a Richly Annotated Diachronic Corpus of German

Stefanie Dipper1, Lukas Faulstich2, Ulf Leser2, Anke Lüdeling1

1Institut für deutsche Sprache und Linguistik
{Stefanie.Dipper,Anke.Luedeling}@rz.hu-berlin.de

2Institut für Informatik
{faulstic,leser}@informatik.hu-berlin.de

Humboldt-Universität zu Berlin
Unter den Linden 6, D-10099 Berlin

Abstract
This paper presents the design and architecture of a diachronic corpus of German. We describe the corpus architecture with a focus on
the use and restrictions of XML as the data exchange and storage format. In our approach, a relational database will supplement the
XML representation to support sophisticated search and presentation facilities. This is a report about ongoing work; the architecture
presented here is being developed in a pilot study.

1. Introduction
This paper describes the design and architecture of a

diachronic corpus of German with texts from the 9th cen-
tury (Old High German) to the present (Modern German).
This corpus will be built by the large-scale Germany-wide
project Deutsch.Diachron.Digital (henceforth DDD).1

We describe the corpus architecture of DDD with a fo-
cus on the use and restrictions of XML as the data exchange
and storage format. We argue that a corpus based on a col-
lection of XML files is not sufficient to support sophisti-
cated search and presentation and that therefore a relational
database with an information retrieval extension serves our
needs better. We plan to use a graph-based representation
for the corpus and to provide powerful import/export meth-
ods to support various XML-based formats.

Historical texts are of interst to scholars in many fields
(historical linguistics, theoretical linguistics, philology, his-
tory, philosophy, . . .). However, although many historical
texts (manuscrips and early prints) have been digitized in
a number of projects (for example, TITUS2, Bibliotheca
Augustana3, MHDBDB4; for an overview, see Kroymann
et al., 2004), the historical corpus situation for German is
not satisfying: There are no common standards for digi-
tization (this pertains to the question of the best source—
manuscript or edition—as well as to the level of diplo-
maticity and the quality of collation), header information,
or annotation on any level. Projects often do not conform

1The project developed from a Germany-wide initiative (at
the moment 15 universities are involved) and is in its begin-
ning phase, with the final funding decision still pending. The
architecture presented here is being developed in a pilot study
within the Forschungsverbund Linguistik-Bioinformatik, financed
by the Senatsverwaltung f ür Wissenschaft, Forschung und Kul-
tur, Berlin. See http://korpling.german.hu-berlin.
de/ddd/. Due to previous work of the project partners, DDD
can start out with a considerable amount of digitized texts, which
are partially annotated, by varying types of information.

2http://titus.uni-frankfurt.de/indexe.htm
3http://www.fh-augsburg.de/˜harsch/

augusta.html
4http://mhdbdb.sbg.ac.at:8000/index.html

to existing standards such as TEI (Sperberg-McQueen and
Burnard, 2001) or XCES (Ide et al., 2000). There are no
common search interfaces. Many of the digitized texts are
not available to a wider audience.

As a reaction to this, DDD aims at creating a gener-
ally available, unified resource with common standards and
search programs for scholars in the above mentioned fields
as well as for interested laypeople. The architecture needs
to be highly flexible to cover all the requirements.

The paper is structured as follows. We first present the
DDD project and its requirements. We then describe re-
lated corpus projects and, finally, give a description of the
implementation concept, addressing the general architec-
ture (the data model), import and export methods, and the
XML-based representation (the exchange format).

2. Corpus Architecture

The architecture of the DDD corpus has to satisfy dif-
ferent types of requirements: (i) requirements specific to di-
achronic corpora, (ii) requirements due to the heterogeneity
of the corpus, and (iii) requirements due to different types
of users. These requirements call for a flexible corpus ar-
chitecture on the one hand, and for maximal standardization
in digitization and annotation on the other hand.

2.1. Requirements for Diachronic Corpora

Our corpus is a historical corpus in that it deals with
older texts; moreover, it is a diachronic corpus because
it comprises texts from different language periods. Both
properties come with requirements that differ from the re-
quirements of corpora consisting of texts from one lan-
guage period only.

Multi-modality For many historical linguistic research
questions, it is necessary to refer to the manuscript facsim-
iles. Therefore, some parts of the corpus will be aligned by
page or line to manuscript facsimiles.

