
Computational Intelligence, Volume xx, Number 000, 2009

Molecular event extraction from Link Grammar parse trees

in the BioNLP’09 Shared Task

Jörg Hakenberg1, Illés Solt2, Domonkos Tikk2,3, Võ Há Nguyên1,

Luis Tari1, Quang Long Nguyen3, Chitta Baral1, Ulf Leser3

1Arizona State University, Tempe, Arizona 85281, USA
2Budapest University of Technology and Economics, 1117 Budapest, Hungary

3Humboldt-Universität zu Berlin, 10099 Berlin, Germany

The BioNLP’09 Shared Task deals with extracting information on molecular events, such as gene
expression and protein localization, from natural language text. Information in this benchmark are
given as tuples including protein names, trigger terms for each event, and possible other participants
such as bindings sites. We address all three tasks of BioNLP’09: event detection, event enrichment,
and recognition of negation and speculation. Our method for the first two tasks is based on a deep
parser; we store the parse tree of each sentence in a relational database scheme. From the training
data, we collect the dependencies connecting any two relevant terms of a known tuple, that is, the
shortest paths linking these two constituents. We encode all such linkages in a query language to
retrieve similar linkages from unseen text. For the third task, we rely on a hierarchy of hand-crafted
regular expressions to recognize speculation and negated events. In this paper, we added extensions
regarding a post-processing step that handles ambiguous event trigger terms, as well as an extension
of the query language to relax linkage constraints. On the BioNLP Shared Task test data, we achieve
an overall F1-measure of 32, 29, and 30% for the successive Tasks 1, 2, and 3, respectively.

Key words: text mining, event extraction, sentence parsing, parse tree database

1. INTRODUCTION

Biomedical text mining aims at making the wealth of information present in publications available
for systematic and automated studies. An important area of biomedical text mining is concerned
with the extraction of relationships between biological entities, especially the extraction of protein–
protein interactions from PubMed abstracts (Krallinger et al., 2008). The BioNLP’09 Shared Task
addressed the problem of extracting nine different types of molecular events (Kim et al., 2009) and
thus targeted a problem that was considerably less-well studied than protein-protein interactions.
Such molecular events included statements about the expression level of genes, the binding sites of
proteins, and the up/down regulation of genes, among others. All events focused on genes/proteins
and could involve only a single protein (e.g., for protein catabolism), multiple proteins (e.g., in a
binding event), and additional arguments (for instance, phosphorylation site or protein location). The
most complex type of event considered in the task were regulations, which may refer to other events
(negative regulation of gene expression) and may also include causes as arguments. The task also
addressed the problem that experimental findings often are described in a speculative manner (“Our
results suggest . . . ”) or may appear in negated context. This meta-information about an extracted
event should be taken into account when text mining results are used in automated analysis pipelines,
but recognizing the degree of confidence that can be put into an event adds further complexity to
the task. Overall, the three subtasks in BioNLP’09 were: 1) event detection and characterization, 2)
event argument recognition, and 3) recognition of negations and speculations.

The approach we present in this paper addresses all three subtasks. Essentially, our system
consists of three components: a deep parser, a query language for parse trees, and a set of queries

Please address correspondence to Jörg Hakenberg at joerg.hakenberg@asu.edu

iC 2009 The Authors. Journal Compilation
iC 2009 Wiley Periodicals, Inc.

2 Computational Intelligence

RAD53 positively

O

regulates DBF4

S

tag='gene' tag='gene'

U RB V U

E

AD

VP
NP

VPNP

S

Figure 1. Parse tree where constituents are connected by dotted lines, linkages between terminals
are shown as solid lines. E: adverb to verb, S: subject to verb, O: verb to object.

that extract specific events from parse trees. First, we use the BioLG parser (Pyysalo et al., 2006)
for parsing sentences into a graph structure. Essentially, BioLG recognizes the syntactic structure of
a sentence and represents this information in a tree. It adds links between semantically connected
elements, such as the links between a verb and its object and subject. Second, we store the result of
BioLG in a relational database, called Parse Tree DataBase (PTDB). This information is accessed
by a special-purpose query language, called Parse Tree Query Language (PTQL), which matches
a user-defined linguistic pattern describing relationships between terms to the database of stored
graphs (Tu et al., 2008). The query language thus is a powerful, scalable, extensible, and systematic
way of describing extraction patterns. Using these tools, we can solve the BioNLP tasks by means
of a set of queries, extracted from the training data set, and applied to the test data.

The Link Grammar parser is a deep syntactic parser based on the Link Grammar theory (Sleator
and Temperley, 1993), which consists of a set of words and linking requirements between words. The
particular implementation of Link Grammar parsing we use in our system is the BioLG parser
described in Pyysalo et al. (2006), which modifies the original parser by extending its dictionary
and by adding more rules for guessing structures when facing unknown words. The output of the
parser is twofold: it produces a constituent tree as well as a linkage that shows the dependencies
between words. We call the combination of constituent tree and linkage as produced by the BioLG
parser a parse tree. Each node in the parse tree has a label and further attributes, such as part-
of-speech tags or entity types. Figure 1 shows such a parse tree; dotted lines indicate parent-child
relationships in the constituent tree, and solid lines represent the linkages. Three links were detected
in the sentence: S connects the subject-noun RAD53 to the transitive verb regulates, O connects
the transitive verb regulates to the direct object DBF4, and E connects the verb-modifying adverb
positively to the verb regulates. Link Grammar uses about 110 of these basic link types (S, O, E),
each with various subtypes, providing very rich information on the dependencies between words. In
addition to linkages, each leaf node in a parse tree has a value (mostly the token itself) and a tag

attribute that indicates the entity type of a leaf node (such as gene). All these information can be
used to formulate queries in PTQL, which we will introduce in Section 2.1. PTDB/PTQL are open
in a way that further annotations in addition to value and tag can be added easily; for instance, our
general PTDB/PTQL framework supports canonical names and identifiers assigned to nodes (such
as UniProt IDs for proteins), both of which can be used in PTQL queries.

