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Abstract

We introduce a combinatorial dimension that characterizes the number of queries needed to exactly (or approximately) learn
concept classes in various models. Our general dimension provides tight upper and lower bounds on the query complexity for all
sorts of queries, not only for example-based queries as in previous works.

As an application we show that for learning DNF formulas, unspecified attribute value membership and equivalence queries
are not more powerful than standard membership and equivalence queries. Further, in the approximate learning setting, we use
the general dimension to characterize the query complexity in the statistical query as well as the learning by distances model.
Moreover, we derive close bounds on the number of statistical queries needed to approximately learn DNF formulas.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Starting with Angluin’s seminal paper [1] a variety of different query types has been investigated in learning the-
ory. The query complexity of a concept class C is the minimum number of queries needed to learn C and provides
significant information on the difficulty of learning C in a specific learning model. Therefore, determining (or ap-
proximating) the query complexity is an important task. To this end, combinatorial notions have been introduced for
many query types, as e.g., certificates [19] and consistency dimension [5] for membership and equivalence queries,
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approximate fingerprints [2,15] and strong consistency dimension [5] for equivalence queries and extended teaching
dimension [18] for membership queries.

Furthermore, there is a unifying concept, the abstract identification dimension AIdim [4], that gives a single char-
acterization of the query complexity for all types of example-based queries. An answer to a query of this type
fully specifies the target function f on a subset X of its domain. Hence, it can be described by a set of examples
S = {(x, f (x)) | x ∈ X}.

All query types mentioned above are example-based. On the other hand, several interesting query types are not
example-based as, e.g., the restricted equivalence queries [1] and unspecified attribute value (UAV) queries (see [7,
10,17]). A restricted equivalence query is answered by YES or NO, i.e., there are no counterexamples. UAV queries
involve examples in which some of the attributes may remain unspecified. The most popular queries in UAV learning
are UAV membership and UAV equivalence queries that are natural extensions of their ordinary counterparts. For
some of these query types, AIdim turns out to be unable to provide a useful approximation for the query complexity
(see Examples 6 and 10).

In this paper we introduce a new combinatorial notion Gdim and show that it characterizes the query complexity
for any type of queries. In fact, it turns out that the general dimension essentially coincides with AIdim for example-
based queries, whereas in general they can be far apart. We note in passing that although the general dimension
only characterizes the query complexity and hence provides only a lower bound for the time complexity, it has been
shown in [22] that a polynomially bounded value of the general dimension implies polynomial-time learnability with
additional access to an oracle in a low level of the polynomial time hierarchy.

As a main application of the general dimension in the exact learning setting we show that for learning DNF
formulas, UAV memberships and equivalences are not superior to their ordinary counterparts. To prove this result
we introduce UAV versions of the consistency dimension and the extended teaching dimension and use the general
dimension to show that these dimensions tightly approximate the query complexity in the corresponding learning
models.

Furthermore, we extend the general dimension to approximate learning and show that also in this setting it char-
acterizes the query complexity. As an application, we get a characterization of the query complexity in the statistical
query and the learning by distances model. In contrast to the SQ-dimension introduced by Blum et al. [8], the general
dimension works for any reasonable choice of the error parameter ε and the tolerance parameter τ . Finally, we con-
sider the problem of learning DNF formulas (over n variables and m terms) with statistical queries and show that for
any constant error ε < 1/2 and a suitable choice of the tolerance τ = Θ(1/m), the query complexity of this class with
respect to the uniform distribution is nΘ(logm).

The paper is organized as follows. In Section 2 we provide the framework for query learning that we use in this
paper. In Section 3 we introduce our new dimension and show that it is appropriate to characterize the query complex-
ity in the exact learning setting. In Section 4 we apply the general dimension to UAV learning and in Section 5 we
investigate the problem of learning DNF formulas in this model. Then, in Section 6, we extend the general dimension
to the approximate learning setting and in Section 7 we consider the problem of learning DNF formulas with statistical
queries.

2. A framework for query learning

The cardinality of a finite set X is denoted by ‖X‖. We use logx and lnx to denote the logarithm to base 2 and e,
respectively. The Boolean constants false and true are identified with 0 and 1, and Bn denotes the set of all Boolean
functions f : {0,1}n → {0,1}. We denote the constant zero function by 0̄. Elements x of {0,1}n are called assignments
and any pair (x, b) with b ∈ {0,1} is called an example. In case b = f (x) we call (x, b) an example of f . A sample S

(of f ) is just a set of examples (of f ). For a class C ⊆ Bn and a sample S = {(x1, b1), . . . , (xk, bk)} we use

C(S) = C(x1, b1, . . . , xk, bk) = {
f ∈ C

∣∣ f (xi) = bi for i = 1, . . . , k
}

to denote the class of all functions in C that are consistent with S. In order to formally describe the answers of a teacher
we use subsets of Bn, where the answer Λ ⊆ Bn provides the information that the target concept f belongs to Λ. For
example, the answer YES to a membership query x ∈ {0,1}n corresponds to the set Bn(x,1) = {f ∈ Bn | f (x) = 1}.
Further, an equivalence query h ∈ Bn is either answered by a counterexample y ∈ {0,1}n which is described by the
set Bn(y,1 − h(y)) = {f ∈ Bn | f (y) �= h(y)} or by the answer YES which corresponds to the singleton set {h}.
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We say that a set of answers A = {Λ1, . . . ,Λk} is consistent with a function f ∈ Bn (or f satisfies A), if f is
contained in all answers from A. A is called consistent (or satisfiable) if A is consistent with some function f ∈ Bn.
Further, for a class C ⊆ Bn, we use

C(A) = C(Λ1, . . . ,Λk) = {f ∈ C | ∀Λ ∈ A: f ∈ Λ}
to denote the set of all concepts f ∈ C that satisfy all answers in A.

Now we are ready to define the abstract notion of a learning protocol. A protocol P consists of two components:
a set Q of queries and a specification of which answers are possible for each query q ∈ Q. Formally, a protocol with
query set Q is a relation

P ⊆ Q ×P(Bn),

where P(Bn) denotes the power set of Bn. For a function f ∈ Bn,

P f = {
(q,Λ) ∈ P

∣∣ f ∈ Λ
}

denotes the protocol providing only answers that are consistent with f . Further, for a query set Q′ ⊆ Q, PQ′ denotes
the answer set

PQ′ =
⋃

q∈Q′
Pq, where Pq = {

Λ ⊆ Bn

∣∣ (q,Λ) ∈ P
}

contains all possible answers of P for the query q . P is called complete, if for any function f , the protocol P f

provides at least one answer for any query q ,

∀f ∈ Bn ∀q ∈ Q: P
f
q �= ∅,

where P
f
q = P f ∩Pq . In this paper we will only consider learning models that can be described by complete protocols.

For instance, Angluin’s [1] model of learning by membership queries from {0,1}n is formalized by the protocol

MQ = {(
y,Bn(y, b)

) ∣∣ y ∈ {0,1}n, b ∈ {0,1}}
and the protocol for learning by equivalence queries with hypotheses from a subset H ⊆ Bn is

EQH = {(
h,Bn

(
y,1 − h(y)

)) ∣∣ h ∈ H, y ∈ {0,1}n} ∪ {(
h, {h}) ∣∣ h ∈ H

}
.

We can combine these two protocols by taking the union

MEQH = MQ ∪ EQH

which describes learning by membership and equivalence queries. Note that in general we may need to rename the
queries upon taking the union of protocols in order to get disjoint query sets. Angluin also introduced a restricted
version of equivalence queries that can only be answered by YES or NO. This model corresponds to the protocol

EQH
r = {(

h, {h}) ∣∣ h ∈ H
} ∪ {(

h,Bn − {h}) ∣∣ h ∈ H
}
.

Henceforth we omit the superscript H in case H = Bn and simply write EQ, MEQ and EQr . A protocol is called
example-based if it only admits answers of the form Bn(S) for a sample S [16]. For example, all combinations of
membership, equivalence, subset, and superset queries are example-based. On the other hand, some popular query
types are not example-based as, e.g., restricted equivalence or UAV membership and equivalence queries.