For teaching purposes it is sometimes instructive to hear
older texts read out. Hence, certain texts will be aligned to
sound files.

Integration of external resources The corpus will be
linked to external resources, like, e.g., the electronically
available lexicons for Middle High German5.

Multi-linguality, alignment The corpus is multi-lingual.
First, although there is a continuous development from Old
High German to Modern German, there are enough differ-
ences between the periods to speak of several languages
here. Second, there are many texts, especially in the Old
High German period, that contain Latin parts. Some texts
are direct (interlinear) translations of Latin, others are in-
terpretations of Latin texts. The interlinear translations are
especially interesting for research on word order: any dif-
ference in word order between the original Latin text and
the German translation points to strong constraints of the
Old High German grammar. This means that we need a
word-to-word alignment (more precisely: an alignment of
n to m words) between Old High German and Latin in these
texts, cf. the example in Figure 1, taken from Tatian α 2,7
(Sievers, 1961).

Besides text-internal alignments as in the above ex-
ample, alignments between different texts will be made
as well. Examples are alignments between different
manuscript versions of the same story (e.g. the various
manuscripts recounting the Nibelungenlied), between dif-
ferent editions of the same manuscript, or between a
manuscript and its edition.

Another type of example is the alignment of corre-
sponding words of different periods. The purpose of such
alignments is to trace the changes a word undergoes in the
course of time. For instance, imbizs (Old High German)
corresponds to inbizze (Middle High German), which fi-
nally evolved into Imbiss in Modern German.

The alignment will be encoded by means of ‘hyper lem-
mas’. A hyper lemma is a set comprising the (normalized)
lemmas of different periods that correspond to each other.
The lemmas then are linked to the actual words occuring in
the text.6

Structural annotation The layout of old texts may bear
important linguistic information. For instance, words are
often split in two parts by line breaks, and it is an open
research question how often the location of such breaks co-
incides with syllable or morpheme boundaries.

Therefore, the texts in the corpus will be structurally
annotated, both graphically (marking lines, pages, etc.) and
logically (verses, sentences, etc.). Note that this leads to
conflicting annotation hierarchies.

Smallest reference unit The token=graphemic word-
based encoding of modern corpora is not directly applicable
to historical texts.

Historical texts make heavy use of abbreviations, e.g.
the character sequence er is often replaced by a ˜, as in d˜
(= der ‘the’). Such abbreviations will be spelt out in the

5http://gaer27.uni-trier.de/MWV-online/
MWV-online.html

6The question of which lemmas of different periods corre-
spond to each other is a difficult one, involving aspects of seman-
tics (word meaning), morphology, etc. The DDD project aims at
defining clear criteria for hyper lemmas.

h a i z a n (Alemanic, diplomatic)
h ê z a n (Middle Franconian, diplomatic)
h e i z a n (Normalization)

Figure 2: Character alignment of dialectal and normalized
form

normalized, unabbreviated word form. Ideally the normal-
ization allows for a reconstruction of the abbreviation sign ˜
and the corresponding, spelt-out characters.

A further example is provided by orthographic varia-
tions as they occur in different dialects (which may indi-
cate differences in phonetics and/or phonology). For in-
stance, ai in the Alemanic dialect usually corresponds to
ê in the Middle Franconian dialect. The normalized form
(which abstracts away from dialectal variation) uses ei to
encode this sound. The characters corresponding to each
other should be aligned, as sketched in Figure 2.

To model these requirements appropriately, the small-
est units of reference in the corpus representation must be
single characters. Further possible applications of such a
character-based annotation include the encoding of initials
and ligatures (paleography), linebreaks, and alliteration.

This has the additional advantage that morpheme
boundaries can be annotated and the differences between
graphemic and lexical word can be easily marked.

Meta-annotation The annotation of historical texts is at
best semi-automatic. This means that often several annota-
tors work on the same text. It is useful to keep record of
the annotation task by means of meta-annotations. Meta-
annotations refer to other annotations and encode informa-
tion such as the annotator of the referenced annotation, the
date of annotating, or the tool applied in the annotation task.
Comments can be added to any annotation unit in the same
way.

2.2. Requirements Due to Corpus Heterogeneity

The DDD corpus is heterogeneous with regard to the
depth of annotation and its composition.