In the remainder of this paper, we will first discuss closely related work, before briefly introducing
the specific BioNLP’09 Shared Task; for details, we refer the reader to the overview papers by Kim
et al. (2009). We continue with presenting our methods, starting with an overview of the Parse Tree
DataBase (PTDB) and our special-purpose query language PTQL in Section 2. We also explain how
we extract PTQL queries from the training data to be used on the test data, and how our systems

Molecular event extraction from Link Grammar parse trees 3

deals with task-specific problems such as nested entities. Finally, we describe a post-processing
step to deal with ambiguous terms and our solution to handle speculation/negation of events. In
Section 3, we present a quantitative analysis resulting from the external evaluation by the Shared
Task organizers, as well as a qualitative and error analysis. We conclude with a discussion of the
overall method, insights, and future work.

1.1. Related work

We focus our discussion on approaches to information extraction that also use Link Grammar. Eval-
uations of other deep parsers for information extraction in the life sciences can, for instance, be found
in Miyao et al. (2009), a survey that assesses different parsers and representations. Fundel et al. (2007)
and Katrenko and Adriaans (2008) make use of the Stanford Lexicalized Parser in their respective
systems to extract protein-protein interactions. The former system, called RelEx, was used again by
Pyysalo et al. (2008) to compare different protein-protein interaction extraction benchmarks. Note
that most other systems based on deep parsing convert information extraction into a classification
problem, often using some kind of convolution kernel as in Kim et al. (2008); or a local alignment
kernel as introduced by Katrenko and Adriaans (2008). Miwa et al. (2009) employed a combination of
parsers and kernel methods applied to PPI extraction; they achieved an f-score of 72% on the IEPA
corpus (Ding et al., 2002). Instead of using classifiers, we employed a pattern-matching approach
where patterns were expressed as queries. A similar approach was described in Fundel et al. (2007),
where three main rules were defined to extract protein-protein interactions from an aggregated form
of dependency graphs. These rules could in fact easily be expressed as queries in our language.
Overall, we found LinkGrammar/BioLG to be a computationally efficient parser; it provides a rich
set of sub-categories of dependencies. Our choice of a query-based approach (resembling linguistic
patterns) was motivated by encouraging results of previous experiments (see, for instance, Hao et al.
(2005); Hakenberg et al. (2008); Hunter et al. (2008)). Pattern-based approaches tend to yield high
precision, as compared to typically high recall of classification-based approaches and co-occurrence
plus filtering1, which was our goal for the BioNLP’09 Shared Task. All three aforementioned pattern-
based approaches use information on the token, part-of-speech tag, and entity tag level only; in the
work we present here, we also employ information on linkages between words. Furthermore, our goal
was to generate a set of such patterns automatically, given a training set such as provided in the
Shared Task, instead of hand-crafting these rules.

Ding et al. (2003) studied the extraction of protein-protein interactions using the Link Grammar
parser. After some manual sentence simplification to increase parsing efficiency, their system assumed
an interaction whenever two proteins were connected via a link path; an adjustable threshold allowed
to cut-off too long paths. As they used the original version of Link Grammar, Ding et al. argued that
adaptations to the biomedical domain would enhance the performance. On the IEPA corpus, they
reported precision of 65% at 83% recall (f-score 73%), which is comparable to results reported using
other methods; the aforementioned RelEx system yielded an f-score of 67% as shown in Pyysalo
et al. (2008). In another study, Pyysalo et al. (2004) extracted interaction subgraphs, spanning all
predicates and arguments at the same time, from the Link Grammar linkage of known examples.
Failure analysis revealed that 34% of the errors were due to unknown grammatical structures, 26%
due to dictionary issues and a further 17% due to unknown words.

An adaption of Link Grammar that handles some of the failure cases is BioLG (Pyysalo et al.,
2006). BioLG includes additional morpho-guessing rules, lexicon expansion, and disambiguation
using a POS tagger2. Adding morpho-guessing rules and using a domain-specific POS tagger for
disambiguation resulted in an increase from 74.2 to 76.8% in recall, as evaluated by Pyysalo et al. on
two inhouse corpora for protein interaction and transcription; the adaptation also increased parsing
efficiency by 45%. Szolovits (2003) adapted the Link Grammar parser by expanding the lexicon with
data from UMLS Specialist. This expansion consisted of 200k new entries (including 74k phrases),
resulting in a 17% increase in coverage on a corpus of 495k words.

1For comparison, sentence-level co-occurrence yields 58% f-score on IEPA, see Pyysalo et al. (2008).
2Note that recently, the ‘standard’ Link Grammar parser maintained at http://www.abisource.com/

projects/link-grammar/ was adapted to include the changes made in BioLG.

4 Computational Intelligence

expression of

CHMp

P53, Rb, and Bcl-xL proteins

CH

CH

Jp

Figure 2. Linkage in a gene expression evidence, with ‘expression’ as event trigger term. Mp:
prepositional phrase modifying a noun; Jp: connects preposition to object; CH: noun modifier.

Overall, the main differences between the cited previous works and our approach are: 1) we
extract only pairwise subgraphs (e.g., from a trigger term to a single protein) and then attempt to
construct events based on such small components; 2) we consider link types, predicates, prepositions,
and other nodes as requirements for a valid linkage with respect to event argument recognition; 3)
we use a query language to query persistently stored parse trees instead of parsing each sentence
and then comparing it to known link paths; 4) we combine subgraph matching with extensive pre-
and post-processing rules using regular expressions and other filtering rules.