A teacher T answers according to a protocol P and a target f ∈ Bn, if for each query q ∈ Q, T provides an
answer Λ ∈ P

f
q . A class C ⊆ Bn is learnable with d queries under P if there is an algorithm L such that for any

target f ∈ C and for any teacher T that answers according to P f , L asks at most d queries and f is the only function
in C that satisfies all answers of T . Note that there is no restriction on the computational complexity of L. Further,
L may choose the queries adaptively, based on the answers to previous queries.

For a class C ⊆ Bn and a protocol P we define the query complexity, QC(C,P ), as the smallest integer d � 0 such
that C is learnable with d queries under P . If no such integer exists then QC(C,P ) = ∞.

Since L must be successful with respect to any teacher, T can be seen as an adversary who tries to force the
learner L to ask as many queries as possible. From this point of view, the choice of a target f ∈ C restricts the teacher
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to select his answers according to the protocol P f ⊆ P . More generally, we can interpret any subset T ⊆ P as a (more
or less specific) adversary strategy.

Formally, we call a set T ⊆ P an answering scheme for P , if Tq contains for each query q ∈ Q exactly one answer.
We call T satisfiable if the answer set TQ is satisfiable. We denote the set of all answering schemes for P by T (P ) and
the set of all satisfiable answering schemes by S(P ). Note that S(P ) = ⋃

f ∈Bn
T (P f ). As explained above answering

schemes play the role of adversary strategies in our arguments below.
In order to keep our presentation concise, we only consider concept learning of classes C ⊆ Bn for some fixed

arity n. However we highlight that for many query learning models our results can be extended to the case where the
concept domain contains words of variable length. Castro [11] treats in detail the relationships between query learning
concept classes C ⊆ Bn and standard models using {0,1}� as the concept domain (see also Gavaldà [14]).

3. The general dimension for exact learning

In this section we introduce the general dimension and show that it characterizes the query complexity for any type
of queries. A universal combinatorial parameter that exactly identifies the number of queries needed to learn can be
easily defined by using a chain of alternating quantifiers of queries and answers, where the number of alternations
corresponds to the query complexity. However, we would rather prefer a “flat” characterization defined by using only
a small number of quantifier alternations, provided that it gives a good approximation for the query complexity. In fact,
Balcázar et al. [4] introduced the abstract identification dimension AIdim which uses only one quantifier alternation,
but nevertheless works well for all example-based learning models.

Definition 1. (See [4].) Let P be a protocol on a query set Q and let T be an answering scheme for P . We say that a
set A ⊆ TQ of answers from T succeeds on a concept class C ⊆ Bn (A ∈ Succ(C,T ) for short), if ‖C(A)‖ � 1.

The abstract identification dimension of C under P , AIdim(C,P ), is the minimum integer k (if it exists) such that
any satisfiable answering scheme T provides a set A of k answers that succeeds on C,

AIdim(C,P ) = max
T ∈S(P )

min
A∈Succ(C,T )

‖A‖.

(Here and in the following we adopt the convention that minA∈∅ ‖A‖ = ∞.)

The notion of AIdim corresponds to the scenario where the adversary T has to reveal his answer for any potential
query before the learner actually selects an appropriate query set. But note that also T has an advantage since unlike a
teacher, T only needs to be consistent with some function (not necessarily with some f ∈ C). We illustrate the notion
by some examples (see also Fig. 1).

Example 2. We call f ∈ Bn a singleton function (f ∈ SINGn for short) if f (x) = 1 holds for exactly one x ∈ {0,1}n.
Clearly, if an answering scheme T for MQ answers some query by YES, this single answer succeeds on SINGn. On

the other hand, if T gives only NO answers (i.e., T = MQ0̄), then any answer set A ∈ Succ(SINGn, T ) must contain
at least 2n − 1 answers. Hence, AIdim(SINGn,MQ) = 2n − 1 (which in fact coincides with QC(SINGn,MQ)).

Next we consider the problem of learning singletons by equivalence queries. Since any answer to the hypothesis
h = 0̄ succeeds on SINGn, it follows for P ∈ {EQH ,MEQH | 0̄ ∈ H } that AIdim(SINGn,P ) = QC(SINGn,P ) = 1.
On the other hand, if 0̄ /∈ H , then we again get AIdim(SINGn,P ) = QC(SINGn,P ) = 2n − 1 for these protocols,
provided that SINGn ⊆ H in case P = EQH .

As shown in [4], AIdim is a crucial notion in the sense that it unifies all known learning dimensions of example-
based query models. Moreover, the application of this concept to specific protocols such as equivalence and/or
membership queries exactly yields the combinatorial notions that are known to characterize the query complexity
in these models, such as strong consistency dimension [5], extended teaching dimension [18] and consistency dimen-
sion (or certificate size) [5,19]. AIdim thus fully unifies all these characterizations.

Now we are ready to introduce the general dimension where in contrast to AIdim, the adversary T does not need
to be consistent with any function. Surprisingly, this harder requirement for the learner turns out to be an adequate
compensation for the learner’s advantage of knowing all answers in advance, even in non-example-based models.
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Example Class C Protocol P AIdim(C,P ) Gdim(C,P ) QC(C,P )

2, 4 SINGn EQH , MEQH , 0̄ ∈ H 1 1 1
2, 4 SINGn MQ, MEQH , 0̄ /∈ H 2n − 1 2n − 1 2n − 1
4 Bn EQ 1 2 2n

6 C ⊆ Bn EQr 1 ‖C‖ − 1 ‖C‖ − 1
9 SINGn MQuav, MEQH

uav 1 min(n,3) n

10 SINGn EQuav 1 2n − 1 2n − 1

Fig. 1. Values of the dimensions AIdim, Gdim and the query complexity for some concept classes C and protocols P considered in this article.

Definition 3. The general dimension of a concept class C under a protocol P , Gdim(C,P ), is the minimum integer k

(if it exists) such that any answering scheme T provides a set A of k answers that succeeds on C,

Gdim(C,P ) = max
T ∈T (P )

min
A∈Succ(C,T )

‖A‖.

Although Gdim appears to be harder to estimate than other dimensions (as the maximum operator ranges also over
inconsistent adversary strategies), often simpler incarnations of Gdim can be derived for specific protocols. Section 4
provides two such examples for non-example-based protocols. Further, Theorem 5 below shows that AIdim can be
interpreted as a simplified version of Gdim for example-based query models. We first consider some examples.

Example 4. It is easy to see that Gdim coincides with AIdim on the class SINGn for the protocols MQ, EQH

and MEQH . Next we consider the problem of learning the class Bn with equivalence queries. Clearly, if an answering
scheme T for EQ is consistent with some function h ∈ Bn, then the YES answer to the query h succeeds on Bn, im-
plying that AIdim(Bn,EQ) = 1. Otherwise Bn(TQ) = ∅ and since EQ is example-based, each answer Λ ∈ TQ is of the
form Bn(S) for some sample S. Thus TQ must contain two contradictory answers, implying that Gdim(Bn,EQ) = 2.
Recall that by applying the halving algorithm [1,24] it is easy to see that QC(Bn,EQ) = 2n.

Since in an example-based query model, any inconsistent adversary strategy can be unmasked by just two queries,
AIdim and Gdim essentially coincide for these models (see Theorem 5). In contrast, exponentially many (in log‖C‖)
non-example-based queries may be necessary for this task (see Example 6 below). Hence, it is not possible to define
a useful dimension for such models by considering only satisfiable answering schemes (as AIdim).

Theorem 5. For any example-based protocol P and any class C ⊆ Bn it holds that

AIdim(C,P ) � Gdim(C,P ) � max
(
2,AIdim(C,P )

)
.

Proof. The first inequality immediately follows by definition. For the second inequality assume that AIdim(C,P ) = k

and let T be any answering scheme for P . If T is satisfiable, then the assumption AIdim(C,P ) = k guarantees
that there is an appropriate answer set. Otherwise Bn(TQ) = ∅ and since P is example-based, TQ must contain two
contradictory answers. �

Theorem 5 implies that on example-based protocols P , the general and the abstract identification dimension can
only differ when AIdim(C,P ) = 1 and Gdim(C,P ) = 2. As shown in Example 4, this happens for the protocol EQ
and the concept class Bn. The next example shows that AIdim is unable to provide a good estimation for the number
of restricted equivalence queries.