Annotation depth Depending on the research question,
the requirements with regard to annotation of a corpus dif-
fer. While for many linguistic questions, rich annotation
is desirable, there are philological and lexicographic ques-
tions where corpus size may be more important than anno-
tation depth. To satisfy both requirements as best as pos-
sible, the depth and type of annotation will differ within
the DDD corpus. This must be accounted for by the cor-
pus architecture which should allow the user to select ho-
mogeneously annotated sub-corpora as a basis for further
research.

The corpus will be composed of three subcorpora,
which we call the extension corpus, the core corpus, and
the presentation corpus (cf. Figure 3). The extension cor-
pus consists of texts that are annotated only with structural
information (see below) and header information (based on
the standards TEI (Sperberg-McQueen and Burnard, 2001)
and XCES7 (Ide et al., 2000)), encoding bibliographic in-
formation. In addition, the core corpus will be annotated

7http://www.xml-ces.org/

Et non erat illis filius, eo quod esset Elisabeth sterilis (Latin)

inti ni uuard in sun, bithiu uuanta Elisabeth uuas unberenti (OHG)

and not was them son because Elisabeth was sterile (Gloss of OHG)

‘and they did not get a son because Elisabeth was infertile’

Figure 1: Word-to-word alignment of a multi-lingual source text (Latin – Old High German), Tatian

750

Presentation Corpus

Core Corpus

Extension Corpus

1900
time

siz
e

Figure 3: Composition of the planned DDD corpus

with (normalized) lemma information, part-of-speech tags
and inflectional morphology.8 Other annotation levels, e.g.
information structure or syntax, can be added to texts from
either subcorpus. Some texts—the presentation corpus—
will be aligned to manuscript facsimiles or sound files. All
types of annotation will be based on existing standards,
if available (e.g., STTS (Schiller et al., 1999) for part-of-
speech tagging, TIGER (Brants et al., 2002) for syntax an-
notation), which, of course, will have to be adapted to the
special requirements of historical and diachronic data.

DDD intergrates a lot of already digitized material9,
which has to be brought to a common quality standard and
annotated.

Corpus composition The corpus composition differs for
the different language periods. The older language peri-
ods (Old High German, Old Saxon) can be digitized almost
completely, while in the newer periods the corpus needs to
be balanced with respect to a number of parameters like
region, genre, dialect, etc.

Additional texts will be added in the course of the
project. Hence, the corpus architecture must allow the ad-
dition of new texts. At the same time, it must be possible to
identify reference corpora for each period.

2.3. User Requirements

The DDD corpus addresses scholars in many fields,
e.g., linguists, lexicographers, philologists, historians. The
needs of these user groups differ with respect to (i) search
facilities, (ii) the presentation of the corpus, and (iii) export
options.

8The annotation of historical texts heavily depends on man-
ual work. In this paper, we do not address the issue of how the
information will be annotated.

9This material was digitized in different projects at partner uni-
versities and, among others, includes (parts of) the TITUS cor-
pus, the Bonner Mittelhochdeutsch corpus, and the Digital Middle
High German Text Archive.

Search facilities Lexicographers search for the use and
collocations of a word or word form. In a diachronic cor-
pus, they can also look at meaning change or form change.
For instance, at about 900 AD the word imbizs meant ‘deli-
cious meal’, whereas the corresponding present-day form
Imbiss means ‘snack’. For lexicographic purposes, we
therefore need full-text searches and collocation extraction.

In contrast, linguists often search for annotated infor-
mation such as morphology, part of speech, syntax, e.g. to
investigate the change of word order in German. This usu-
ally involves complex, cross-level queries.

We are convinced that the requirements of the prospec-
tive user groups cannot be satisfied by providing a single
search interface. Therefore, we envisage the provision of
at least two levels of searching: one simple full-text search
including only the digitized text, and another interface pro-
viding access to the full annotation.

Corpus presentation Similarly, the ideal visual presen-
tation of the corpus depend on the type of user. The texts
will be represented with or without annotation or with se-
lected annotation types only. In addition to a Web inter-
face, presentation with external viewers (e.g., PDF) should
be supported.

Export options The corpus (and search results) will be
represented by a primary XML exchange format. This al-
lows the user to further process and manipulate the data by
external tools.

An XML format will also be used as the exchange for-
mat for annotated texts within the project. However, ex-
ternal editors and annotation tools may require or produce
documents in different formats.