1.2. Events and their evaluation in BioNLP’09 Shared Task

The BioNLP’09 Shared Task data focuses on the recognition of nine types of molecular events related
to proteins or genes (those are not distinguished). Because the task intends to concentrate on the
semantical enrichment of events, protein and gene names are annotated both in the training and test
corpora. In Task 1, the recognition of an event consists of the finding the event type, the detection
of an event trigger, and the extraction of all primary event arguments. In Task 2, also secondary
arguments of the event (see examples below) must be recognized. This may involve some Named
Entity Recognition (NER), as the values of these arguments often are not proteins/genes. Different
event types have varying numbers of arguments; clearly, the difficulty of event recognition grows
proportionally to the number of arguments. The simplest event types (in terms of extraction) are
Gene expression, Protein catabolism and transcription, each involving always only one argument
(called theme). Phosphorylation and Localization events also have only one primary argument, but
may have a secondary argument: Site (40% of training examples) in the former, and AtLoc (23%) and
ToLoc (20%) in the latter case. Binding events have up to four primary arguments (though 99% of
training events have only one or two), and optionally a secondary Site argument. Regulation events
(Positive, Negative or without sign) are the most complicated cases, because the primary argument
may be an event itself, and may contain any of the Site, Cause, CSite secondary arguments.

The evaluation of the task is based on the equality of events: each extracted event is judged
either as correct or incorrect as a whole. Evaluation results are reported using the standard infor-
mation retrieval metrics precision/recall/f-score. Therefore, incomplete or partial recognition of an
event increases both the number of false negatives (complete event not found) and false positives
(incomplete event found).

2. METHODS

Our detection of arguments for events is based on Link Grammar linkages obtained from training
data. Essentially, we automatically extract all shortest link paths that connect event trigger terms
to themes, themes to sites, themes to locations, and so on. We describe these examples as queries
against a parse tree, and evaluate these queries on the test data to extract and assemble events.
Figure 2 shows an example for a linkage in a gene expression event; it illustrates that the event
trigger term ‘expression’ is connected to the three protein themes in exactly the same way.

Our method for event argument recognition is based on three components. The first parses
training as well as test data using the BioLG parser, and stores the result in a relational database.
The second component is a query language to search the databases for known linkages. The third
component extracts these linkages from training data and rewrites them into such queries. These
components are detailed in Sections 2.1 to 2.5. Section 2.6 explains our methods for context identi-
fication regarding negations and speculations. Section 2.7 details the way we handled enumerations.

Molecular event extraction from Link Grammar parse trees 5

2.1. Parse Tree Database and Query Language

A fundamental component of our approach is a parse tree database (PTDB) for storing and querying
parse trees (Tu et al., 2008). PTDB is a relational database for storing the results of the BioLG parser
on arbitrary texts. For the task, we parsed all texts from the training, development and testing data
set. Recognition of entity types (gene etc.) of word tokens relied on the provided annotation. Each
abstract is represented in a manner that captures both the document structure (such as title, sections,
sentences) and the parse trees of sentences.

Parse trees in PTDB are accessed by means of a special purpose query language, called PTQL.
PTQL is an extension to LPath (Bird et al., 2006), which itself is an adaptation of XPath (W3C
Consortium, 1999) to linguistic structures. Essentially, a PTQL query is a hierarchical pattern that
is matched against a set of constituent trees together with additional requirements on linkages
between matches. More specifically, a PTQL query consists four components delimited by colons: 1)
tree pattern, 2) link conditions, 3) proximity conditions, and 4) return expression. A tree pattern
describes the hierarchical structure and the horizontal order between the nodes of a parse tree, a link
condition describes the linking dependencies between nodes, a proximity condition specifies words
that are within a specified number of words in the sentence, and the return expression defines which
variables should be returned as query result. An example PTQL query is shown in Figure 3. We have
introduced previously a meta-language called PTQLlite Tari et al. (2009). PTQLlite enables non-
expert users to write useful queries in a natural language-like style; these queries then get translated
automatically into actual PTQL.

PTQL queries are evaluated on a PTDB using a two step process. A query is first translated into
an IR-style keyword query to efficiently filter out irrelevant sentences. This step is performed outside
the database using an inverted index built with Lucene3. In the second step, the query is translated
into an SQL query, which is restricted to the sentence IDs that passed the first step. This query is
evaluated on the database, and the results are projected onto the return expression. Using a relation
database for representation (in our case, MySQL), we can thus benefit from database functionality
transparent to our system, such as indexing and query optimization.

//S{ //N[value=‘expression’](e) -> //PRP[value=‘of’](a)

=> //?[tag=‘gene’](t) -> //N[value=‘gene’](h) }

: e !Mp a and a !Jp t and t !CH h : : e.value, t.value

Figure 3. PTQL query for the extraction of some gene expression event. It searches for a sentence
S that contains a noun ‘expression’, followed by a preposition ‘of’, which is then followed by a noun
phrase (2nd line) that contains a gene name (//?, any node with tag=‘gene’) and has ‘gene’ as
head noun. The link types are specified in the 3rd line using the variables each node is bound to
(e, a, t, h): e (‘expression’) has to be connected to a (‘of’) with an Mp link, the link from ‘of’ to
the head noun has to be Jp, and the CH link specifies ‘gene’ as head noun. The return values of the
query are the values of nodes e and t, which are bound to the event trigger ‘expression’ and the
gene, respectively. This query would return all three event/theme pairs from the phrase in Figure 2.