Example 6. Let T be any answering scheme for the protocol EQr . First observe that for any class C ⊆ Bn with
‖C‖ � 2, AIdim(C,EQr ) = 1, since TQ must contain the answer {h} in case T is satisfied by some function h ∈ Bn.
On the other hand, it is easy to see that Gdim(C,EQr ) = QC(C,EQr ) = ‖C‖ − 1, since each negative answer elimi-
nates just one concept from C.

Our next goal is to show that in contrast to AIdim, Gdim provides a useful approximation of the query complexity
for all query types. For the upper bound we prove in the following lemma that at any point in the learning process,
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there is a smart query q ∈ Q. More precisely, q has the property that any answer in Pq considerably shrinks the actual
set D of target candidates, where the shrinking factor depends on the value of the general dimension. A similar result
has been shown in [4, Lemma 4] for the abstract identification dimension.

Lemma 7. Let C ⊆ Bn and let P be a protocol with Gdim(C,P ) = k � 1. Then for any class D ⊆ C there is a query
q ∈ Q such that for all answers Λ ∈ Pq , at least (‖D‖ − 1)/k functions from D are inconsistent with Λ.

Proof. Let ‖D‖ = d . The result is trivial when d � 1. Otherwise, suppose that for each q ∈ Q there is some Λq ∈ Pq

such that fewer than (d − 1)/k functions are inconsistent with Λq . Consider the answering scheme T = {(q,Λq) |
q ∈ Q}. Then for any A ⊆ TQ with ‖A‖ � k, D contains fewer than d − 1 functions that are inconsistent with A,
implying that D(A) (a subset of C(A)) contains at least two functions. But this contradicts Gdim(C,P ) = k. �

We note that Dasgupta et al. [12] have independently shown a similar result focusing on some type of membership
queries. Now we are ready to prove the main result of this section.

Theorem 8. For any protocol P and any class C it holds that

Gdim(C,P ) � QC(C,P ) �
⌈

ln‖C‖⌉Gdim(C,P ).

Proof. We first show that if Gdim(C,P ) > k then any learning algorithm must ask more than k queries. If
Gdim(C,P ) > k then there is an answering scheme T with the property that ‖C(A)‖ > 1 for any set A ⊆ TQ that
contains at most k answers. Now we can use T to answer the queries of an arbitrary algorithm L in such a way that
after k interactions, at least two functions in C are consistent with all answers given to L. This implies that L cannot
learn C with k queries.

To show the upper bound let Gdim(C,P ) = k. If k � 1 it is easy to see (by using Lemma 7 when k = 1) that
QC(C,P ) = k. Otherwise, consider the learning algorithm L that starting with the empty answer set A = ∅, in round i

asks the query qi provided by Lemma 7 for the class C(A) and includes the answer Λi into A. L stops as soon as
ci = ‖C(Λ1, . . . ,Λi)‖ becomes smaller than 2. Now it follows that c0 = ‖C‖ and ci+1 � ci(1 − 1/k) + 1/k which in
turn implies that

ci � c0(1 − 1/k)i + (1/k)

i−1∑
j=0

(1 − 1/k)j .

Since the second term evaluates to 1 − (1 − 1/k)i < 1, we can use the inequality 1 − x � e−x to conclude that ci < 2
for i = �k ln‖C‖�. �

In Example 4 we have seen that Gdim(SINGn,MQ) = QC(SINGn,MQ) = 2n − 1, implying that the lower
bound for the query complexity provided by Theorem 8 in terms of the general dimension is sharp. Further, since
QC(Bn,EQ) = 2n but Gdim(Bn,EQ) = 2 (see Example 4), it follows that QC(Bn,EQ) = α Gdim(Bn,EQ) for
α = (log‖Bn‖)/2. This shows that also the upper bound of Theorem 8 is essentially optimal.

4. Unspecified attribute value queries

In this section we apply the general dimension to different types of unspecified attribute value queries (UAV queries
for short). We first introduce some additional notation. A partial assignment α is a word from {0,1, �}n. An assignment
x ∈ {0,1}n satisfies α if α and x coincide in all non-star positions of α. We use tα to denote the Boolean function with
tα(x) = 1 if and only if x satisfies α. Functions of this kind are called terms. We use Termn to denote the class of all
terms in Bn and Xα to denote the hypercube {x ∈ {0,1}n | tα(x) = 1}.

Following Goldman et al. [17], we extend each function h ∈ Bn to a ternary function ĥ : {0,1, �}n → {0,1, ?} as
follows: If for some b ∈ {0,1}, h(x) = b for all x ∈ Xα , then ĥ(α) = b. Otherwise, ĥ(α) =?. We say that h is single-
valued on α, if ĥ(α) ∈ {0,1}. Pairs (α, a) ∈ {0,1, �}n × {0,1, ?} are called UAV examples. In case a ∈ {0,1} we call
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(α, a) single-valued and if ĥ(α) = a we call (α, a) a UAV example of h. We use SV h to denote the set of all single-
valued UAV examples of h. Further, for a class C ⊆ Bn and a sample (i.e., set) S = {(α1, a1), . . . , (αk, ak)} of UAV
examples we use

C(S) = C(α1, a1, . . . , αk, ak) = {
h ∈ C

∣∣ ĥ(αi) = ai for i = 1, . . . , k
}

to denote the class of all functions in C that are consistent with S.
For a target f ∈ Bn, the UAV membership query α ∈ {0,1, �}n returns YES if f̂ (α) = 1, NO if f̂ (α) = 0, and ?

otherwise. This leads to the protocol

MQuav = {(
α,Bn(α, a)

) ∣∣ α ∈ {0,1, �}n, a ∈ {0,1, ?}}.
A UAV equivalence query h ∈ Bn is answered either by a UAV example (α, a) (meaning that ĥ(α) �= f̂ (α) = a) or by
YES (meaning that h = f ). For a hypothesis space H ⊆ Bn, this leads to the protocol

EQH
uav = {(

h, {h}), (h,Bn(α, a)
) ∣∣ h ∈ H, α ∈ {0,1, �}n, a �= ĥ(α)

}
.

Further, MEQH
uav denotes the protocol MQuav ∪ EQH

uav where we omit H in case H = Bn. Note that UAV membership
and UAV equivalence queries admit answers of the form Bn(α, ?) which are not example-based unless α is star-free.
In the following example we consider the problem of learning singletons with UAV membership queries.

Example 9. Let T be any answering scheme for MQuav. If T is consistent with some function h ∈ Bn − {0̄}, then the
answer to any query x ∈ {0,1}n with h(x) = 1 succeeds on SINGn. Further, if T is consistent with the null function 0̄,
then the answer NO to the query α = �n discards all singletons. This shows that AIdim(SINGn,MQuav) = 1.

Next we argue that Gdim(SINGn,MQuav) � 3. Clearly, if T answers some query α ∈ {0,1}n with Bn(α, a), a �= 0,
or if T answers the query α = �n with NO, then a single answer of T succeeds on SINGn. Otherwise there is some
query α ∈ {0,1, �}n − {0,1}n which is answered by a �= 0 but all queries β for which Xβ is properly contained
in Xα get the answer NO. But then we have SINGn(α, a,α0,0, α1,0) = ∅, where αb , b ∈ {0,1}, is obtained from α

by replacing the first star in α by b. This shows that Gdim(SINGn,MQuav) � 3. On the other hand, the answering
scheme

T = {
(α,0)

∣∣ α ∈ {0,1}n} ∪ {
(α, ?)

∣∣ α ∈ {0,1, �}n − {0,1}n}
witnesses Gdim(SINGn,MQuav) � min(n,2). (This lower bound is sharp for n � 2. By using a similar answering
scheme for the case n � 3 it can be shown that Gdim(SINGn,MQuav) = min(n,3).) Further, it is not hard to see that
the query complexity of SINGn in the MQuav model (as well as in the MEQuav model) is n, implying an exponential
gap compared to the MQ model (see Example 2).

The next example shows that AIdim fails to give a useful characterization of the query complexity in the EQuav
model.

