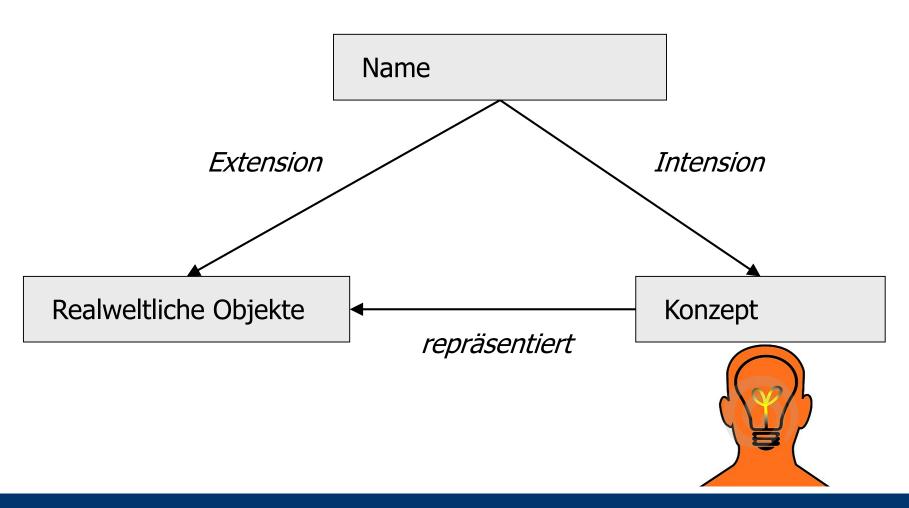


Informationsintegration


Semantische Integration

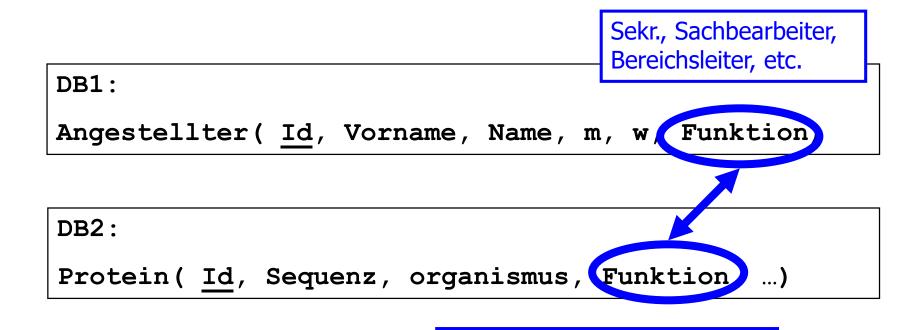
Ulf Leser

Inhalt dieser Vorlesung

- Wdh: Semantische Heterogenität
- Semantische Integration
- Ontologien
- Beschreibungslogiken
- Ontologiebasierte Integration

Semantik von Namen

Synonyme


- Verschiedene Worte für "dasselbe" Konzept
 - Immer im Kontext der Anwendung

```
DB1:
Angestellter() Id, Vorname, Name, minnlich, weiblich)

DB2:
Person( 1d, Vorname Nachname, Geschlecht)
```

Homonyme

- Gleiche Worte verschiedener Bedeutung
 - Treten oft bei Überschreitung von Domänengrenzen auf

Transport, Katalyse, Signal, ...

Ulf Leser: Informationsintegration

Probleme

- Mögliche Beziehungen zwischen den Mengen realweltlicher Objekte, die Konzepte repräsentieren
 - A=B (Äquivalenz): "semantische" (echte) Synonyme
 - Kreditinstitut, Bank (?)
 - Gibt es echte Synonyme?
 - A⊆B (Inklusion): B ist Hyperonym (Oberbegriff) zu A; A ist Hyponym zu B
 - Tochter ⊆ Kind
 - A \cap B ≠ \emptyset \wedge A≠B (Überlappung): Schwierigster Fall
 - Küche-Kochnische; Haus-Gebäude; Regisseur-Schauspieler
 - $-A \cap B = \emptyset$ (Disjunktheit): nicht verwandte Begriffe (häufigster Fall)
 - Dose-Lohnsteuerjahresausgleich

Semantische Integration

- Bisherige Lösung
 - Korrespondenzen definieren semantische Beziehungen zwischen Attributen, Relationen, Anfragen
 - Die kann man herleiten (Schema Matching) oder manuell festlegen
- Auf Wertebene
 - Duplikate
 - Einzelne Objekte, keine Mengen
- Anfrageplanung weiss nichts von Semantik
 - Benutzt Äquivalenz- und Inklusionsbeziehungen

Software und Semantik

Natürlichsprachige Webseite für eine Maschine

林克昌 根留台灣 可能增高

在愛戴者熱心奔走之下,華裔名指揮家林克昌根留台灣的可行性又提升了幾分。兩廳院主任李炎、國家音樂廳樂團副團長黃奕明日前親赴林克昌、石聖芳寓所拜會,並提出多場客席邀約。此外,台灣省立交響樂團團長陳澄雄也早早「下訂」,邀請林克昌赴台中霧峰,從八月十日起訓練省交,為期長達一個月。

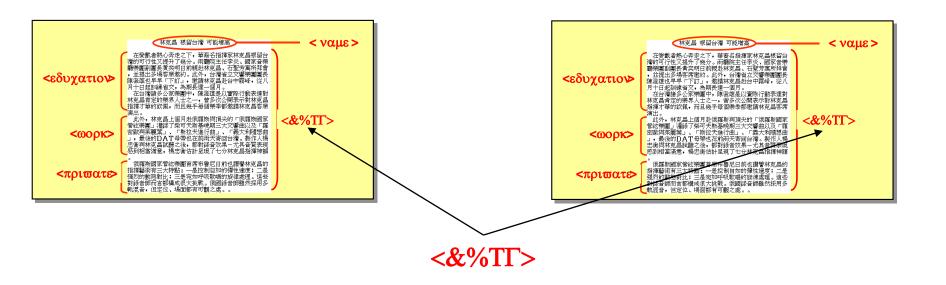
在台灣諸多公家樂團中,陳澄雄是以實際行動表達對 林克昌肯定的樂界人士之一,曾多次公開表示對林克昌 指揮才華的欽佩,而且幾乎每個樂季都邀請林克昌客席 演出。

此外,林克昌上個月赴俄羅斯興頂尖的「俄羅斯國家 管絃樂團」灌錄了柴可夫斯基晚期三大交響曲以及「羅 密歐興莱麗葉」、「斯拉夫進行曲」、「義大利隨想曲」,最後的DAT母帶也在前兩天寄回台灣。製作人楊 忠衡興林克昌試聽之後,都對錄音效果-尤其音質表現 感到相當滿意,楊忠衡估計呈現了七分林克昌指揮神韻

俄羅斯國家管絃樂團首席布魯尼日前也讚譽林克昌的 指揮藝術有三大特點:一是控制自如的彈性速度;二是 强烈的動態對比;三是宛如呼吸歌唱的旋律處理。這些 對錄音師而言都構成很大挑戰。俄國錄音師雖然採用多 軌混音,但定位、場面都有可觀之處。。