2.2. Extracting PTQL queries

From all events in the training data, we searched for the shortest link paths that connected any two
constituents relevant to an event: event triggers to themes, themes to sites, themes to locations, and
so on. For each of the different event classes, we obtained at least a set of link paths connecting
the event trigger to the theme. Links from themes to sites—required for phosphorylation, binding,
and regulation events—were extracted from all such events and then joined into one set; thus, these
links may be re-used for all relevant event types, in contrast to the aforementioned links between
event triggers and themes. All relevant linkages were transformed into PTQL queries, and we ran
these queries against the development and test data sets, respectively. Note that this entire process

3Lucene — see http://lucene.apache.org/

6 Computational Intelligence

of collecting linkages, transformation, and querying, is performed automatically. The automated
transformation is a straightforward procedure: 1) We have to reorder the nodes (tokens, POS) on
the identified shortest link path to reflect the original sentence-order (cmp. Figure 3), as the link
path might jump back and forth in the sentence. 2) We assign variables to nodes reflecting sentence
order; naming conventions such as e1 and e2 for nodes that refer to an event trigger, t1 referring to
a theme, h1 for head nouns, or a1 for any other token, help reading/debugging the PTQL queries
(notations in Figure 3 are simplified, as there is only one event trigger term, one node referring
to the theme, etc.). 3) Linkages in the PTQL query can be used independent from the sentence
order of the involved nodes. As mentioned in the previous section and described in Tu et al. (2008),
expert user-readable PTQL queries are converted internally into SQL, which is then used to query
the relational Parse Tree DataBase scheme.

For evaluation on the development data, we extracted all queries from the training data; for
evaluation on the test set, queries originate from training and development data together. Because
many link paths in the training/development data were identical expect for their event trigger terms,
we manually grouped similar terms together; queries were then expanded automatically to allow for
either one. An example is the following group of inter-changeable terms that could replace ‘expression’
in gene expression events (see Figure 3):

‘expression’ ← {‘expression’, ‘overexpression’, ‘coexpression’, ‘production’, ‘overproduction’,
‘generation’, ‘synthesis’, ‘biosynthesis’, ‘transfection’, ‘cotransfection’}

2.3. Searching for genes and proteins nested within noun phrases

An extension to our initial work on the BioNLP’09 Shared Task tackles gene and protein names
“obscured” by encapsulating noun phrases. From the training and test data it can be observed that
many themes (proteins or genes) occur within noun phrases with differing internal dependencies.
Sometimes, the theme itself functions as the head noun, thus most links from outside the phrase will
target the theme directly. In other cases, the theme itself will not be the head noun (as in “c-Fos
gene”, where gene is the head), so the linkages that ultimately should target the theme will differ; see
Figure 4 for an example. A PTQL query trying to connect, e.g., an event trigger term to a protein
name that functioned as the head noun in a training example will thus fail to extract such differing
cases. An example is the following, where the first phrase originates from the training data and gene
is placeholder for the actual gene/protein name:

“. . . phosphorylates gene . . . ”
“. . . phosphorylates gene protein . . . ”
“. . . phosphorylates X domain of gene . . . ”

In all three cases, there is a link from the verb to its object, but in the lower two examples, that
object is ‘protein’ and ‘domain’, respectively. Only for a few such cases, all three link paths were
contained in the training data.

These cases attributed to a large proportion of false negatives in our original system (also see
Section 3.1). Therefore, for all gene/protein themes, we extended PTQL so we can re-write the queries
collected from the training data in the following way. Instead of trying to target a protein theme
directly, PTQL is now capable of searching for links targeting any constituent in a noun phrase,
instead of just linking leaf nodes in the parse tree (single tokens). We thus look for any noun phrase
that contains a protein name, and which also has a constituent with the correct incoming/outgoing
dependency. The difference to Section 2.2 and previous descriptions is that now, the protein and
the constituent that has the correct link do not necessarily have to be the same, they only need to
appear within the same noun phrase. In the example in Figure 4, a query generated from the left
or right example also matches the respective other one. Similar special treatments of noun phrases
with embedded entities have been discussed in Schneider et al. (2009) and Pyysalo et al. (2009).

2.4. Post-processing of extracted events

Another extension of the initial system handles a post-processing of events that were extracted by
PTQL queries. First, there are many cases where the same event trigger term is ambiguously used
for different event types. As an example, the phrase “c-Fos expression” can refer either to a gene
expression or a transcription event. The term ‘absence’ is an event trigger of six different event

Molecular event extraction from Link Grammar parse trees 7

expression of c-Fos gene

Js

CHMp

expression of c-Fos

Mp

Js

Figure 4. Example for alternative structures / optional nodes. In this case, the linkage should
reflect the connection from ‘expression’ to a noun that refers to a gene, independent of its head. The
Mp and Js links would be required, the CH link from head to actual gene optional.

classes in the training set (binding, gene expression, transcription, regulation, positive regulation,
as well as negative regulation). Second, in some cases, a sentence might not refer to an event at all,
albeit there are one or more matching PTQL queries. Remember that PTQL queries cover only the
shortest path between two constituents, and thus ignore any other syntactical/semantic clues in the
remainder of the sentence.

To tackle both cases, we run a multi-class classifier obtained from the training data on each
predicted event from the test data; the classifier contains all nine event types as individual classes.
We use SVMlight and train it on token and link features: bag-of-word features split into tokens
occurring before, between, or after two given constituents (an event trigger term and a protein
theme, or a second event term); link features are encoded as vertex-walks connecting two tokens
(“token–link type–token”, where the link type refer to the link connecting the two tokens) or edge-
walks connecting two links (“link type–token–link type”).