Example 10. First observe that AIdim(SINGn,EQuav) = 1, since any consistent answering scheme T for EQuav
provides a YES answer {h}. However, each answer from the inconsistent answering scheme

T = {(
h,Bn(x,0)

) ∣∣ h ∈ Bn − {0̄}, h(x) = 1
} ∪ {(

0̄,Bn

(
�n, ?

))}
discards at most one function in SINGn. Hence, Gdim(SINGn,EQuav) = 2n − 1 (which coincides with
QC(SINGn,EQuav)).

Several relationships between UAV and ordinary query types are known [7,17]. Although UAV memberships are
more powerful than standard memberships (see Example 9), UAV equivalences are strictly weaker than standard ones
(see Examples 2 and 10) since, intuitively speaking, in the UAV setting the teacher has more freedom in the choice of
counterexamples.

On the other hand, the combination of UAV memberships and UAV equivalences turns out to be again more
powerful than its ordinary counterpart [7,17]. In fact, any MQuav ∪ EQH learning algorithm using UAV memberships
and ordinary equivalences can be simulated by a MEQH

uav learning algorithm which asks at most n times as many
queries. Indeed, in [17] it is explained how a counterexample (α, ?) provided by a UAV teacher can be transformed
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into an ordinary counterexample by asking at most n appropriately chosen UAV membership queries. This shows
that the protocol MEQH

uav is at least as strong as MEQH . In addition, observe that the class SINGn is learnable with
n UAV membership queries (see Example 9), whereas learning SINGn in the MEQH model requires an exponential
number of queries (provided that the null function is not contained in H , see Example 2). Hence, the MEQH

uav model
is properly stronger than the MEQH model.

The observation in the last paragraph raises the question whether also for other interesting concept classes, UAV
memberships and equivalences are superior to their ordinary counterparts. In the next section, we give a negative
answer for the case of DNF formulas. The proof of this result makes use of a UAV version of the consistency dimension
which we introduce later in this section. We first consider the MQuav model and derive from Gdim a UAV counterpart
of the extended teaching dimension for ordinary membership queries [18]. The idea is just to use single-valued UAV
examples instead of ordinary examples.

Definition 11. The UAV extended teaching dimension of C, ETdimuav(C), is the smallest integer k � 0 such that for
any function g there are k single-valued UAV examples of g which are satisfied by at most one function in C,

∀g ∈ Bn ∃S ⊆ SV g: ‖S‖ � k ∧ ∥∥C(S)
∥∥ � 1.

Note that if we require in Definition 11 that for any g there are k examples of g which are satisfied by at most one
function in C, then we get a formal definition of the extended teaching dimension ETdim(C) of C.

Example 12. Since SV g contains the UAV example (�n,0) in case g is the null function, and a UAV example of the
form (x,1) otherwise, it follows that ETdimuav(SINGn) = 1.

The following theorem shows that the UAV extended teaching dimension is very close to the general dimension
and hence can serve as a dimension for UAV membership learning (see Corollary 14).

Theorem 13. For any class C ⊆ Bn it holds that

ETdimuav(C)/2 � Gdim(C,MQuav) � max
(
3,ETdimuav(C)

)
.

Proof. Let ETdimuav(C) = k. We first show that Gdim(C,MQuav) � max(3, k). Let T be any answering scheme for
MQuav and let Q = {0,1, �}n be the query set of the protocol MQuav. We have to show that there is a set A ⊆ TQ

of at most max(3, k) answers with ‖C(A)‖ � 1. If TQ is satisfied by some function g, then we can use the fact
that ETdimuav(C) = k to get a sample S ⊆ SV g of at most k UAV examples with ‖C(S)‖ � 1, implying that A =
{Bn(α, a) | (α, a) ∈ S} has the required properties.

Next we show that any unsatisfiable answering scheme T provides an unsatisfiable set of at most three answers.
This is certainly true if T replies to some query x ∈ {0,1}n with the inconsistent answer Bn(x, ?). Hence we can as-
sume that T ’s answers to all queries x ∈ {0,1} are consistent with some function h ∈ Bn. Now, since T is inconsistent,
there is a query α which gets an answer a �= ĥ(α) but all queries β for which Xβ is properly contained in Xα get the
answer ĥ(β). The following case analysis shows that T gives two or three contradictory answers.

• If a ∈ {0,1}, then we can find an x ∈ Xα with h(x) �= a implying that the two answers of T for α and x are
unsatisfiable.

• If a =?, then the three answers of T for α, α0 and α1 are unsatisfiable, where αb is obtained from α by replacing
the first star in α by b.

It remains to show that ETdimuav(C) � 2k for k = Gdim(C,MQuav). Let g ∈ Bn. In order to find a sample S ⊆ SV g

of at most 2k single-valued UAV examples with ‖C(S)‖ � 1, consider the answering scheme T = MQg
uav which

answers each query α with ĝ(α). By the fact that Gdim(C,MQuav) = k there is a set A ⊆ TQ of at most k answers
with ‖C(A)‖ � 1, implying that ‖C(S′)‖ � 1 for the UAV sample S′ = {(α, a) | Bn(α, a) ∈ A}. Since A is consistent
with g, S′ is a UAV sample of g. Now for each UAV example (α, ?) in S′ we can find two examples (x, a) and (y, b)

in SV g with x, y ∈ Xα and a �= b, implying that C(x, a, y, b) ⊆ C(α, ?). Hence, we can obtain S by replacing each
UAV example (α, ?) in S′ by two (single-valued) examples. �
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By combining Theorems 8 and 13 it now easily follows that the UAV extended dimension is useful for estimating
the number of membership queries in the UAV setting.

Corollary 14. For any class C ⊆ Bn,

ETdimuav(C)/2 � QC(C,MQuav) �
⌈

ln‖C‖⌉(
ETdimuav(C) + 2

)
.

Now we introduce the UAV counterpart of the consistency dimension which we will use in the next section to
show that learning DNF formulas in the UAV setting requires approximately the same number of membership and
equivalence queries as in the ordinary setting.

Definition 15. Let H ⊆ Bn be a hypothesis class and let C ⊆ H be a concept class. The UAV consistency dimension
of C and H , Cdimuav(C,H), is the smallest integer k � 0 such that for any function g /∈ H there are k single-valued
UAV examples of g which are inconsistent with any function in C,

∀g ∈ Bn − H ∃S ⊆ SV g: ‖S‖ � k ∧ C(S) = ∅.

Again note that if we require in Definition 15 that for any g /∈ H there are k examples of g which are inconsistent
with any function in C, then we get a formal definition of the consistency dimension Cdim(C,H) of C and H .
The next theorem shows that the UAV consistency dimension provides a useful measure in the MEQH

uav model (see
Corollary 17).

Theorem 16. For all classes C ⊆ H ⊆ Bn it holds that(
Cdimuav(C,H) − 1

)
/2 � Gdim

(
C,MEQH

uav

)
� max

(
3,Cdimuav(C,H)

)
.

Proof. Let k = Cdimuav(C,H). We first show that Gdim(C,MEQH
uav) � max(3, k). Let T be any answering scheme

for MEQH
uav. We have to show that there is a set A ⊆ TQ of at most max(3, k) answers with ‖C(A)‖ � 1. If T is satis-

fied by some function g ∈ H , then the YES answer {g} succeeds on C. Also, if T is satisfied by some function g /∈ H ,
then we get an answer set A from a suitable UAV sample S ⊆ SV g as in the proof of Theorem 13.

Next we show that if T is unsatisfiable, then TQ contains an unsatisfiable subset of at most three answers. If the set
M = ⋃

q∈{0,1,�}n Tq of T ’s answers to all membership queries is already inconsistent we argue exactly as in the proof
of Theorem 13. Otherwise, M is consistent with some function g ∈ Bn. As T is unsatisfiable, some equivalence query
h ∈ H gets an answer Λ that is inconsistent with g. In case Λ provides a counterexample (α, a), Λ is inconsistent
with T ’s answer ĝ(α) for the membership query α. Similarly, if the answer to the equivalence query h is YES, then h

must be different from g, implying that Λ is again inconsistent with T ’s answer g(x) for some membership query x.
Now let k = Gdim(C,MEQH

uav). It remains to show that Cdimuav(C) � 2k + 1. Let g ∈ Bn − H . In order to find a
sample S′ ⊆ SV g of at most 2k + 1 single-valued UAV examples with C(S′) = ∅, let T be any answering scheme for
MEQH

uav consistent with g. Since Gdim(C,MEQH
uav) = k, TQ contains an answer set A of size k that succeeds on C.