Standards compliance Finally, existing linguistic and IT
standards should be applied wherever possible to facilitate
access to the corpus (including future access), to ease the
application of external tools, to make data reuse possible,
and to allow for comparison and exchange with other cor-
pora.

3. Related Corpus Projects
DDD is inspired by research on historical corpora,

multi-lingual corpora, and multi-modal corpora. We first
give a broad overview before going into more technical de-
tail.

Historical corpora DDD cannot be modelled directly af-
ter existing historical corpora of other languages because
most of them are smaller and made with a specific pur-
pose in mind (literary goals or linguistic goals, but not
both). For example, the diachronic part of the Helsinki
Corpus (roughly 1 million words), which was originally
collected for research on variation and language change

(Rissanen et al., 1993), is now annotated linguistically with
part-of-speech information and syntax10. Other historical
corpora that have more annotation levels encompass only
a certain language period (like the Lancaster Newsbook
corpus, which contains 17th century newsbooks11) or are
even more specific (compare the corpus of the Nibelungen-
lied12). However, even though the overall corpus architec-
ture cannot be directly copied, existing historical corpora
are the basis for many decisions concerning the different
annotation layers.

Multi-lingual corpora DDD shares many of the prob-
lems of multi-lingual corpora, in that we need alignment
between texts and also within the same text. As mentioned
above, some of the texts are direct interlinear translations
from, e.g., Latin to Old High German. Here we need word-
to-word alignment within the same text.

In many cases we have different manuscripts
of the same text (as the manuscripts A–C of the
Nibelungenlied)—these need to be aligned as well.
The problem goes further: in order to track lexical change,
all of the texts in the corpus need a common ‘normalized’
lemma layer (the ‘hyper lemma’ annotation).

Multi-modal corpora DDD can be modelled on multi-
modal corpora, which have the task of connecting different
representations of the same utterance—for example, a spo-
ken sentence with its transliteration and the gestures that
were made while speaking—with each other and with an-
notation layers.13 Each representation and annotation layer
is represented in a different file, resulting in a multi-layer
stand-off annotation. Roughly spoken, all files are con-
nected via reference to a common base line (or time line
for speech data).

The data model for DDD (which is presented in de-
tail in Sec. 4.2.) is inspired by this architecture, but gen-
eralizes it by permitting multiple time lines for the same
text: a diplomatic rendering of the original text serves as
a base line for the graphemic view of the text (volumes,
pages, lines, graphemic words), whereas the logical view
of the text (chapters, sections, paragraphs, sentences, lexi-
cal words) refers to the time line of a normalized version of
the text. Both time lines are aligned by annotations that link
graphemic with lexical words (cf. Figure 6). Each further
representation or annotation layer (normalization, part-of-
speech tags, structural inormation, etc.) can refer to either
one of these base lines or to annotations within other layers.
In XML, each annotation layer can be stored in a separate
file which uses XPointer URLs to refer to a base line. In
this way, we can deal with conflicting hierarchies, different
modes of representation (text, graphics, speech) as well as

10http://www.ling.upenn.edu/mideng/
11http://www.ling.lancs.ac.uk/newsbooks/
12http://www.blb-karlsruhe.de/blb/blbhtml/

nib/uebersicht.html
13For examples of multi-modal corpora, see the SmartKom

corpus (http://www.smartkom.org/) or the GeM cor-
pus (http://www.fb10.uni-bremen.de/anglistik/
langpro/projects/gem/newframe.html); see also be-
low.

with the fact that not all texts in the corpus are annotated in
the same depth.

4. Implementation Concept
To repeat the above requirements: the DDD corpus is

multilingual, multi-modal, and has to support different and
varying annotation levels. The smallest unit of annotation
is the character and DDD has to support conflicting hierar-
chies. The corpus must be searchable with intuitive and, at
the same time, powerful search tools that can search on all
annotated levels.

We first present the overall architecture of DDD in
Sec. 4.1., where it is specified that the DDD corpus is stored
in a central database. The data model that will serve as the
basis for structuring the corpus within the database is in-
troduced in Sec. 4.2. We then focus on how texts can be
exported from / imported into the database (Sec. 4.3.). In
Sec. 4.4., we present the XML formats that will be used for
exchange with other project partners and for publication of
the corpus.