2.5. Regular expressions for regulation events

Regarding regulation events, we concentrated on the recognition of events with only the theme
slot filled. In the training data, 73.8% of the regulations (incl. positive and negative regulation)
do not have any secondary argument. We addressed this task using regular expressions that were
matched against the annotated sentences in the PTDB. Therefore, we sought for trigger expressions
of regulation events that immediately precede or follow an annotation (protein name or event trigger).
For all four possible combinations (precede/follow and protein/trigger) we created regular expressions
that were able to recognize the given patterns, for example:
• (NOUN:trigger) (of) (PROTEIN) finds [up-regulation]Trigger:Pos reg of [Fas ligand]Protein

• (PROTEIN) (NOUN:trigger) finds mediate [IL-8]Protein [induction]Trigger:Pos reg

• (VERB:trigger) (EVENT:trigger) finds [inhibit]Trigger:Neg reg [secretion]Event:Loc

• (EVENT[trigger]) (VERB:trigger) finds TNF-alpha [release]Event:Loc [peaked]Trigger:Pos reg

The actual patterns also allowed event-class specific prepositions (‘of’, ‘with’, ‘to’, etc.) and deter-
miners between the regulation trigger and the protein or event trigger. Note that a large number of
regulation event is embedded into another regulation event as its theme. Treating such cases requires
special care, since embedded events are not properly recognized by regular expressions. Therefore,
whenever a regulation event pattern had been identified, we also constructed another event candidate
with the appropriate sub-expression as the trigger. An example of this approach is:

[[IkappaBalpha]Protein induction]Event:Pos reg was completely [inhibited]Trigger:Neg reg.
Here, the positive regulation sub-expression is the theme of the negative regulation event triggered
by ‘inhibited’.

2.6. Context identification to find negations and speculations

We identified negative context of events by simultaneously applying four different methods. In the
first three methods, we identified candidate negation trigger expressions (NTEs) by means of regular
expressions that were created based on the analysis of surface patterns of negation annotation in
the training set. The fourth method uses the parse trees of sentences including negated event using
a set of queries for the identification of candidate NTEs. To fine tune the combined prediction, we
used some manually encoded exceptions.

(1) NTEs inside the trigger of an event: these expressions are partly or entirely event triggers and
usually suggest negative context, such as inability and undetectable. In the training set, some-

8 Computational Intelligence

times an NTE indicated negation for some event classes but not for others; we added exceptions
to exclude such NTE–event class combinations (e.g., deficient with a negative regulation).

(2) NTEs immediately preceding an annotation (protein name or event trigger), e.g., ‘no(t)’, ‘lack
of’, ‘minimal’, ‘absence of’, ‘cannot’

(3) NTEs in the span of all the annotation related to an event (triggers, attributes recursively): these
NTEs can span over multiple sentences. Starting with a hand-crafted dictionary of negation
context triggers (Solt et al., 2009), we selected those dictionary items that had a positive effect
on overall F1-measure.

(4) NTEs from parse tree patterns: We identified on the training data parse tree patterns including
NTEs (using hand-made NTE dictionary) and protein names or event triggers. Candidate pat-
terns, e.g., regulate*⇒in⇒but→not⇒in, were then formulated as queries against the PTDB
and filtered via optimization.

We also applied the parse tree based method to identify speculation context. We derived rules
from the training set, e.g., events overlapping with a verb phrase with the verb ‘may’ are considered
speculative. We only kept rules that increased performance on the development set; however, this
set contained only 48 abstracts with speculative annotations. We observed that some apparently
speculative contexts were, to our surprise, considered as facts by the annotators if the pattern
occurred in the last sentence of the abstract, such as: “These data suggests. . . .” To counteract
such situations, we applied location-based heuristics by dividing the abstract into title, body, and
concluding sentence. In the conclusion part, events were less likely annotated as speculative, if the
conclusion also mentioned the word ‘results’ or its synonyms (e.g., ‘data’, ‘studies’, ‘observations’).

2.7. Handling enumerations

In most cases, PTQL queries were able to correctly recognize events that involve enumerated
entities. However, when the enumeration included some special characters (brackets, slashes) or led
to incorrect parse trees, our queries were not able to extract all annotated events. We applied post-
processing to solve this problem, which was applicable when at least one protein in the enumeration
was annotated as a part of an event. Post-processing was based on regular expressions searching
for additional proteins occurring in the neighborhood of an initial one, separated from it only by
an enumeration separator. If found, the original event was replicated by substituting the original
protein with the new ones.

3. RESULTS

Statistics concerning event classes and number of instances per event class can be found in the
overview paper for the shared task, see Kim et al. (2009). All in all, we extracted 1845 different link
paths from the training data (2197 from training plus development) that connect two constituents
each (event trigger term to protein, or protein to site, for instance), corresponding to as many PTQL
queries. Table 1 shows the number of link paths per event class and argument type. From Table 2,
which lists the top query per event class according to support in the training data, it becomes
obvious that most events are described in fairly simple ways (“gene expression” or “phosphorylation
of gene”). Adding the development data increased the number of events by 20.8% and the number
of unique link paths by 19.1%. This might indicate that adding more data in the future will produce
less and less new link paths, but we still observe a decent amount of link paths yet not covered. Per
link path type, the increase rate ranged from only 9% (localization: Theme to AtLoc) over 11–15%
for basic events (gene-expression or transcription trigger term to Theme) to almost 27% (regulation:
Theme to Site). For the post-processing step alone, as evaluated on the development set, top-k
precision is 48.6, 65.0, 70.1, and 81.7% for k = 1 . . . 4, respectively; k refers to finding the correct
event class among the first k predictions for each sentence, sorted by their likelihood.

On the BioNLP’09 Shared Task test set, our method achieved an F1-score of 45.6% for the
basic types, 9% on regulation events, with a total of 29.3% for Task 2 (see Table 3). On Task 3, the
F1-score was 8.6%. For Task 1, which was handled by us implicitly with Task 2, the F1-score was
32.1%. The combined F1-score for all tasks was 29.6%. Precision was significantly higher than recall

Molecular event extraction from Link Grammar parse trees 9

Event class: arguments Unique Total

Localization: Event–Theme 120 237
Localization: Theme–AtLoc 39 56
Localization: Theme–ToLoc 28 43
Binding: Event–Theme 578 996
Binding: Theme–Site 64 130
Gene expression: Event–Theme 447 1 507
Transcription: Event–Theme 208 498
Protein catabolism: Event–Theme 42 98
Phosphorylation: Event–Theme 59 153
Phosphorylation: Theme–Site 34 60

Regulation: Event–Theme 178 267
Regulation: Protein–Site 11 40
Regulation: Event–CSite 2 2
Regulation: Event–Cause 35 54

Sum 1 845 4 141

Table 1. Number of link paths per event class and pair of arguments (based on the training
data). Themes are proteins for the first block of events, and proteins or other events for the three
regulation types. AtLoc: at location, ToLoc: to location.