Since g /∈ H , all answers in TQ are of the form Bn(α, a) and hence, exactly as in the proof of Theorem 13 we obtain
a sample S ⊆ SV g of size at most 2k with ‖C(S)‖ � 1. Since g /∈ C, it suffices to add one more SV g example to S to
get the desired sample S′. �

Theorems 8 and 16 together imply that the UAV consistency dimension provides a good estimation of the number
of membership and equivalence queries needed to learn a concept class in the UAV setting.

Corollary 17. For all classes C ⊆ H ⊆ Bn it holds that(
Cdimuav(C,H) − 1

)
/2 � QC

(
C,MEQH

uav

)
�

⌈
ln‖C‖⌉(

Cdimuav(C,H) + 3
)
.

5. Learning DNF formulas with UAV queries

The learnability of DNF formulas with polynomially many membership and equivalence queries is an important
open problem for a variety of hypothesis classes. As explained in the last section it is conceivable that this class is
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easier to learn in the UAV setting. However, in Theorem 19 below we show that the consistency and UAV consistency
dimensions for this class are close, implying that up to a polynomial factor, the query complexity of DNF formulas is
the same in both models (see Corollary 20). Of course, this does not exclude the possibility that UAVs are still more
efficient in terms of computational complexity measures.

We call h ∈ Bn an m-term DNF, if h can be expressed as a disjunction t1 ∨ · · · ∨ tm of m terms. The class of all
m-term DNFs is denoted by m-DNFn. A function h ∈ Bn ε-satisfies a sequence σ = (x1, . . . , xs) of s (not necessarily
pairwise distinct) assignments xi ∈ {0,1}n, if ‖{i | h(xi) = 1}‖ � εs, i.e., h(xi) = 1 holds for at least an ε-fraction of
all strings in the sequence σ . The following lemma is useful for proving Theorem 19.

Lemma 18. For any assignment x0 ∈ {0,1}n and any partial assignment α ∈ {0,1, �}n there is an assignment xα
0 ∈ Xα

such that Termn(x0,1, xα
0 ,0) ⊆ Termn(α,0), i.e., any term t with t (x0) = 1 and t (xα

0 ) = 0 fulfills t̂ (α) = 0.

Proof. For u,v ∈ {0,1}n, let u ⊕ v denote the bitwise XOR of u and v, and for a subset X ⊆ {0,1}n let X ⊕ v denote
the set {u ⊕ v | u ∈ X}. Now let y0 be the assignment in the hypercube Xα ⊕ x0 ⊕ 1n with the maximum number of
ones and define xα

0 as y0 ⊕ x0 ⊕ 1n. Note that xα
0 belongs to Xα .

We have to show that any term t with t (x0) = 1 and t (xα
0 ) = 0 fulfills t̂ (α) = 0. In order to derive a contradiction,

assume that t (u) = 1 for some u ∈ Xα and consider the term t ′ defined by t ′(x) = t (x ⊕ x0 ⊕ 1n). Since t ′(1n) =
t (x0) = 1, t ′ is monotone. Further, since t ′(u ⊕ x0 ⊕ 1n) = t (u) = 1 and since y0 is the maximum assignment in the
hypercube Xα ⊕ x0 ⊕ 1n, it follows that also t ′(y0) = 1, implying that t (xα

0 ) = t (y0 ⊕ x0 ⊕ 1n) = t ′(y0) = 1. �
Now we are ready to show that the class of DNF formulas has close consistency and UAV consistency dimensions

(see Definition 15 and the subsequent paragraph for formal definitions of these notions).

Theorem 19. Let 4 � l <
√

m/n. Then it holds for any hypothesis class H with m-DNFn ⊆ H ⊆ Bn that

Cdim(l-DNFn,H) �
(
l2n/3

)
Cdimuav(m-DNFn,H).

Proof. Let Cdimuav(m-DNFn,H) = k and let g ∈ Bn − H . Then there is a sample S ⊆ SV g of at most k single-
valued UAV examples (α, a) of g with m-DNFn(S) = ∅. Letting S0 = S ∩ ({0,1, �}n × {0}), Y = ⋃

(α,1)∈S Xα and
N = ⋃

(α,0)∈S Xα we get a sample S′ = (Y × {1}) ∪ (N × {0}) of g with m-DNFn(S
′) = ∅. To prove the theorem we

show that there is a sample S′′ ⊆ S′ of size at most kl2n/3 with l-DNFn(S
′′) = ∅.

Claim 1. There is a sequence σ of assignments from Y such that no term t ∈ Termn(S
0) n/m-satisfies σ .

Proof of Claim 1. Let ε = n/m and in order to derive a contradiction assume that any sequence σ of assignments
from Y is ε-satisfied by some term tσ ∈ Termn(S

0). Starting with the sequence σ0 of all assignments from Y and k = 0
let tk = tσk

and let σk+1 be the subsequence of σk containing all assignments x with tk(x) = 0. Then the functions
t0 ∨ · · · ∨ tk , k � 0, εk-satisfy σ0, where εk = ε

∑k
j=0(1 − ε)j . Since εm−1 = 1 − (1 − ε)m > 1 − 2−n, it follows that

the m-term DNF t0 ∨ · · · ∨ tm−1 is consistent with the sample S′ = (Y × {1}) ∪ (N × {0}). This completes the proof
of Claim 1. �

Since by assumption, n/m < 1/(l2n), it follows that no term t ∈ Termn(S
0) 1/(l2n)-satisfies σ .

Claim 2. There is a sequence τ = (x1, . . . , xs) of s = �l2n/3� assignments xi ∈ Y such that no term t ∈ Termn(S
0)

1/l-satisfies τ .

Proof of Claim 2. For any term t ∈ Termn(S
0) let pt be the probability that t 1/l-satisfies a sequence τ of s randomly

chosen assignments from σ . Since t does not 1/(l2n)-satisfy σ , it follows that

pt �
(

s

�s/ l�
)(

1/l2n
)�s/ l� � s�s/ l�(1/3s)�s/ l� < 1/3n.

As ‖Termn‖ = 3n it follows that the probability that some term t ∈ Termn(S
0) 1/l-satisfies τ is smaller than 1. This

completes the proof of Claim 2. �
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Now Lemma 18 guarantees that for each assignment xi from τ and each UAV example (α,0) from S0 there is an
assignment xα

i ∈ Xα such that Termn(xi,1, xα
i ,0) ⊆ Termn(α,0). We argue that the sample

S′′ = {
(x1,1), . . . , (xs,1)

} ∪ {
(xα

1 ,0), . . . ,
(
xα
s ,0

) ∣∣ (α,0) ∈ S0}
has the desired properties. In fact, assume that some l-term DNF h = t1 ∨ · · · ∨ tl satisfies S′′. Then some term tj

1/l-satisfies τ . Hence, tj (xi) = 1 holds for some assignment xi from τ , and since tj (x
α
i ) = 0 holds for all (α,0) ∈ S0,

Lemma 18 implies that tj is consistent with S0. But this contradicts Claim 2. �
Theorem 19 has the following consequence for the query complexity of DNF formulas.

Corollary 20. Let 4 � l <
√

m/n. Then it holds for any hypothesis class H with m-DNFn ⊆ H ⊆ Bn that

QC
(
l-DNFn,MEQH

) = O
(
l3n2)QC

(
m-DNFn,MEQH

uav

)
.

Proof. The result trivially holds for H = Bn. Otherwise, the values of both Cdim(l-DNFn,H) and
Cdimuav(m-DNFn,H) are non-zero. Hence, since QC(l-DNFn,MEQH ) � Cdim(l-DNFn,H) log‖l-DNFn‖ (see,
e.g., [5]), the result follows by applying Theorem 19 and Corollary 17. �

Corollary 20 implies that a positive result for the query complexity of DNF formulas in the MEQH
uav model, say

polynomial in the number of variables and terms, would imply that DNF formulas are also learnable with polynomially
many ordinary membership and equivalence queries.