4.1. System Architecture

We propose a Web-based system architecture where
users search or browse the DDD Web server via standard
Web browsers (cf. Figure 4). For digitization and annota-
tion, the project partners can download XML files using a
Web browser, apply external tools to these files, and up-
load the modified XML files again to the DDD Web server.
External tools may also communicate directly with Web
services offered by the DDD Web server. For instance,
a lemmatization tool might access a lexicon at the DDD
server via a Web service.

The Web server routes user requests to a module of the
application logic tier, which in turn communicates with the
relational database system storing the corpus. The applica-
tion logic comprises several search interfaces, import and
export converters, and administrative modules for access
control, diagnosis, etc.

The corpus itself is stored in a relational database sys-
tem containing a full-text retrieval component. Compared
to the storage of a corpus in a flat file, this yields several
advantages:

• Sophisticated search facilities on text, header data, and
annotations: full-text search can be combined with
search criteria on header data; complex conditions on
annotations and information referenced by annotations
can be formulated; etc.

• Extensive support for statistical analysis in modern
SQL: SQL:1999 and SQL:2003 (Türker, 2003) incor-
porate several statistical operators developed for data
warehousing applications, which can be used for ana-
lyzing large sets of annotations.

• More natural representation of non-hierarchical data
(cf. Sec. 4.2.): in XML, non-hierarchical relationships
must be expressed using ID-references, which have to
be handled by special means.

• Independence from document formats: in Sec. 4.3. we
show that various import and export formats can be

supported without imposing the restrictions of a par-
ticular format to the database.

• Multi-user capabilities: relational database systems
can support a large number of concurrent users. In
particular, they are able to successfully handle con-
flicts arising from concurrent write operations.

• Robustness, scalability, maturity: modern database
systems provide excellent means for recovery and
backup. They can be easily extended to cope with in-
creasing demands for storage and throughput.

• Longevity: by using industry standards such as SQL,
the chance to ensure long-term operation of the DDD
corpus is increased.

Import
Export

Database

Annotation
Tool

Import Search Search Export

. . .

.

Web Browser

Web Server

Application Logic

XML
Files

.EditorExternal Tools

Figure 4: System Architecture of DDD

4.2. Data Model
Although the DDD corpus will be stored in a relational

database, we restrict ourselves to a specialized data model
for annotated texts rather than using the relational data
model in its full generality.

There are two popular data models for multi-modal cor-
pora: the annotation graph (AG) model (Bird and Liber-
man, 2001) and ordered directed acyclic graphs (ODAGs),
such as the NITE object model (NOM) (Carletta et al.,
2003). Annotation graphs model annotations as arcs that
connect time points on the time axis of a signal. Annota-
tion graphs can be stored easily in relational databases and
searched efficiently by translating queries into SQL. How-
ever, the AG model has some shortcomings. For instance,
parent-child relationships cannot be represented in AGs
without extending the data model with special child/parent
arcs (Teich et al., 2001). Without this extension, the dom-
inance relation between a non-branching node and its only
child is not encoded. Meta-annotations or alignments can-
not be represented directly but need to be expressed by in-
troducing equivalence classes (i.e., annotations are linked
by assigning them identical attribute values).

The ODAG-based NOM does not share these limita-
tions. Annotations are represented by nodes. Annotation
values are stored in form of node attributes. The domina-
tion relation between nodes is modeled explicitly by parent-
child relationships. Each node may refer to a span of the
underlying text. In this case, the child nodes must refer to
non-overlapping text spans contained in the span of their
parent node. The order of child nodes must correspond to
the order of their spans in the underlying text.

We have two requirements which go beyond the NITE
model: (i) we want to represent the whole corpus within
the same data structure to enable cross-references between
texts, and (ii) we want to permit complex annotation val-
ues, which cannot be represented as node attributes, a need
that has been recognized also in (Brugman and Wittenburg,
2001).

For DDD, we propose a data model based on ODAGs
that is presented in Figure 5. Two prominent features of
our model are:

• A collection of texts is associated with each ODAG.
This collection comprises the source texts of the cor-
pus and, in addition, notes, comments, and other free-
text annotations. Every node may reference a span in
some text associated with the ODAG. This generalizes
the NOM where all texts (“signals”) are synchronized
and references cannot point to a specific text. As in
NOM, the span referenced by a node must be con-
tained in the spans referenced by its ancestor nodes.
Moreover, the spans referenced by the children of a
node must be disjoint and the textual order of the spans
must be consistent with the order of the child nodes.