Quelle: [Hen02]

XML ≠ maschinenlesbare Bedeutung


XML Dokument für eine Maschine

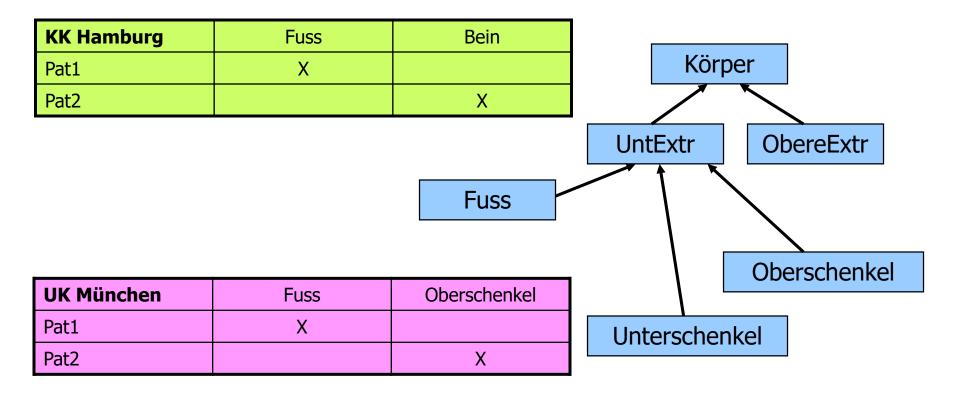
< & % GGTDR > <4Rt5§\$> <NH&&%\$D> <90(IU>

Quelle: [Hend

Schemata

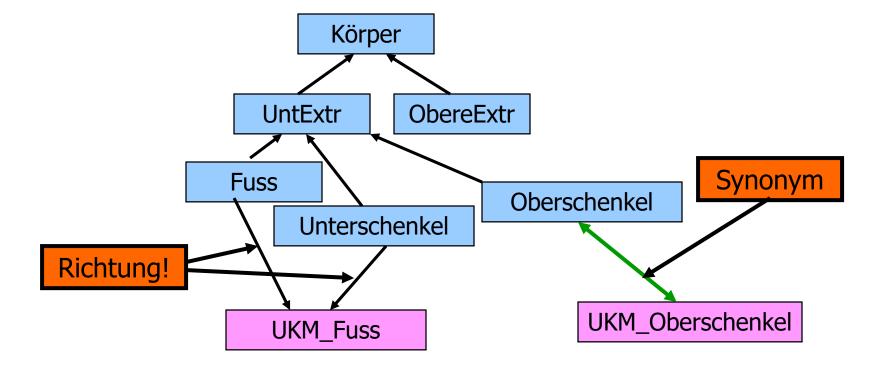
Gleiche Schemata helfen, weil sie intensional gleiche Elementen festlegen

Quelle: [Hen02]

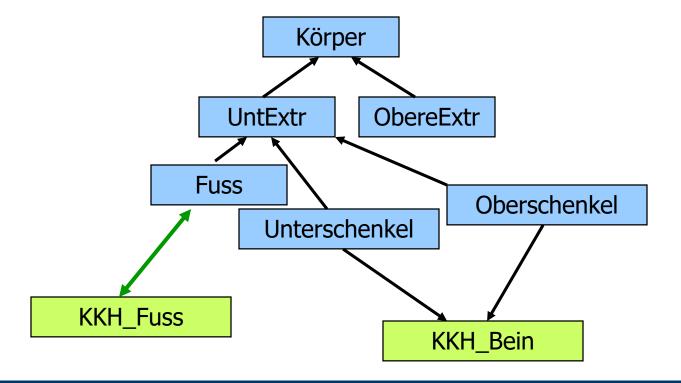

Inhalt dieser Vorlesung

- Semantische Heterogenität
- Semantische Integration
- Ontologien
- Beschreibungslogiken
- Ontologiebasierte Integration

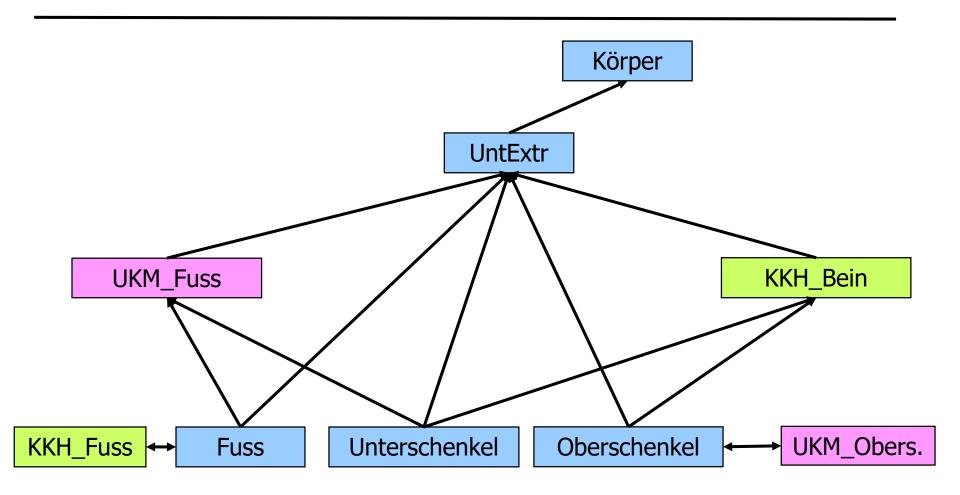
Eine Idee: Ontologien

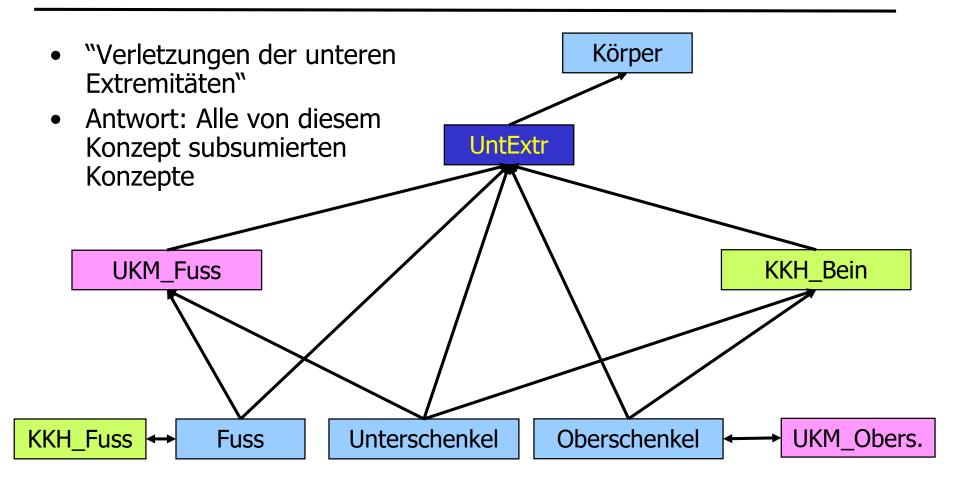

- Ziel: Computer sollen Schemata "verstehen"
 - Dann könnten Korrespondenzen automatisch abgeleitet werden
- Dazu muss Wissen kodiert werden
- Ontologie-basierte Integration
 - Logische Definition aller Konzepte in einer Ontologie
 - Konzepte und deren Beziehungen
 - Verwendung einer speziell geeigneten Beschreibungslogik
 - Beziehungen zwischen Konzepten (verschiedener Schemata) durch logische Inferenz herleiten