6. A general dimension for approximate learning

In this section we extend the general dimension to the approximate learning setting, where the goal of the learning
algorithm consists in finding a close approximation to the target f . We use a generalization of the learning by distances
(LBD) model of Ben-David et al. [6]. In this model, concepts are considered as points in a metric space (M,d),
where d : M × M → R is an arbitrary pseudo-metric on M . This means that for all f,g,h ∈ M , d(f, g) � 0, with
equality if f = g, d(f, g) = d(g, f ), and d(f,h) � d(f, g) + d(g,h). In this paper we restrict M to be the set Bn

of Boolean functions. Note that we do not require that d(f, g) = 0 implies f = g. Hence, any function of the form
d(f, g) = PrD[f (x) �= g(x)], where x is chosen randomly according to some arbitrary distribution D on {0,1}n,
defines a pseudo-metric on Bn. In the following, δ denotes the metric induced by the uniform distribution U .

Let ε � 0. A subset B ⊆ Bn is called an ε-ball, if there is a function h ∈ Bn (called the center of B) such that
B = Bε,d(h), where Bε,d(h) consists of all concepts f ∈ Bn with d(f,h) � ε. The query complexity of a class C ⊆ Bn

under a protocol P is extended to the approximate learning setting as follows.
C is ε-learnable with k queries under P and d, if there is an algorithm L such that for any f ∈ C and for any

teacher that answers according to P f , the set of functions in C that satisfy all answers received after at most k

interactions is contained in some ε-ball. The query complexity of C under P , d and ε, denoted by QCε,d(C,P ), is
the smallest integer k � 0 such that C is ε-learnable with k queries under P and d. If no such integer k exists, then
QCε,d(C,P ) = ∞.

Let L be an algorithm that ε-learns a class C and let A be the set of answers given by the teacher during some run
of L with respect to some target f ∈ C. Since f belongs to the set C(A) which is covered by some ε-ball Bε,d(h),
L “knows” some concept h ∈ Bn with error d(f,h) � ε. On the other hand, if a learning algorithm outputs for every
target f ∈ C some h ∈ Bn with error d(f,h) � ε, then the set C(A) of target candidates has to be contained in
Bε,d(h), since otherwise, L would not succeed on any target g ∈ C(A) with d(g,h) > ε. Thus, a class C is ε-learnable
with k queries if and only if there is an algorithm that outputs after at most k queries a hypothesis h ∈ Bn with
error d(f,h) � ε. Further note that if d is a metric, i.e., if d(f, g) = 0 implies f = g, then QC(C,P ) coincides with
QCε,d(C,P ) for ε = 0. Now we extend the general dimension to the approximate learning setting.

Definition 21. Let T be an answering scheme for a protocol P on a query set Q and let d be a pseudo-metric on Bn.
We say that a set A ⊆ TQ of answers from T ε-succeeds on a concept class C (A ∈ Succε,d(C,T ) for short), if C(A)
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is covered by some ε-ball. The general ε-dimension of C under P and d, Gdimε,d(C,P ), is the smallest integer k � 0
such that any answering scheme T for P provides a set A of at most k answers that ε-succeeds on C,

Gdimε,d(C,P ) = max
T ∈T (P )

min
A∈Succε,d(C,T )

‖A‖.

We illustrate the notion with some easy examples. We first consider the problem of ε-learning the class CX with
membership queries under the uniform distribution, where X is a subset of {0,1}n and CX contains all functions
whose support is contained in X.

Example 22. Let CX ⊆ Bn be the class of all functions f with f (x) = 0 for x /∈ X. First note that an ε-ball Bε,δ(h)

contains all functions g with ‖{x ∈ {0,1}n | h(x) �= g(x)}‖ � ε2n. Hence, if ‖X‖ � ε2n, then the whole class CX is
covered by the ε-ball Bε,δ(0̄) around the null function 0̄, implying that the empty answer set ε-succeeds on CX .

In case ‖X‖ > ε2n consider any answering scheme T for MQ. Since T gives unique answers, T is consistent with
some function f ∈ Bn. If f does not belong to CX , then T provides an answer of the form Bn(x,1) with x /∈ X,
implying that CX(x,1) = ∅. Otherwise observe that the class CX(A) can be covered by some ε-ball if and only if A

contains the answers of at least k = �‖X‖ − ε2n� membership queries from X. This shows that Gdimε,δ(CX,MQ) =
max(0,‖X‖ − �ε2n�) (which coincides with the query complexity).

Next we consider the problem of learning singletons in the LBD model.

Example 23. In the LBD model, queries are arbitrary hypotheses h ∈ Bn which are answered by SUCCESS, if the
distance d(f,h) between the target f and h is at most ε. Otherwise, the teacher returns for some tolerance parameter τ

an estimate s for d(f,h) with |d(f,h) − s| � τ . This leads to the protocol

LBDε,τ,d = {(
h,Bε,d(h)

) ∣∣ h ∈ Bn

} ∪ {(
h,Λε,τ,d(s, h)

) ∣∣ h ∈ Bn, s ∈ R
+}

,

where Λε,τ,d(s, h) = {g ∈ Bn | d(g,h) > ε and s − τ � d(g,h) � s + τ }.
As a specific example we consider the problem of learning singletons under the uniform distribution in this model.

Clearly, if ε � 2−n, then any singleton is ε-close to the null function 0̄, implying that Gdimε,δ(SINGn,LBDε,τ,δ) =
QCε,δ(SINGn,LBDε,τ,δ) = 0. Otherwise, ε-learning is equivalent to exact learning, and we have the following two
subcases.

If ε < 2−n � τ , then letting s = δ(0̄, h), the answer Λε,τ,δ(s, h) only discards h from SINGn (assuming that h

actually is a singleton). Hence, using the same argument as in Example 6 for the EQr model, it follows that
Gdimε,δ(SINGn,LBDε,τ,δ) = QCε,δ(SINGn,LBDε,τ,δ) = ‖SINGn‖ − 1 = 2n − 1.

If ε, τ < 2−n, then each answer claims exactly one value for the distance δ(f,h) between the query h and the
target f . Hence, for any answering scheme we can find two answers to queries of the form hk,hk+1, where hk(x) = 1
if and only if (x)2 � k, such that at most one singleton function is consistent with these answers (here we use (x)2
to denote the value of x as a binary number). This shows that Gdimε,δ(SINGn,LBDε,τ,δ) = min(n,2) and similarly it
follows that QCε,δ(SINGn,LBDε,τ,δ) = n.

Now we consider the statistical queries model introduced by Kearns [21] who has shown that any class learnable
under this model is in fact learnable with classification noise in Valiant’s PAC model. Here we only consider the
distribution-specific variant with respect to some fixed distribution D.

Example 24. A statistical query is of the form g : {0,1}n × {0,1} → {0,1}, i.e., g ∈ Bn+1, and the answer provides
an estimate s of the probability PrD[g(x,f (x)) = 1], where f is the target, x is chosen randomly according to D

and s has to be accurate within an additive error τ � 0, referred to as the tolerance. The goal is to achieve a good
approximation of the target with respect to the pseudo-metric d(f,h) = PrD[f (x) �= h(x)]. Formally, the model can
be described by the protocol

STATτ,D = {(
g,Λτ,D(s, g)

) ∣∣ g ∈ Bn+1, s ∈ R
+}

,

where Λτ,D(s, g) = {h ∈ Bn | s − τ � PrD[g(x,h(x)) = 1] � s + τ }.
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The LBD and statistical queries models are essentially equivalent [6]. More precisely, let LBD∗
τ,d be the variant of

the LBD model in which the teacher also returns an estimate s for the distance d(f,h) when d(f,h) � ε, i.e.,

LBD∗
τ,d = {(

h,Λ∗
τ,d(s, h)

) ∣∣ h ∈ Bn, s ∈ R
+}

,

where Λ∗
τ,d(s, h) = {g ∈ Bn | s − τ � d(g,h) � s + τ }. Since the answer Λε,τ,d(s, h) does not provide less infor-

mation than the answer Λ∗
τ,d(s, h), it follows that QCε,d(C,LBDε,τ,d) � QCε,d(C,LBD∗

τ,d). Further, it is not hard to
verify that QCε+2τ,d(C,LBD∗

τ,d) � QCε,d(C,LBDε,τ,d). Now assume that d is a pseudo-metric induced by some dis-
tribution D. Since every LBD∗ query can be simulated by one statistical query which in turn can be simulated by two
LBD∗ queries [8,9], all queries having the same tolerance, it follows that QCε,d(C,STATτ,D) � QCε,d(C,LBD∗

τ,d) �
2 QCε,d(C,STATτ,D). Hence we can state the following proposition.