Pair Query with node variables Links Support

Localization gene(t1) ⇒ localization(e1) t1→CH→e1 36/ 237

Binding gene(t1) ⇒ association(e1) t1→CH→e1 42/ 996

Gene expression gene(t1) ⇒ expression(e1) t1→CH→e1 347/ 1507

Transcription gene(t1) ⇒ gene(a1) ⇒ transcription(e1) t1→CH→a1 and a1→CH→e1 72/ 498

Protein catab. proteolysis(e1) ⇒ of(a1) ⇒ gene(t1) e1→M→a1 and a1→J→t1 32/ 98

Phosphorylation phosphorylation(e1) ⇒ of(a1) ⇒ gene(t1) e1→M→a1 and a1→J→t1 48/ 153

Table 2. PTQL queries per argument pair (event↔theme) that have the highest support in
the training data. All nodes are bound to variables (round brackets) that are re-used in the Links
column to depict connections between nodes. Note that here, event trigger terms are placeholders
for alternatives (see text): ‘expression’ also refers to instances that used the terms ‘co-expression’,
‘synthesis’, ‘production’, etc. gene: wildcard for any gene name. CH: connects head noun with
modifying noun; M: connects nouns to post-nominal modifiers; J: connects prepositions to objects.

in all cases (overall: 60% precision at 20% recall). Concerning regulation events, since we only aimed
to recognize the simplest ones with this method, not surprisingly the recall of the method is very
low, but the precision is on par with the ones of other events (for positive and negative regulation).
The precision gets diminished because only a partial event was submitted, accounting for a false
positive and false negative. The post-processing (usage of regular expression for regulation events
and enumeration resolution) improved the F1-score of Task 2 slightly (1.2%) for the first 6 events at
3% better recall and 6% worse precision. For regulation events its impact was higher since for those
no BioLG based solution was applied. Its overall effect on Task 2 was almost a 4% improvement in
F1-score and recall, at 15% decreased precision.

Identification of negative context Table 4 shows the effectiveness of each method for the iden-
tification of negative context on the development set. Searching for the negation inside the event
trigger had little effect on the final results, since a specific word was rarely identified as being the
trigger of more than one event classes. The most reliable spot to look for negation was immediately
before the term that triggered the event (“lack of expression of . . . ”).

10 Computational Intelligence

Event class TP FP FN Rec Prec F1

Localization 42 28 132 24.14 60.00 34.43
Binding 69 86 280 19.77 44.52 27.38
Gene expr. 373 99 349 51.66 79.03 62.48
Transcription 22 30 105 16.06 42.31 23.28
Protein cat. 7 5 7 50.00 58.33 53.85
Phosphoryl. 31 57 108 22.30 35.23 27.31
Sub-total 544 305 991 35.44 64.08 45.64

Regulation 1 12 291 0.34 7.69 0.66
Positive reg. 70 146 917 7.09 32.41 11.64
Negative reg. 14 14 365 3.69 50.00 6.88
Reg. total 85 172 1573 5.13 33.07 8.88

Task 2 total 629 477 2564 19.70 56.87 29.26

Negation 9 24 218 3.96 27.27 6.92
Speculation 13 33 195 6.25 28.26 10.24
Task 3 total 22 57 413 5.06 27.85 8.56

Overall 710 475 2907 19.63 59.92 29.57

Table 3. Official results for Tasks 2 and 3, approximate span, recursive matching.

Method TP FP FN P R F1

I : inside trigger 15 8 92 65.2 14.0 23.1
B: before trigger 62 17 45 78.5 57.9 66.7
S: span-based 6 3 101 66.7 5.6 10.3
P : parse tree query 4 1 103 60.0 5.6 10.7

(I∪B∪S) 79 27 28 74.5 73.8 74.2
(I∪B∪S∪P) 82 28 25 76.6 74.6 75.6

(I∪B∪S∪P) ∪E 84 79 23 50.9 75.7 60.9

Table 4. Performance for negation context identification on the development set. The last row
indicates the benefitial effect of exceptions (E): when permitting all event class–trigger combinations
and also NTEs identified as being exceptions, the precision decreases considerably with only a small
increase in recall. See text for details in each method.

Method TP FP FN P R F1

w/o location-based heuristic 53 47 42 53.0 55.8 54.4

with location-based heuristic 52 34 43 60.5 54.7 57.5

Table 5. Performance of parse tree based speculation identification, evaluated on the devel-
opment set. The location-based heuristic identifies the last concluding sentences as affirmative, if
they refer to experimental evidence.

Identification of speculation Table 5 shows the effectiveness of our parse tree based method for the
identification of speculation context on the development set. With the use of location-based heuristic
we could improve the F1-score of our method by 3%, at 7% better precision and 1% worse recall.
The parse tree based method worked significantly better for speculative context than for negation,
because speculations are expressed in less extremely varied way, and trigger words are more specific
for the context.

Molecular event extraction from Link Grammar parse trees 11

3.1. Error analysis

An analysis of false positives (FP) and false negatives (FN) revealed the following main types of errors
(in order of decreasing gravity). Our system produced much better precision than recall, which is
reflected in dominance of FNs over FPs. Note that, as we used parse trees on training and test data,
parse errors result both in incorrect queries and wrongly extracted results. Some of these errors,
mainly due to missing or incorrect parse trees or links, could be recovered by the post-processing if
the surface patterns were simple.