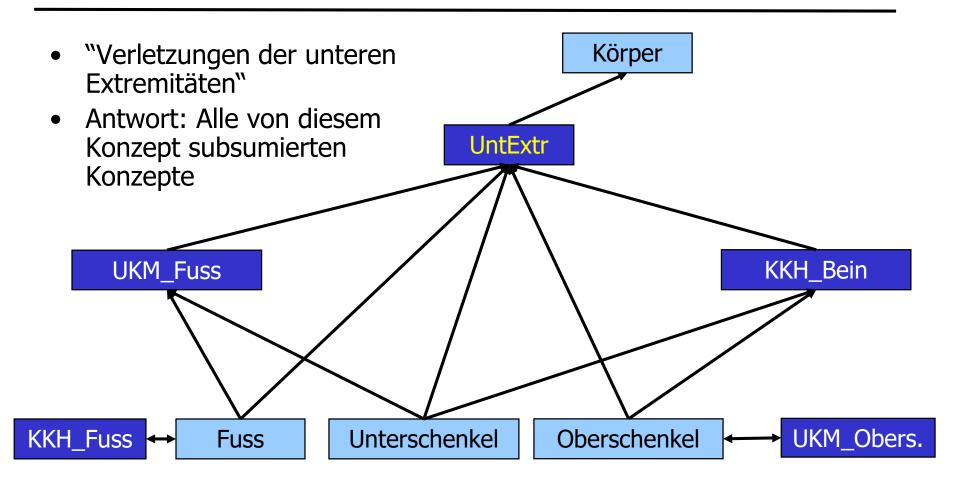
Schritt 1: Globale Ontologie erstellen

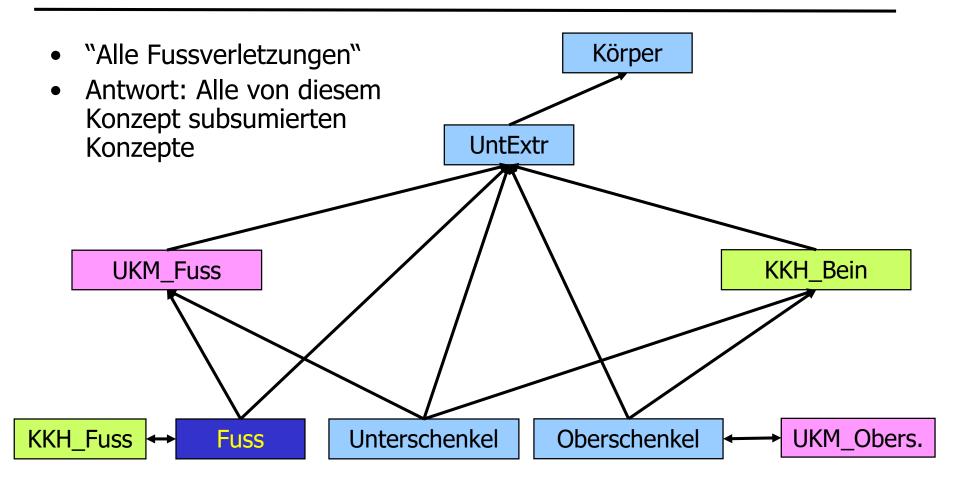

Quelle UK München

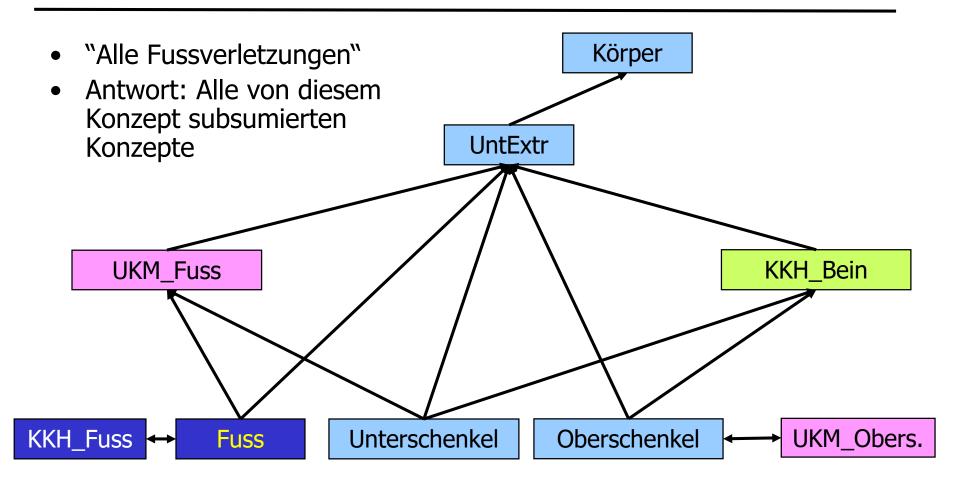
UK München	Fuss	Oberschenkel
Pat1	X	
Pat2		X