Proposition 25. Let d be a pseudo-metric induced by some distribution D. Then for any class C ⊆ Bn it holds that

QCε+2τ,d(C,STATτ,D) � QCε,d(C,LBDε,τ,d) � 2 QCε,d(C,STATτ,D).

In Theorem 29 below we show that Gdim is appropriate for approximate learning. As in the exact learning setting
(see Lemma 7) a small value of Gdim guarantees the existence of a smart query that considerably shrinks the current
set D of target candidates. But now the reduction factor does not only depend on the dimension but also on the
maximum population size rε,d(D) = maxh∈Bn ‖Bε,d(h) ∩ D‖ of concepts from D inside a single ε-ball.

Lemma 26. Let Gdimε,d(C,P ) = k � 1. Then for any class D ⊆ C there is a query q ∈ Q such that for all answers
Λ ∈ Pq , at least (‖D‖ − rε,d(D))/k functions from D are inconsistent with Λ.

Proof. Let Gdimε,d(C,P ) = k � 1 and suppose that for any query q there is an answer Λq ∈ Pq such that ‖D −
D(Λq)‖ < (‖D‖ − rε,d(D))/k. Consider the answering scheme T = {(q,Λq) | q ∈ Q}. Then for any A ⊆ TQ with
‖A‖ � k, D contains fewer than ‖D‖− rε,d(D) functions that are inconsistent with A, implying that ‖D(A)‖ is larger
than rε,d(D). Hence, C(A) (which is a superset of D(A)) cannot be contained in an ε-ball. But this contradicts the
assumption Gdimε,d(C,P ) = k. �

In order to get a learning algorithm L out of Lemma 26, the protocol P should enable L to check whether a
hypothesis h is already sufficiently close to the target f . More precisely, we assume that for any h ∈ Bn there is some
query q such that any answer in Pq provides the information whether d(h,f ) � ε (implying success) or d(h,f ) >

ε − γ or both. Here we use an additional tolerance parameter γ , since in some models like learning with statistical
queries the teacher returns only an estimate of the distance between h and f .

Definition 27. Let ε, γ � 0. A protocol P is called (ε, γ,d)-affirmative, if for each hypothesis h ∈ Bn there is some
query q ∈ Q such that each answer Λ ∈ Pq either fulfills Λ ⊆ Bε,d(h) or Λ ⊆ Bn − Bε−γ,d(h).

Example 28. Clearly, the protocol LBDε,τ,d is (ε, γ,d)-affirmative for any γ . Further, since we can express d(f,h)

as the probability PrD[gh(x,f (x)) = 1], where gh is defined as gh(x, b) = h(x) ⊕ b, it follows that the answer
Λτ,D(s, gh) is contained in the ball Bε,d(h) if s � ε − τ , and in the complement of the ball Bε−2τ,d(h), otherwise.
This shows that the protocol STATτ,D is (ε,2τ,d)-affirmative for 0 � τ � ε/2.

Theorem 29. Let d be a pseudo-metric and let P be an (ε, γ,d )-affirmative protocol with γ � ε. Then for any class
C ⊆ Bn it holds that

Gdimε,d(C,P ) � QCε,d(C,P ) � 2
⌈

ln‖C‖⌉Gdimε−γ,d(C,P ).

Proof. We prove the first inequality by showing that Gdimε,d(C,P ) > k implies QCε,d(C,P ) > k. Assume that
T ⊆ P is an answering scheme with the property that for all sets A ⊆ TQ of at most k answers, C(A) is not contained
in any ε-ball. Then no learning algorithm L is able to ε-learn C with k queries, since L may receive for each query
q an answer Λ ∈ Tq . In this case, L receives a set A of at most k answers Λ ∈ TQ and hence, the set C(A) of target
candidates is not contained in any ε-ball.
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To see the second inequality, assume that Gdimε−γ,d(C,P ) = k � 1. We describe an algorithm L that ε-learns C

under P with m = 2k�ln‖C‖� queries. Starting with the empty answer set A = ∅, in each round, L first determines the
value r(A) = rε−γ,d(C(A)). If r(A) � ‖C(A)‖/2, L asks the query q provided by Lemma 26 for the class D = C(A)

and includes the answer Λ into A. This answer discards at least∥∥C(A) − C
(
A ∪ {Λ})∥∥ � (1/k)

(∥∥C(A)
∥∥ − r(A)

)
�

∥∥C(A)
∥∥/2k

hypotheses from C(A). If r(A) > ‖C(A)‖/2, then there is a function h ∈ Bn such that ‖Bε−γ,d(h) ∩ C(A)‖ >

‖C(A)‖/2. Since P is (ε, γ,d)-affirmative, L can ask a query q whose answer Λ is either contained in Bε,d(h)

or in the complement of Bε−γ,d(h). In the first case, C(A ∪ {Λ}) is covered by some ε-ball, and in the second case,
the cardinality of C(A) shrinks at least by 1/2. Hence, any answer Λ which does not lead to the success of L discards
at least a 1/2k fraction from C(A). A simple calculation shows that (1 − 1/2k)m‖C‖ � 1. Hence L succeeds after at
most m queries. �

Since the protocol STATτ,D is (ε,2τ,d)-affirmative for 0 � τ � ε/2, Theorem 29 provides the following bounds
for the statistical query model.

Corollary 30. Let P be the protocol STATτ,D and let d be the pseudo-metric induced by D. Then for any class C ⊆ Bn

and 0 � τ � ε/2 it holds that

Gdimε,d(C,P ) � QCε,d(C,P ) � 2
⌈

ln‖C‖⌉Gdimε−2τ,d(C,P ).

Blum et al. [8] defined the statistical query dimension SQdim(C,D) of a class C under a distribution D to be the
largest number k such that C contains k functions f1, . . . , fk satisfying |d(fi, fj ) − 1

2 | � 1/2k3 for all i �= j , where
d is the pseudo-metric induced by D. Let SQdim(C,D) = k. Blum et al. showed that QCε,d(C,STATτ,D) � k1/3/2 if
ε < 1/2 − 1/k3 and τ � 1/k1/3, and QCε,d(C,STATτ,D) � k if ε � 1/2 − 1/3k3 and τ � 1/3k3. Note that the upper
bound holds only for values of ε which correspond to weak learning. In contrast, the bound given by Corollary 30 is
valid for all 0 � τ � ε/2.

Since the protocol LBDε,τ,d is (ε, γ,d)-affirmative for γ = 0, Theorem 29 immediately provides the following
bounds.

Corollary 31. Let d be a pseudo-metric and let P be the protocol LBDε,τ,d. Then for any class C ⊆ Bn and τ, ε � 0
it holds that

Gdimε,d(C,P ) � QCε,d(C,P ) � 2
⌈

ln‖C‖⌉Gdimε,d(C,P ).

In [6] the query complexity of a class C in the LBD model is compared to the capacity Capε,d(C) of C which is
defined as the smallest integer k such that k ε-balls are sufficient to cover C. There it is shown that logq Capε,d(C) �
QCε,d(C,LBDε,τ,d) � Capε,d(C), where q = D/τ and D = maxf,h∈C d(f,h) denotes the diameter of C. In fact,
when the capacity is used to bound the query complexity in the LBD model, the exponential gap between the lower
and the upper bound is in general unavoidable. In contrast, Corollary 31 shows that the general dimension yields lower
and upper bounds that only differ by a factor which is logarithmic in the cardinality of C.

Next we show that in the specific setting where the pseudo-metric d is induced by some distribution D and the
error bound ε is sufficiently close to 1/2, also the capacity yields tight lower and upper bounds. To this end we first
derive the following relationship between the capacity and the general dimension.