• Annotations with complex values are seen as relation-
ships between ODAG nodes. A complex annotation is
a node with a child that marks a region of the source
text, and one or more children representing (facets of)
the annotation value. Alignments are annotation nodes
having several children referring to the source text(s).

It is straightforward to use this data model as a generic
database schema. However, this approach lacks efficiency.
We plan to investigate the efficiency of object-relational
features offered by SQL:1999 and SQL:2003. These fea-
tures can be used to organize nodes by name into a hier-
archy of tables that store each node together with its at-
tributes. Parent-child relationships have to be stored in
bridge tables since – differing from XML document trees
– they are of cardinality m : n.

This approach has the advantage that we can represent
the whole corpus as a single ODAG under a single root
node. Each annotated text is represented by a subgraph that
is rooted in a child of the corpus root node. In Figure 6,
the structure of a prototype ODAG for the DDD corpus is
sketched.

4.3. Import/Export Methods

For presentation, exchange, and support of existing
tools, an XML representation of the ODAG is necessary.

An XML document can be modeled as an ordered tree,
which is a special case of an ODAG. However, the ODAG

Document

Corpus

Body Annotations

Normalization

Part

Chapter

Section

Paragraph

Sentence

Word

Volume

Page

GraphWord

Line NormalForm Lemma

Lemmatization

Lexicon

Morphology

Entry

Morpho

case
...

gender

GraphemicView LogicalView

Header

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

DiplomaticText d~ derNormalizedText

Figure 6: Prototype of DDD corpus schema

Figure 5: UML model of the DDD datamodel

stored in the database is in general not a tree. Hence, to
export an XML document from the database, a tree has to
be generated on the basis of the stored ODAG. Moreover,
we may want to include only certain annotation layers in the
XML document or would like to use names for document
elements and attributes that differ from the names used in
the database. When importing XML documents into the
database, an inverse transformation has to be performed.

Hence, a powerful and flexible method for transform-
ing a source ODAG into a target ODAG is needed to supp-
port the import and export of XML documents into/from

the database. Requirements for this transformation method
are:

Projection: Only certain annotation layers may be needed
in the target ODAG. For instance, one might want to
present only the physical structure of a document on a
Web page.

Selection: The source ODAG may be restricted to a cer-
tain part of a text. For instance, a Web page might
present only a single chapter of a text. Conversly, an
XML document created by an external tool may con-
tain tool-internal data that is to be excluded from im-
port into the database.

Folding and Rearrangements: The target ODAG may
contain different transformations of the same part of
the source ODAG. For instance, we may want to gen-
erate an HTML document that presents each text line
as a table whose rows correspond to different annota-
tion layers. This requires a different transformation of
the same line for each annotation layer.

Derived Attributes and Elements: Complex annotation
values may be derived from separate simple at-
tributes. For instance, the complex STTS part-
of-speech value VAINF (‘verb, auxiliary, infinitive’
(Schiller et al., 1999)), as used, e.g., in the TIGER
corpus (Brants et al., 2002), may be derived from the

atomic part-of-speech value verb and the specifica-
tions type=auxiliary and inflection=infinite.

Interchange between Element Content and Attributes:
Values of annotations that are stored as attributes
within the database may be represented as element
content in an XML document and vice versa.

Context-Sensitivity: Nodes may be transformed in differ-
ent ways, depending on the context. For instance, a
word node may be copied verbatim in the context of a
sentence, while in the context of a grammatical anno-
tation, the word node is transformed into an XPointer
reference.

Addressing: IDs or XPointer URLs identifying document
elements or addressing text regions need to be gener-
ated (on export) and resolved (on import) to support
stand-off annotation formats.

Encoding/Decoding of Conflicting Hierarchies:
Although our primary exchange format avoids
the problem of conflicting hierarchies by using
separate annotation files, we need to support other
formats to represent several hierarchies within the
same document. Several solutions for this problem
have been proposed by the TEI. From these, we plan
to support at least milestones, fragmentation, and
virtual joins:
Milestones: creating milestones means replacing
subsequent elements (e.g., pages) by empty milestone
elements (e.g., page breaks). Decoding of milestones
means reconstructing annotations spanning the re-
gions separated by the milestones.
Fragmentation: annotations with a lower priority
must be split into several parts at the borders of
higher-priority annotations. On import, these anno-
tation fragments must be merged again into single
annotations.
Virtual Joins: virtual joins are based on fragmenta-
tion but have additional IDREF attributes linking the
fragments.