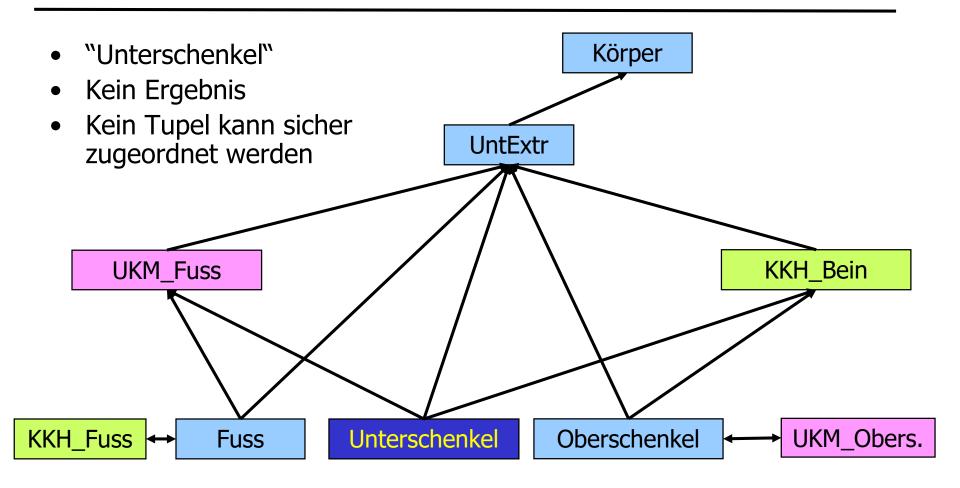


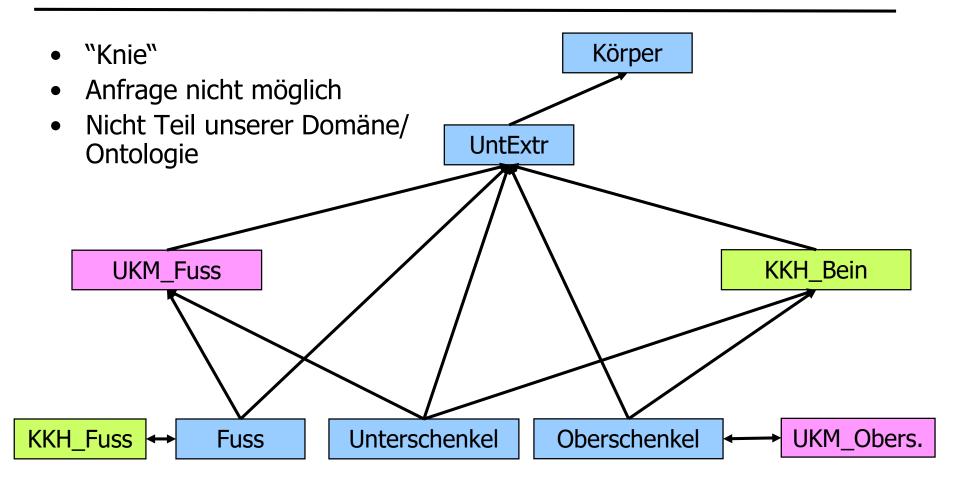

Quelle KK Hamburg

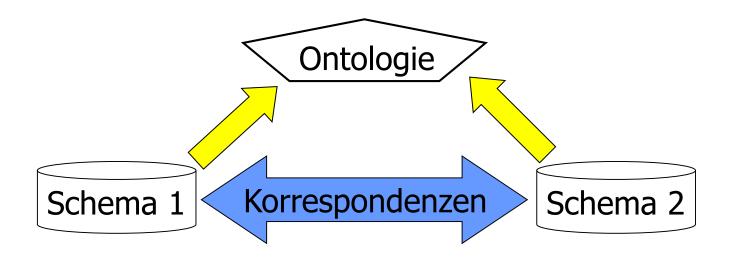

KK Hamburg	Fuss	Bein
Pat1	X	
Pat2		X

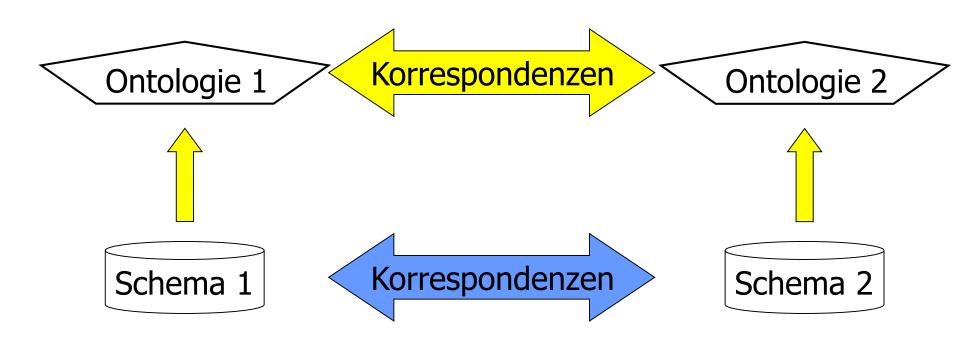



Zusammen

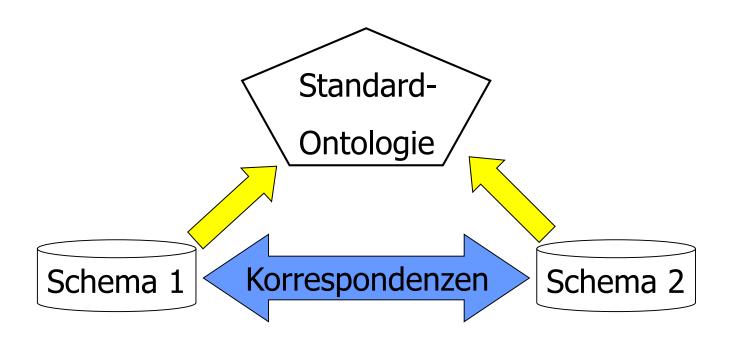







Reality Check

- Meistens starte man nicht mit einer gemeinsamen Ontologie
- Oft verwenden verschiedene Quellen verschiedene Ontologien
 - schauspieler ≡ person Π ∃spielt_in.film
 - schauspieler ≡ mann □ ∃beruf.schauspiel
 - schauspieler ≡ mensch □ schummler
 - Sind das die selben Klassen von Personen?
- Ontologieintegration statt Schemaintegration
- Ontologiealignment statt Schema Matching


Hoffnung

Wahrscheinlicher

Standards

Ontologien und Standards

- Proprietäre Ontologien helfen nicht viel bei Integration
 - Beschreibungslogiken ausdrucksstärker als Schemasprachen
 - Integrationsproblem wird schwieriger
- Besser: Standard-Ontologien
 - Quellen mappen ihre Schemata in diese Ontologie
 - Bei einfacher Sprache: Austauschformate, Standard-Schemata
- Probleme
 - Standards werden nicht eingehalten
 - Hoher Aufwand zur Erstellung umfassender und akzeptierter Standards
 - Funktioniert bei starken übergeordneten Interessen
 - Kommerziell: Marktplätze (eCommerce)
 - Organisatorisch (Enterprise-ontologies), staatlich
- Alternative im Web2.0: Folksonomie, freies Tagging

Inhalt dieser Vorlesung

- Semantische Heterogenität
- Semantische Integration
- Ontologien
 - Einführung
 - Thesauri und semantische Netze
- Beschreibungslogiken
- Ontologiebasierte Integration

Was ist eine Ontologie?

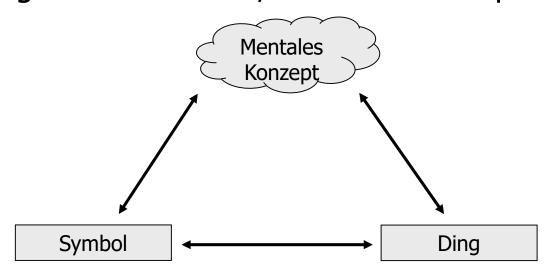
- Philosophisch: Ontologie = Lehre vom Sein und den Bedingungen des menschlichen Seins
- Beantwortung von Fragen wie [wikipedia]
 - What constitutes the identity of an object?
 - What is a physical object?
 - What features are the essential, as opposed to merely accidental, attributes of a given object?
 - What are an object's properties or relations and how are they related to the object itself?
 - When does an object go out of existence, as opposed to merely changing?
- Oftmals schwierig
 - Wenn ein Mensch stirbt hört er auf zu existieren?