(1) FNs: no corresponding link path query
(2) FNs: there exists a corresponding yet slightly different link
(3) FNs: query links to a (pre or post) modifier of the gene, but not the actual gene name
(4) FNs: query misses one argument
(5) FPs: wrong event categorization (mostly gene expression vs. transcription)
(6) FNs: unseen event trigger term, location, or site
(7) FPs: wrong despite perfect match wrt. a link path from the training data
(8) FNs, FPs: incorrect or partial parse tree
(9) FNs: problems with anaphora, brackets, or enumerations

We discuss these error classes in more detail. The first problem may be attributed to the small
size of the training data, but is also a general property of pattern-based methods in NLP. The second
class stems from the current inability of our query language to deal with morpho-syntactical variation
in language (see next section). We addressed (3) in this paper, see Section 2.3.

For 5% of the false positive events (5), we predicted the wrong event class, while all trigger
terms/arguments were correct. Half of those were mix-ups of positive regulation, predicted as gene
expression; another group has gene expression predicted as localization. 13% of FPs were a result of
both: the prediction was part of a corresponding FN (but some argument was missing), and at the
same time we predicted the wrong type. For a small fraction (1.5%) of false negative events on the
development set, we found a corresponding false positive event where one argument (ToLoc, Cause,
Site, Theme 2) was missing; 11 of those were binding events (comprising 9% of FNs for binding).

A relatively small portion of false negatives were due to non-existing linkages (8) for a sentence.
We stopped parsing after 30 seconds per sentence; this yields partial linkages in some cases, which we
could still use for extraction of link paths (training data) or querying against (test data); sometimes,
no linkage was available at all. This timeout also influences the quality of linkages, which result in
false positives as well as false negatives.

As for context identification, our approach performed significantly weaker on the test set, since
over 70% of negations and speculations were related to regulation events (measured on the joined
train and development sets), for which we applied a coarse baseline method, so that a large part of
the base events were missing.

4. DISCUSSION

We presented a method for extraction of molecular events from text. We distinguished nine classes
of events and identified arguments associated with them. We also characterized each event for either
being speculative or negated. The underlying method extracts link paths between all relevant pairs
of arguments involved in the event from a Link Grammar parse (BioLG, see Pyysalo et al. (2006)).
These link paths connect, for instance, an event trigger term to its theme, or a protein theme to
a binding site. We query the graph formed by these linkages using a dedicated query language for
parse trees (Tu et al., 2008) which allows us to very quickly implement large sets of rules. We
combine queries with extensive pre- and post-processing using a mixture of different techniques. For
the BioNLP’09 Shared Task, we focused on six event classes, and included the three regulation types
with this extended version. For the first six, non-regulation events, we obtain an overall F1-score of
45.6%, for all nine it was 29.3% (Task 2), solving Task 1 implicitly with Task 2. Including speculation
and negation (Task 3), the overall total on all nine event classes was 29.6%. All in all, we found that
link paths connecting constituents of known types (e.g., event trigger term, gene) as extracted from
training data yield a precise way for event argument detection. Using a specialized query language

12 Computational Intelligence

on pre-processed data (NER; parsing) greatly enhances the utility of such extracted rules to put
together more complex events. Still, our current approach lacks in overall recall (20–52%, depending
on event class), often due to slight variations that include, for instance, alternative nodes along a
link path that were not observed in training data.

In addition to the system presented for the BioNLP Shared Task workshop, we extended the
work to include event post-processing (see Section 2.4) to better distinguish between the use of
ambiguous trigger terms (‘expression’, ‘absence’) on a sentence level. We also extended out query
language, PTQL, so that it can address the problem of alternative/optional nodes in an otherwise
identical link path (Section 2.3).

In future work, our approach could be improved in various ways. First, we currently extract
queries from the training corpus and use them directly as they are. We see that to improve recall,
queries need to be generalized further, beyond the method discussed in Section 2.3. In previous
work (Hakenberg et al., 2008) we showed that such generalized rules may be learned automatically
(from much larger corpora), which helped to increase recall considerably at a modest precision
penalty. The idea is to search PubMed for sentences similar to the ones in the training data because
they discuss the same terms involved in a known event (same protein, same trigger term, same site,
etc.). We would then consider these new sentences as additional training examples.

Second, our query language currently performs exact matching, while it would be more advanta-
geous to implement some form of fuzzy semantics, producing a ranked list of hits. This could include
wildcards, alternative nodes, alternative sub-paths, optional nodes etc. An example is discussed in
Figure 4.

We are currently working on an extension of PTDB and PTQL to support information from
other parsers, thus not being limited to Link Grammar. The overall structure of the database and
query syntax would remain identical to the ones shown here and in Tu et al. (2008). As a major
benefit, users who are more familiar with other parsers can write PTQL queries using parser-specific
markup, such as terms referring for dependency types or word categories. We have already extended
the PTQL framework to cover the Stanford Lexicalized parser Klein and Manning (2003) and are
currently including Enju Miyao and Tsujii (2008), both of which have been used in similar studies in
the past. Also, some large document collections have already been parsed using a parser other than
Link Grammar; as deep parsing is computationally expensive, it would be beneficary to integrate
these data directly. For example, the entire 2009 baseline of Medline has been parsed using the Enju
parser and made publicly available 4. A drawback at first is that PTQL queries written to capture
one type of parse information cannot readily be applied to sentences for which parse information was
produced by a different parser. Some ideas have been proposed as to the transformation/integration
of outputs of different parsers; see, for example, Clegg and Shepherd (2007) and Miyao et al. (2009).

REFERENCES

Bird, S., Chen, Y., Davidson, S. B., Lee, H., and Zheng, Y. (2006). Designing and Evaluating an
XPath Dialect for Linguistic Queries. In Proc ICDE , page 52, Washington, DC, USA. IEEE
Computer Society.

Clegg, A. B. and Shepherd, A. J. (2007). Benchmarking natural-language parsers for biological
applications using dependency graphs. BMC Bioinformatics, 8, 24.