4.3.1. Generic Mapping
To apply existing transformation technology for XML,

we use a generic mapping between ODAGs and XML doc-
ument trees that replicates all shared nodes in the ODAG.
Node IDs are generated and stored in an extra noderef at-
tribute to keep track of the original nodes. Text referenced
by a node is inserted as PCDATA, interleaved with the doc-
ument elements representing the children of the node. In
addition, the span of the referenced text is described by the
attributes text (URI to text), start, end (span).

To facilitate the creation of XML documents for import
into the database, redundant content need not to be repro-
duced. Document elements sharing the same noderef at-
tribute are unified into a shared ODAG node. Empty docu-
ment elements with a noderef attribute are treated as node
references. However, all non-empty elements referring to
the same node must have the same content. The unmarked
text of the XML document is extracted, concatenated, and
an appropriate reference to a span of this text is added to

each node unless the node refers explicitly to a text span
using the text, start, end attributes. Nodes with such ex-
plicit span references may omit the referenced text content,
in order to reduce redundancy.

4.3.2. XML Transformation
The XML document resulting from the generic ODAG-

to-XML mapping can be transformed in various target for-
mats using general purpose transformation methods like
XSLT14 or STX (Streaming Transformations for XML15).
XSLT is quite expressive and satisfies most of our require-
ments in a natural way.

The encoding of conflicting hierarchies by XSLT is not
straight-forward, but can be implemented using the timing
attributes to select and clip elements of a subordinate hier-
archy (see Figure 7). However, this is quite inefficient.

4.3.3. Need for a High-Level Transformation
Language

Both methods for encoding conflicting hierarchies re-
sult in quite complex and verbose stylesheets that are hard
to write manually. This problem could be solved by devel-
oping a more high-level transformation language.

Moreover, the ODAG stored in the database can become
arbitrarily large. To make the XSLT-based approach scal-
able, only a subgraph of the database ODAG containing the
information to be included in the target document should
be exported. An XPath expression could be used to select
a node set. The selected subgraph would then be formed
by all nodes reachable from this node together with a new
synthetic root node. Further specification options might be
useful to control the replication of shared nodes depending
on the path used to reach them.

Hence it would make sense to define a new transfor-
mation language that is better suited to our requirements.
This language might be implemented either by generat-
ing XSLT stylesheets with additional parameters control-
ling the generic transformation or by a specialized transfor-
mation mechanism of its own.

4.4. Exchange Format

We distinguish two XML-based exchange formats. The
first one will be used within the project as the exchange
format for annotated texts. This format is the result of
the generic mapping described in Sec. 4.3.1., which maps
ODAGs stored in the database to XML document trees.
This redundant representation separates conflicting hierar-
chies and the various annotation layers. It uses node and
span references to keep track of shared nodes and the align-
ment of annotations with the underlying texts. For import,
redundant content may be omitted.

The second format represents the ‘external’ exchange
format. This format will serve as the official exchange for-
mat, wich is made available to the research community. It
will be XCES-compliant—which means that, with the cur-
rent version of XCES16, not all encodings of the DDD cor-
pus can be represented adequately.

14http://www.w3.org/Style/XSL/
15http://stx.sourceforge.net/
16http://www.xml-ces.org/

5. Conclusion
In this paper, we presented the architecture for a large-

scale, diachronic, multi-modal corpus for German. We first
sketched the diverse requirements for digitization and an-
notation that result from the type of data, the different user
groups, and their research questions.

In a pilot study, we developed a flexible corpus architec-
ture to answer these requirements. The corpus will be rep-
resented by an ODAG and stored in a relational database.
An XML-based representation will be derived from the
ODAG representation, which serves as the exchange format
within the project. In addition, an XCES-compliant XML
representation will be made available for research purposes.

In our architecture, the smallest units of reference are
characters. There are two time lines: first, the diplomatic
text, focusing on physical properties of the source text; sec-
ond, the normalized text, focusing on logical properties.
The corresponding annotations often result in conflicting
hierarchies. To find a suitable representation and efficient
methods of manipulation for these hierarchies will be a ma-
jor point in our future work.

6. References
Bird, Steven and Mark Liberman, 2001. A formal

framework for linguistic annotation. Speech Communi-
cation, 33(1,2):23–60. http://arxiv.org/abs/
cs/0010033.