Was ist eine Ontologie für uns?

- "An ontology is a data model that represents a set of concepts within a domain and the relationships between those concepts. It is used to reason about the objects within that domain." [Wikipedia.org]
- Eine Ontologie ist "an explicit specification of a conceptualisation"
 [Gru93]
 - Konzeptionalisierung': Abstraktes Modell von Phänomenen der wirklichen Welt durch Repräsentation der relevanten Konzepte
 - 'Explizit': Konzepte und Beziehungen sind explizit definiert
 - "Spezifikation": Verwendung einer formalen Sprache
- "Ontology is not about peoples' conceptions or interpretations, but about the world." [OntologysWorks.com]
 - Was unterscheidet sonst eine schlechte Ontologie von einer guten?
 - Schwieriger Anspruch
 - Was ist objektiv wahr, was ist subjektiv?

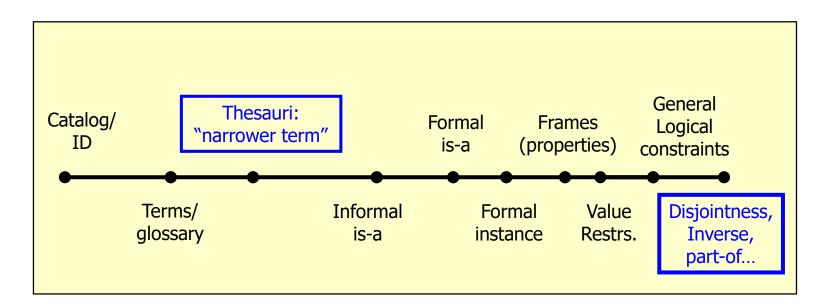
Domäne: Verwandtschaft (Katholisches Modell)

```
frau \equiv person \sqcap weiblich
mann \equiv person \sqcap \neg weiblich
mutter \equiv frau \sqcap \exists hat\_kind.person
vater \equiv mann \sqcap \exists hat\_kind.person
elternteil \equiv vater \sqcup mutter
grossmutter \equiv frau \sqcap \exists hat\_kind.elternteil
```


Beantwortung von Fragen wie

- Ist jede Großmutter eine Person?
- Hat jede Großmutter ein Kind?
- Wie nenne ich jemanden, der mit dem Schwager meiner Schwester verheiratet ist und keine Kinder hat?

– ...


Konzeptualisierung

- Konzeptualisierung einer Domäne
 - Anwendung oder Ausschnitt der Welt
 - Erfassung aller relevanten Konzepte
 - Erfassung der Beziehungen zwischen diesen Konzepten
 - Insbesondere Subkategorie-Beziehungen
- Festlegung des Vokabulars, über das man sprechen kann

Explizite Spezifikation

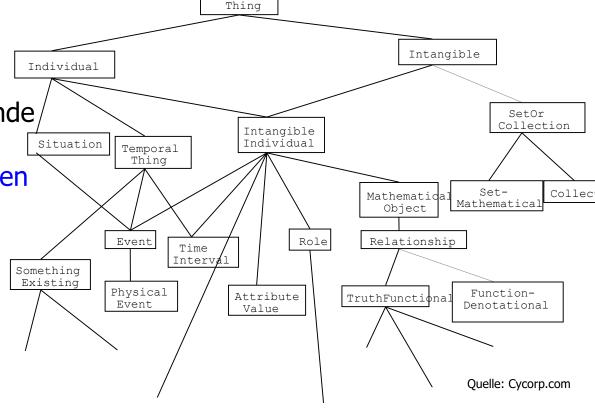
- Formalen Sprache zur Spezifikation
 - Wissensrepräsentationssprache
- Unterschiedliche Ausdrucksstärken

Source: Robert Stevens, From Building and Using Ontologies, U. of Manchester

Arten von Ontologien

 Domänen- oder anwendungsspezfische Ontologien

 Top-Level Ontologien


> Dömanenübergreifende Sachverhalte

 Verknüpfen Ontologien miteinander

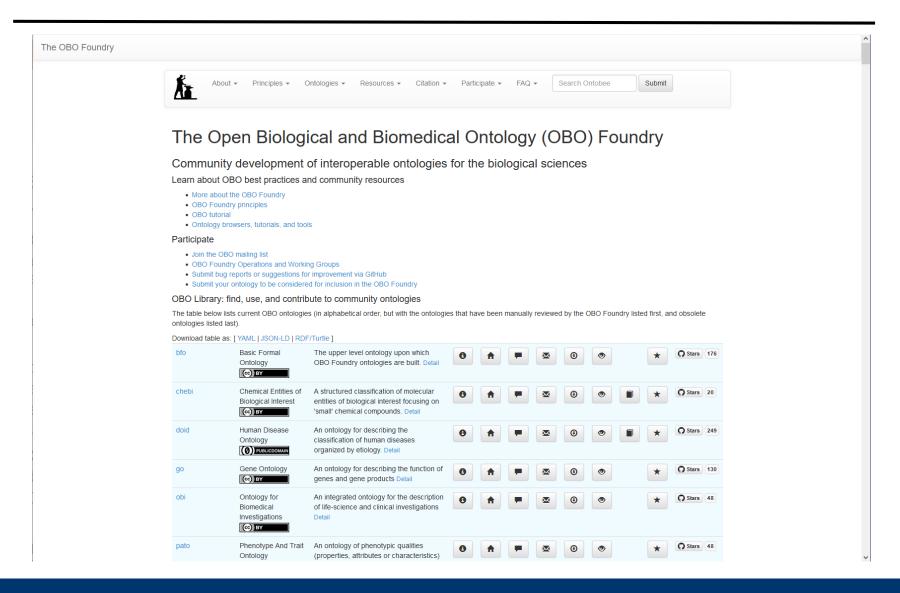
Arbeitsersparnis

 SUMO: Suggested Upper Ont. (IEEE)