Ding, J., Berleant, D., Nettleton, D., and Wurtele, E. S. (2002). Mining MEDLINE: Abstracts,
Sentences, or Phrases? In Proc Pacific Symposium on Biocomputing , pages 326–337, Kaua’i,
Hawaii, USA.

Ding, J., Berleant, D., Xu, J., and Fulmer, A. W. (2003). Extracting Biochemical Interactions
from MEDLINE Using a Link Grammar Parser. In IEEE Int Conf on Tools with Artificial
Intelligence, pages 467–471.

Fundel, K., Küffner, R., and Zimmer, R. (2007). RelEx—Relation extraction using dependency parse
trees. Bioinformatics, 23(3), 365–371.

Hakenberg, J., Plake, C., Royer, L., Strobelt, H., Leser, U., and Schroeder, M. (2008). Gene mention

4See http://www-tsujii.is.s.u-tokyo.ac.jp/enju-medline/.

Molecular event extraction from Link Grammar parse trees 13

normalization and interaction extraction with context models and sentence motifs. Genome
Biology , 9(S2), S14.

Hao, Y., Zhu, X., Huang, M., and Li, M. (2005). Discovering patterns to extract protein-protein
interactions from the literature: Part ii. Bioinformatics, 21(15), 3294–3300.

Hunter, L., Lu, Z., Firby, J., Jr, W. A. B., Johnson, H. L., Ogren, P. V., and Cohen, K. B. (2008).
OpenDMAP: An open source, ontology-driven concept analysis engine, with applications to
capturing knowledge regarding protein transport, protein interactions and cell-type-specific gene
expression. BMC Bioinformatics, 9, 78.

Katrenko, S. and Adriaans, P. (2008). A Local Alignment Kernel in the Context of NLP. In Proc
COLING’08 .

Kim, J.-D., Ohta, T., Pyysalo, S., Kano, Y., and Tsujii, J. (2009). Overview of BioNLP’09 Shared
Task on Event Extraction. In Proc BioNLP 2009 Workshop Companion Volume for Shared
Task , pages 1–9, Boulder, Colorado.

Kim, S., Yoon, J., and Yang, J. (2008). Kernel approaches for genic interaction extraction.
Bioinformatics, 24(1), 118–126.

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. In Proc ACL, pages 423–430.
Krallinger, M., Valencia, A., and Hirschman, L. (2008). Linking genes to literature: text mining,

information extraction, and retrieval applications for biology. Genome Biol , 9(Suppl 2), S8.
Miwa, M., Saetre, R., Miyao, Y., and Tsujii, J. (2009). Protein-protein interaction extraction by

leveraging multiple kernels and parsers. Int J Med Inform.
Miyao, Y. and Tsujii, J. (2008). Feature forest models for probabilistic HPSG parsing. Computational

Linguistics, 34, 35–80.
Miyao, Y., Sagae, K., Sætre, R., Matsuzaki, T., and Tsujii, J. (2009). Evaluating contributions

of natural language parsers to protein–protein interaction extraction. Bioinformatics, 25(3),
394–400.

Pyysalo, S., Ginter, F., Pahikkala, T., Boberg, J., Järvinen, J., Salakoski, T., and Koivula, J. (2004).
Analysis of Link Grammar on Biomedical Dependency Corpus Targeted at Protein-Protein
Interactions. In N. Collier, P. Ruch, and A. Nazarenko, editors, Int Workshop on Natural
Language Processing in Biomedicine and its Applications (NLPBA/BioNLP) at COLING 2004 ,
pages 15–21, Geneva, Switzerland.

Pyysalo, S., Salakoski, T., Aubin, S., and Nazarenko, A. (2006). Lexical adaptation of link
grammar to the biomedical sublanguage: a comparative evaluation of three approaches. BMC
Bioinformatics, 7(Suppl 3), S2.

Pyysalo, S., Airola, A., Heimonen, J., Bjorne, J., Ginter, F., and Salakoski, T. (2008). Comparative
analysis of five protein-protein interaction corpora. BMC Bioinformatics, 9(Suppl 3), S6.

Pyysalo, S., Ohta, T., Kim, J., and Tsujii, J. (2009). Static relations: a piece in the biomedical
information extraction puzzle. In Proc Workshop on BioNLP , pages 1–9. Association for
Computational Linguistics.

Schneider, G., Kaljurand, K., and Rinaldi, F. (2009). Detecting protein-protein interactions in
biomedical texts using a parser and linguistic resources. In Proc Computational Linguistics and
Intelligent Text Processing (CICLING’09), number 5449 in LNCS, pages 406–417. Springer.

Sleator, D. and Temperley, D. (1993). Parsing English with a Link Grammar. In Third International
Workshop on Parsing Technologies, Tilburg, NL, and Durbuy, B.

Solt, I., Tikk, D., Gál, V., and Kardkovács, Z. T. (2009). Semantic classification of diseases in
discharge summaries using a context-aware rule based classifier. J Am Med Inform Assoc, 16(4
– i2b2 Obesity NLP Challenge), 580–584.

Szolovits, P. (2003). Adding a medical lexicon to an English Parser. In AMIA Annu Symp Proc,
pages 639–643, Washington DC, USA.

Tari, L., Hakenberg, J., Gonzalez, G., and Baral, C. (2009). Querying a parse tree database of
Medline text to synthesize user-specific biomolecular networks. In Proc Pacific Symposium on
Biocomputing , pages 87–98, Kona, Hawaii, USA.

Tu, P. H., Baral, C., Chen, Y., and Gonzalez, G. (2008). Generalized text extraction from molecular
biology text using parse tree database querying. Technical Report TR-08-004, Department of
Computer Science and Engineering, Arizona State University, Tempe, Arizona, USA.

W3C Consortium (1999). XML Path Language (XPath). http://www.w3.org/TR/xpath.