Lemma 32. Let d be a pseudo-metric induced by some distribution. Then for any class C ⊆ Bn and 0 � 1/2 − τ �
ε � 1/2 it holds that

Capε,d(C) � 2 Gdimε,d(C,LBDε,τ,d) + 1.

Proof. Let k = Gdimε,d(C,LBDε,τ,d) and consider the answering scheme T = {(h,Λ(h)) | h ∈ Bn} where Λ(h) =
Λε,τ,d(1/2, h). Then there is a set A of at most k answers from T such that C(A) is contained in some ε-ball B . Note
that this is equivalent to saying that the complements of the answers Λ(h) ∈ A together with B cover C. Any function
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g /∈ Λ(h) either fulfills d(g,h) � ε or d(g,h) < 1/2 − τ or d(g,h) > 1/2 + τ . Note that in the latter case we have
d(g,¬h) = 1 − d(g,h) < 1/2 − τ . By the assumption that 1/2 − τ � ε it follows that the complement of Λ(h) is
covered by the two ε-balls Bε,d(h) and Bε,d(¬h). Thus we can conclude that Capε,d(C) � 2k + 1. �

It is easy to see that the upper bound QCε,d(C,LBDε,τ,d) � Capε,d(C) holds for any ε. Thus, Lemma 32 and
Theorem 29 together imply the following tight relationship between the capacity and the learning complexity in the
LBD model when the error bound ε is close to 1/2 (see also [9]).

Corollary 33. Let d be a pseudo-metric induced by some distribution. Then for any τ, ε with 0 � 1/2 − τ � ε � 1/2
and any C ⊆ Bn it holds that(

Capε,d(C) − 1
)
/2 � QCε,d(C,LBDε,τ,d) � Capε,d(C).

7. Learning DNF formulas with statistical queries

In this section we derive tight upper and lower bounds for the query complexity of DNF formulas in the statis-
tical queries model under the uniform distribution. First we recall the Fourier transform of a real valued function f

on {0,1}n. For every subset A ⊆ [n], where [n] denotes the set {1, . . . , n}, let the parity function χA be defined as
χA(x) = (−1)

∑
i∈A xi , where the summation is over GF(2). Then every real valued function f on {0,1}n can be

uniquely expressed as a linear combination f (x) = ∑
A⊆[n] f̂ (A)χA(x), where each coefficient f̂ (A) is given by

the expectation EU [f (x)χA(x)]. These coefficients constitute the Fourier transform of f . When applying the Fourier
transform to a Boolean function f , it is convenient to think of f as a mapping from {0,1}n to {−1,1} and, conse-
quently, of a statistical query as a mapping from {0,1}n ×{−1,1} to {−1,1}. Then the Fourier coefficients f̂ (A) of f

can be expressed as EU [f (x)χA(x)] = PrU [χA(x) = f (x)] − PrU [χA(x) �= f (x)] = 1 − 2δ(χA,f ), where δ denotes
the metric induced by the uniform distribution U .

For the upper bound we use the fact that every DNF formula has a large coefficient in its Fourier transform [8].
This holds with respect to arbitrary distributions D on {0,1}n [20]. Recall that the norm L∞(D) is defined as
maxx∈{0,1}n D(x).

Lemma 34. (See [9].) For every m-term DNF formula f and every distribution D on {0,1}n, there is a set A ⊆ [n] of
size at most log(2n(2m + 1)L∞(D)) such that |ED[f (x)χA(x)]| � 1/(2m + 1).

By Lemma 34 we can use a simple weak learning algorithm (cf. [20]) to weakly predict DNF formulas. We then
apply Freund’s well-known boosting algorithm F1 [13] which, as shown by Aslam and Decatur [3], also works in the
statistical queries model.

Lemma 35. (Cf. [3, Theorem 2].) Let C ⊆ Bn and ε > 0. Then any weak learning algorithm which produces under
any distribution D with L∞(D) � 3/65ε22n for any target f ∈ C after at most N0 statistical queries of tolerance
τ0 � 0 a hypothesis h with error PrD[f (x) �= h(x)] � 1/2 − γ can be transformed into an algorithm for learning C

which uses at most γ −4 ln2(ε−1)N0 statistical queries of tolerance ε2τ0/65 to produce under the uniform distribution
a hypothesis h with error δ(f,h) � ε.

Theorem 36. There is a constant c > 0 such that for all ε < 1/2 and τ � cε2/m it holds that

QCε,δ(m-DNFn,STATτ,U ) � nO(log(m/ε)).

Proof. Let τ0 = 1/(16m + 8). In order to apply Lemma 35 we first describe a weak learning algorithm WL for
m-DNFn that under any distribution D with L∞(D) � 3/65ε22n uses N0 = nO(log(m/ε)) statistical queries of tolerance
τ0 to produce a hypothesis h with error at most 1/2 − τ0.

WL asks for all sets A ⊆ [n] of size at most log((6m + 3)/65ε2) for estimates aA of the expectations
ED[f (x)χA(x)] within additive error 2τ0 until it receives an answer aA satisfying |aA| � 1/(2m + 1) − 2τ0. Then
WL outputs the hypothesis χA if aA is positive, and −χA otherwise.
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Since ED[f (x)h(x)] = 1−2 PrD[f (x) �= h(x)], each estimate aA can be obtained by a statistical query of tolerance τ0
with respect to the unknown distribution D and the target f . Hence, WL only needs to ask N0 = nO(log(m/ε)) many
queries. Further, for any distribution D with L∞(D) � 3/65ε22n, Lemma 34 guarantees that WL receives an answer
aA with |aA| � 1/(2m + 1) − 2τ0, implying that |ED[f (x)χA(x)]| � 1/(2m + 1) − 4τ0 = 2τ0. It follows that WL
indeed produces a hypothesis h with error PrD[f (x) �= h(x)] � 1/2 − τ0.

Now, if we choose c = 1/1560, then the assumption τ � cε2/m implies that τ � ε2/65(16m + 8) = ε2τ0/65.
Hence we can apply Lemma 35 with C = m-DNFn and γ = τ0 to get an algorithm which uses

γ −4 ln2(ε−1)N0 = nO(log(m/ε))

many queries under the protocol STATτ,U to produce for any target f ∈ C a hypothesis h with error δ(f,h) � ε. �
We note that by applying more powerful boosting strategies, it can be shown [23] that m-term DNFs are ε-learnable

from nO(log(m/ε)) statistical queries with tolerance 
(ε/m) instead of 
(ε2/m) as in Theorem 36.
Next we consider the lower bound. Since every parity function χA, A �= ∅, can be represented by a 2‖A‖−1-term

DNF, the number of parities representable as a DNF with at most m � 2
√

n terms is at least

∑
i��logm�

(
n

i

)
� (n/ logm)logm � n(logm)/2.

Further recall that δ(χA,χB) = 1/2 for A �= B . Hence, using the bound provided by the SQ dimension [8] (see the
paragraph after Corollary 30), it follows that under the uniform distribution at least n(logm)/6/2 statistical queries of
tolerance τ = n−(logm)/6 are needed to ε-learn m-term DNFs, provided that m � 2

√
n and ε < 1/2 − n−2(logm)/3.

Theorem 37. (Cf. [8].) For all m � 2
√

n, τ � n−(logm)/6 and ε < 1/2 − n−2(logm)/3 it holds that

QCε,δ(m-DNFn,STATτ,U ) � n(logm)/6/2.

Alternately we can use the capacity to bound QCε,δ(m-DNFn,STATτ,U ) (see Corollary 33). In fact, using Parseval’s
identity and the fact that the coefficient f̂ (A) for any parity function χA in an ε-ball Bε,δ(f ) is 1−2δ(χA,f ) � 1−2ε

it is easy to see that a single ε-ball contains at most 1/(1 − 2ε)2 parity functions, implying that Capε,δ(m-DNFn) �
(1 − 2ε)2n(logm)/2. In order to combine the upper and lower bounds of Theorems 36 and 37, we consider a fixed error
bound ε0 < 1

2 (say ε0 = 1
3 ) and use QCconst,δ(C,P ) to denote the corresponding query complexity.

Corollary 38. There is a constant c > 0, such that for all m � 2
√

n and all τ with n−(logm)/6 � τ � c/m it holds that

QCconst,δ(m-DNFn,STATτ,U ) = nΘ(logm).
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