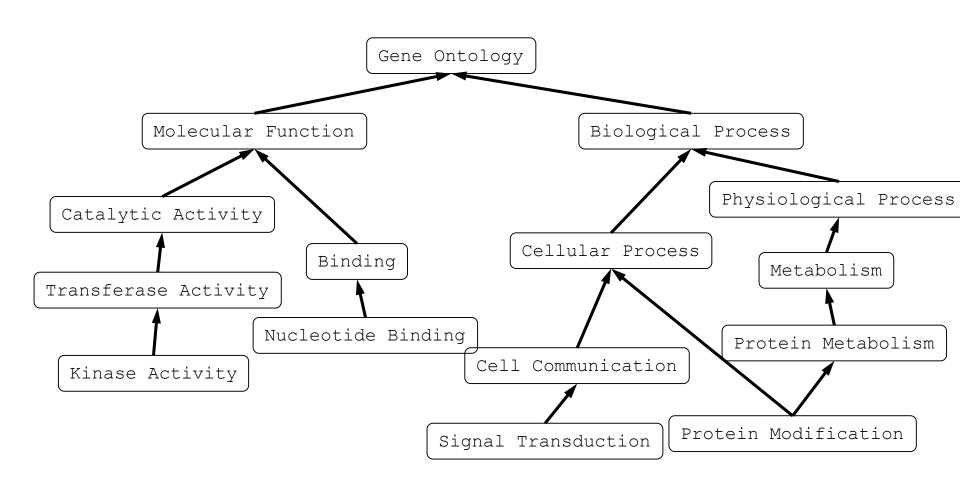
Cyc Upper Ontology

Inhalt dieser Vorlesung

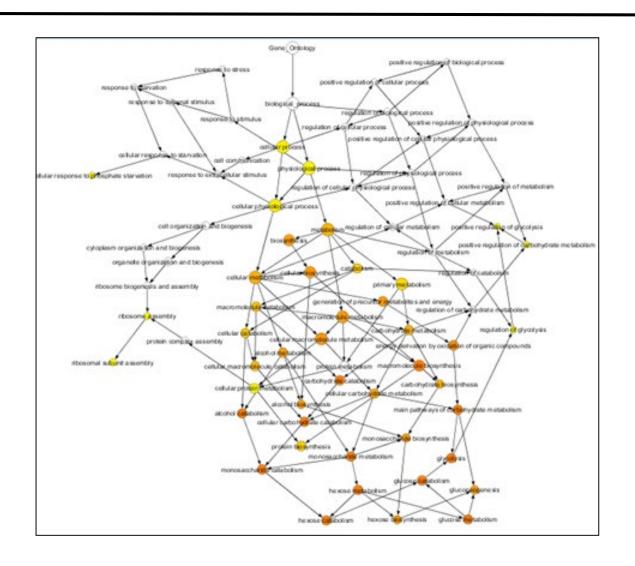
- Semantische Heterogenität
- Semantische Integration
- Ontologien
 - Einführung
 - Thesauri und semantische Netze
- Beschreibungslogiken
- Ontologiebasierte Integration


Thesaurus

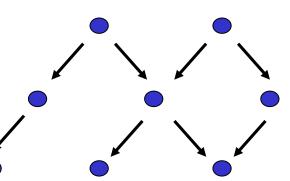
- Einfachste Form einer Ontologie
- Elemente
 - Begriffe (inkl Dokumentation)
 - Beziehungen: ISA, SYNONYM_OF, PART_OF
 - Haben Eigenschaften (Symmetrie, Transitivität, ...)
 - Informeller: RELATED_TO, SIMILAR_TO, USED_FOR
 - Graph der ISA/PART_OF Beziehungen muss zyklenfrei sein
- Anwendung: Einordnung von Dingen
 - Zuordnung von Kategorien (Schlagwörter) zu Objekten
 - Wichtig für die Suche: Transitivität der ISA Beziehung
 - Schwieriger: PART_OF
 - Ist ein Embryo Teil des Körpers der Mutter?
 - Physikalisch umschlossen (wann)? Konstituierendes Teil? Notwendiges Teil?

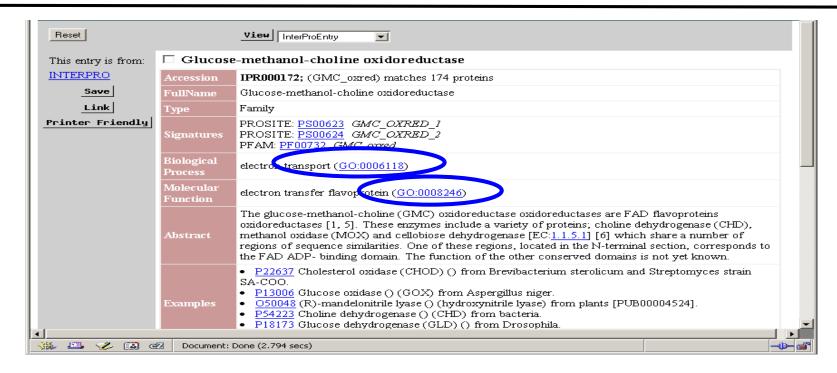

Example: Gene Ontology

- Goals of the GO Consortium
 - Development of a structured vocabularies describing certain aspects of molecular biology
 - Use of these vocabularies to annotate genes
 - Develop tools for editing and using the GeneOntology
- Three vocabularies
 - Biological processes
 - Molecular function
 - Intra-cellular location
- Created an ontology "industry" (OBO Foundry)


OBO Foundry

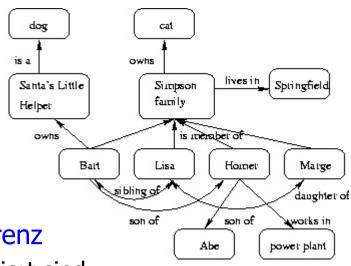
Small Fraction of GO

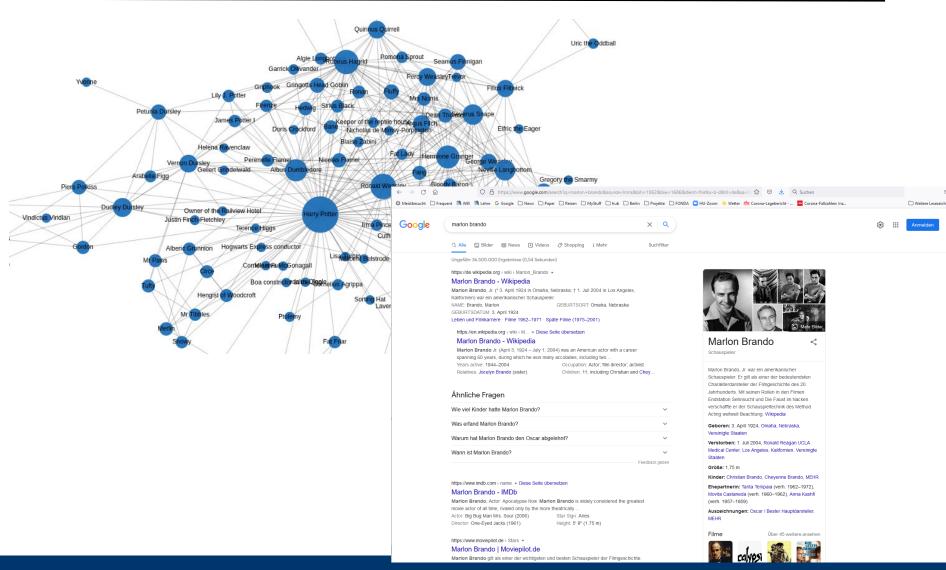

A Large Ontology (~50.000 concepts)


GO model

A GO ontology is

- A collection of terms
- Each term has a (free text) description
- Each term has a unique ID (GO:XXXX)
- Terms may have synonyms and DB-Xrefs
- IS-A relationships
- PART-OF relationships
- IS-A and PART-OF relationships form (each) an acyclic graph
- True Path rule: "Every path from a node back to the root must be biologically accurate"
- Support for versioning
 - Obsolete terms


Database Annotation (e.g. InterPro)