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith, 2002. The TIGER treebank.
In Proceedings of the Workshop on Treebanks and Lin-
guistic Theories, Sozopol.

Brugman, Hennie and Peter Wittenburg, 2001. The
application of annotation models for the construction of
databases and tools: Overview and analysis of MPI work
since 1994. In IRCS Workshop on Linguistic Databases.
http://www.ldc.upenn.edu/annotation/
database/papers/Brugman_Wittenburg/
20.2.brugman.pdf.

Carletta, Jean, Jonathan Kilgour, Timothy O’Donnell, Ste-
fan Evert, and Holger Voormann, 2003. The NITE ob-
ject model library for handling structured linguistic an-
notation on multimodal data sets. In Proceedings of the
EACL Workshop on Language Technology and the Se-
mantic Web (3rd Workshop on NLP and XML, NLPXML-
2003).

Ide, Nancy, Patrice Bonhomme, and Laurent Romary,
2000. XCES: An XML-based standard for linguistic cor-
pora. In Proceedings of the Second Language Resources
and Evaluation Conference (LREC).

Kroymann, Emil, Sebastian Thiebes, Anke Lüdeling,
and Ulf Leser, 2004. Übersicht über di-
achrone Korpora. Technical report, Institut für
Informatik, Humboldt-Universität zu Berlin.
www.linguistik.hu-berlin.de/ddd/
publikation/HistorischeKorpora.pdf.

Rissanen, Matti, Merja Kytö, and Minna Palander-Collin
(eds.), 1993. Early English in the Computer Age. Mou-
ton de Gruyter.

Schiller, Anne, Simone Teufel, Christine Stöckert, and
Christine Thielen, 1999. Guidelines für das Tagging

deutscher Textcorpora mit STTS. Kleines und großes
Tagset. Universitäten Stuttgart and Tübingen, http:
//www.ims.uni-stuttgart.de/projekte/
corplex/TagSets/stts-1999.pdf.

Sievers, Eduard (ed.), 1961. Tatian. Lateinisch und
altdeutsch mit ausführlichem Glossar. Paderborn:
Schöningh, 2nd edition.

Sperberg-McQueen, C. M. and Lou Burnard (eds.), 2001.
TEI P4: The XML Version of the TEI Guidelines, chap-
ter 31: Multiple Hierarchies. Text Encoding Initiative.
http://www.tei-c.org.uk/P4X/NH.html.

Teich, Elke, Silvia Hansen, and Peter Fankhauser, 2001.
Representing and querying multi-layer corpora. In Pro-
ceedings of the IRCS Workshop on Linguistic Databases.
University of Pennsylvania, Philadelphia.

Türker, Can, 2003. SQL:1999 & SQL:2003 - Objek-
trelationales SQL, SQLJ & SQL/XML. Heidelberg:
dpunkt.verlag.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<!-- ... -->
<xsl:template match="line">

<xsl:variable name="clipStart" select="number(@start)"/>
<xsl:variable name="clipEnd" select="number(@end)"/>
<line no="{@no}">

<xsl:apply-templates select="ancestor::document/structure/logical/part/verse[
(number(@start) < $clipEnd) and (number(@end) > $clipStart)]">

<xsl:with-param name="text" select="$text"/>
<xsl:with-param name="clipStart" select="$clipStart"/>
<xsl:with-param name="clipEnd" select="$clipEnd"/>

</xsl:apply-templates>
</line>

</xsl:template>

<xsl:template match="verse">
<xsl:variable name="start">

<xsl:choose>
<xsl:when test="number(@start) < $clipStart">

<xsl:value-of select="$clipStart"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="number(@start)"/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<xsl:variable name="end">

<xsl:choose>
<xsl:when test="number(@end) > $clipEnd">

<xsl:value-of select="$clipEnd"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="number(@end)"/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<verse no="{@no}">

<xsl:value-of select="substring($text,$start + 1, $end - $start)"/>
</verse>

</xsl:template>
</xsl:stylesheet>

Figure 7: Detail of an example XSLT stylesheet that implements the fragmentation of verses within lines, using the timing
attributes start and end. In each line element all overlapping verse elements are included and clipped at the borders
$clipStart and $clipEnd of the line element. The text of the (clipped) verse element is computed as a substring of the
unmarked text stored in $text.