- GO used by many databases for annotating objects
- Allows cross-database search
- Provides fixed meaning of terms
 - As informal textual description, not as formal definitions

Semantische Netze

- Aufgeben der Forderungen nach
 - Zyklenfreiheit
 - Begrenzter Zahl von Beziehungstypen
- Entwickelt als Wissensrepräsentationsmechanismus in der künstlichen Intelligenz
 - Beispiel: WordNet
- Kanten tragen beliebige Label
 - Sehr flexibel, aber keine logische Inferenz
 - Da keine formalen Eigenschaften definiert sind
 - "Heuristische Inferenz": Zwei Begriffe sind sich semantisch näher, je kürzer der kürzeste Pfad zwischen ihnen

Wieder sehr popular: Knowledge Graphs

Inhalt dieser Vorlesung

- Wdh: Semantische Heterogenität
- Semantische Integration
- Ontologien
- Beschreibungslogiken
- Ontologiebasierte Integration

Wissensrepräsentationssprachen

- Entwickelt in den 80ziger
 - Urvater ist KL-ONE [BS85]
 - Beschreibungslogiken, Description Logics (DL), terminologische Logiken
 - Vertreter: Classic, Loom, DAML, DAML+OIL, OWL, ...
 - Ein weites Feld, das wir nur anreißen
- Formale Sprachen zur Definition von Konzepten und deren Beziehungen untereinander
- Zentrale Begriffe: Konzepthierarchien und Klassenzugehörigkeit
 - DL: Eigenschaften eines Objekts o bestimmen seine Klasse
 - OO: Klasse von o bestimmt seine Eigenschaften

Description Logic

Elemente einer DL

- Atomarer Konzepte
 - Uninterpretierte, eindeutige Namen
 - Konzept ~ Basisklasse
- Atomare Rollen
 - Uninterpretierte, eindeutige Namen
 - Rolle ~ Basisbeziehung
 - Sprache: Steht ein Konzept C in der Beziehung R zu einem Konzept D, so "füllt" C die Rolle R von D
- Axiome
 - Semantische Beziehungen (Äquivalenz) zwischen Klassen / Rollen
- Abgeleitete Konzepte und abgeleitete Rollen
 - Abgeleitet unter Verwendung einer je nach DL unterschiedlichen Menge von Operationen

Abgeleitete Konzepte

Definition

Seien C,D (atomare oder abgeleitete) Konzepte und R eine atomare Rolle. Dann können abgeleitete Konzepte wie folgt gebildet werden

- СпD
 - Das Konzept, das alle Objekte in der Schnittmenge von C und D repräsentiert
- − C\(\triangle D\)
 - ..., das alle Objekte in der Vereinigungsmenge von C und D repräsentiert
- $\neg C$
 - ..., das das Komplement der Menge der Objekte in C repräsentiert
- ∀R.C
 - ..., alle Objekte, deren Rollenfüller für R nur Objekte des Konzeptes C sind
- ∃R.C
 - ..., alle Objekte, die mindestens einen Rollenfüller für R haben, der ein Objekt des Konzeptes C ist
- *–* ≥*nR*
 - ..., alle Objekte, die höchstens n Rollenfüller für R haben (~Kardinalität)
- **–** ...

Axiome

- Definition
 Seien C und D (atomare oder abgeleitete) Konzepte. Dann können Axiome die folgende Form haben
 - C≡D
 - Alle Individuen von C sind auch Individuen von D und umgekehrt
 - C⊆D
 - Alle Individuen von C sind auch Individuen von D
- Bemerkung
 - Mit einem Axiom postuliert man eine Subsumptionsbeziehung
 - Klassifikation leitet eine Subsumptionsbeziehung her

Ontologie

Definition

Eine formale Ontologie besteht aus

- einer Menge von atomare Konzepten,
- einer Menge von atomaren Rollen,
- einer Menge von abgeleiteten Konzepten und Rollen und
- einer Menge von Axiomen über den Konzepten/Rollen.

Beispiel

- Atomare Konzepte: person, weiblich
- Atomare Rolle: hat_kind
- Abgeleitetes Konzept:person п weiblich
- Axiome:

```
frau \equiv person \sqcap weiblich
mann \equiv person \sqcap \neg weiblich
mutter \equiv frau \sqcap \exists hat\_kind.person
vater \equiv mann \sqcap \exists hat\_kind.person
elternteil \equiv vater \sqcup mutter
grossmutter \equiv frau \sqcap \exists hat\_kind.elternteil
```

Subsumption

- Definition
 Ein Konzept C subsumiert ein Konzept D, D⊑C, wenn alle
 Individuen von D auch Individuen von C sind
 - C ist generischer, abstrakter, allgemeiner als D
 - Wird äquivalent für Rollen definiert
- Inferenz in DL = Beweisen von Subsumptionsbeziehungen
- Entscheidbarkeit hängt von den erlaubten Operationen zur Ableitung von Konzepten und Axiomen ab
 - Polynomiell, exponentiell, unentscheidbar

Beispiel

```
frau \equiv person \sqcap weiblich
mann \equiv person \sqcap \neg weiblich
mutter \equiv frau \sqcap \exists hat\_kind.person
vater \equiv mann \sqcap \exists hat\_kind.person
elternteil \equiv vater \sqcup mutter
```

 $grossmutter \equiv frau \cap \exists hat_kind.elternteil$

- AbleitbareSubsumptionsbeziehungen
 - frau ⊑ person
 - frau ⊑ weiblich
 - mutter ⊆ frau ⊑ person
 - grossmutter ⊑ frau
 - grossmutter ⊑ elterteil
 - Sei o∈grossmutter
 - Es folgt: o∈frau und o∈∃hat kind.elternteil
 - Es folgt: o∈∃hat kind.vater oder o∈∃hat kind.mutter
 - Es folgt: o∈∃hat kind.person
 - Es folgt: o∈mutter
 - Es folgt: o∈elternteil
- Inferenzalgorithmen lösen solche Probleme automatisch
 - Z.B. Racer, FaCT, ...

Konsistenz und Erfüllbarkeit

- Definition
 Gegeben ein Konzept C und eine Ontologie O mit C∈O.
 - C heißt erfüllbar, wenn es Objekte geben kann, die zur Menge der von C repräsentierten Objekte gehört
 - O heißt widerspruchsfrei (oder konsistent), wenn alle Konzepte in O erfüllbar sind
- Bemerkung
 - Erfüllbarkeit kann auf Subsumption zurückgeführt werden
 - Ist also Subsumption in einer DL entscheidbar, kann man für jede Ontologie in diese DL Widerspruchsfreiheit testen

Erfüllbarkeit

```
frau \equiv person \sqcap weiblich
mann \equiv person \sqcap \neg weiblich
mutter \equiv frau \sqcap \exists hat\_kind.person
vater \equiv mann \sqcap \exists hat\_kind.person
elternteil \equiv vater \sqcup mutter
```

 $grossmutter \equiv frau \cap \exists hat_kind.elternteil$

- Wir erweitern unsere Axiome und Konzepte
 - keine_grossmutter ≡ frau Π ¬∃hat_kind.person
 - grossmutter ⊑ keine_grossmutter
- Nun haben wir ein unerfüllbares Konzept
 - Sei o∈grossmutter
 - Es folgt: o∈∃hat_kind.elternteil
 - Es folgt: o∈∃hat kind.person
 - Es folgt: o∉-∃hat kind.person
 - Es folgt: o∉keine_grossmutter
 - Also kann es kein Element von grossmutter geben
 - Das Konzept grossmutter ist unerfüllbar
 - Unsere Ontologie ist inkonsistent

Klassifikation

Definition

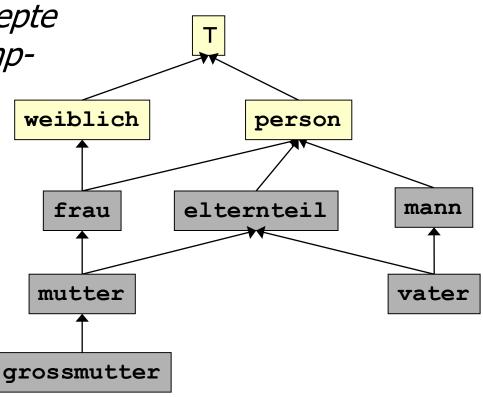
Das Klassifikationsproblem für ein Konzept C bzgl. einer Ontologie O berechnet alle C subsumierenden bzw. von C subsumierten Klassen in O.

Bemerkung

- Durch Klassifikation wird ein (neues) Konzept in die Konzepthierarchie von O eingeordnet
- Klassifikation basiert auf der Beschreibung der Eigenschaften von C durch abgeleitete Konzepte und Axiome

Konzepthierarchie

Sei ⊤ die Menge aller Objekte (das allgemeinste Konzept)

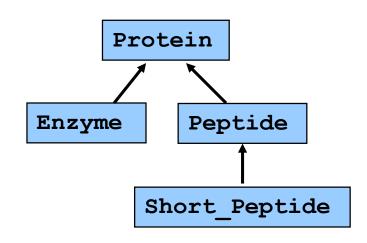

Definition
 Die Konzepthierarchie einer Ontologie O

ist ein Graph, der alle Konzepte als Knoten und alle Subsump-

tionsbeziehungen als

Kanten enthält.

Lemma
 Ist eine Ontologie O widerspruchsfrei, so ist ihre Konzepthierarchie ein DAG mit T als Wurzel.



Ein weiteres Beispiel

- enzyme ≡ protein Π ∃catalyses.reaction
- peptide \equiv protein \sqcap <100 aminoacids
- long peptide ≡ protein □ >100 aminoacids
- long_peptide
 □ peptide

Was folgt?

- enzyme ⊑ protein
- peptide ⊑ protein
- long peptide ⊑ protein
- Unerfüllbar: long_peptide

Komplexität Klassifikationsproblem

- Je nach Sprachumfang
- Beispiele
 - EL ::= \bot | T | A | $C \cap D$ | $\exists R.C$
 - Polynomiell
 - $EL+ ::= \bot \mid T \mid A \mid \neg C \mid C \cap D \mid C \cup D \mid \exists R.C$
 - Polynomiell
 - $-ALC::= \bot | T | A | \neg C | C \cap D | C \cup D | \exists R.C | \forall R.C$
 - EXPTime-Complete (garantiert nicht in P schlimmer als NP-complete)
 - EL' ::= \bot | T | A | $\neg C$ | $C \cap D$ | $C \cup D$ | $\exists R.C$ | \ge nR
 - Unentscheidbar
- Wir kommen darauf zurück: OWL

DL und relationales Model

Keine Attribute

- Attribute werden als eigene Konzepte definiert
- Ob ein Konzept C ein Attribut A hat, wird über eine Rolle definiert
 - Beispiel: person hatName name
- DL: Logik für unäre und binäre Prädikate
- DL ~ entscheidbares Fragment Prädikatenlogik erster Stufe über maximal binäre Prädikaten

Open world assumption

- Objekte, die nicht in der Datenbank sind, kann es trotzdem geben
- Man kann das Komplement einer Klasse definieren
- Erlaubt existentielle Aussagen, ohne Daten dafür zu haben

DL und Query Containment

- Subsumption ist sehr ähnlich zu Query Containment
 - Alle Objekte von Klasse X sind auch Elemente von Klasse Y
 - Alle Ergebnisse der Query X sind auch Ergebnisse der Query Y
- Jedes Axiom in DL kann als Query interpretiert werden
 - Finde alle Objekte, die zu dieser Klasse gehören
- Aber: Die Sprachen der Queries sind anders
 - Konjunktive Anfragen: Joins, Relationen beliebiger Arität, Bedingungen
 - Konzepte: Klassen, Rollen, Rollenconstraints
- Führt zu unterschiedlichen Problemen

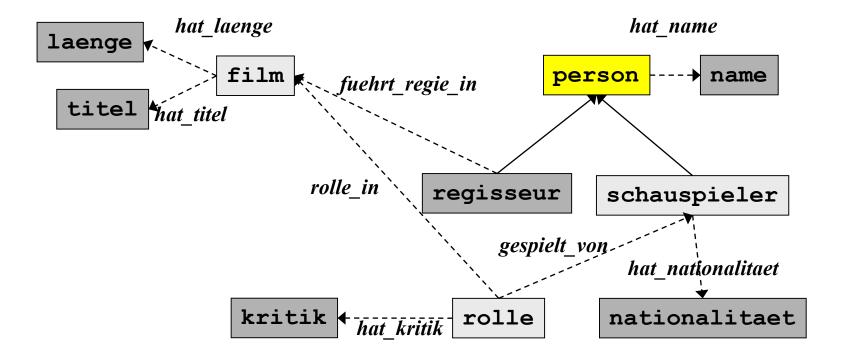
Inhalt dieser Vorlesung

- Semantische Heterogenität
- Semantische Integration
- Ontologien
- Beschreibungslogiken
- Ontologiebasierte Integration
 - Quellenkataloge
 - Integration durch Subsumption

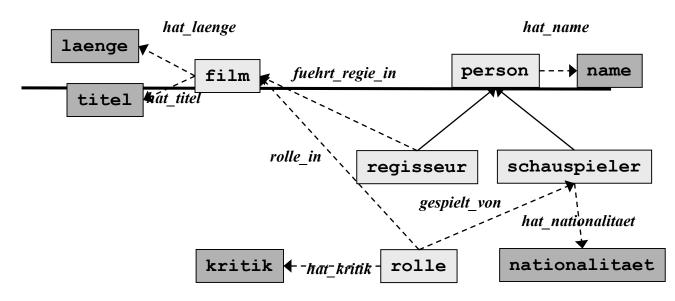
Quellenkataloge

Quellenkataloge

- Modelliere eine Ontologie (oder Thesaurus) der Domäne
- Annotiere Quellen mit den Konzepten, die ihren Inhalt beschreiben
- Benutzer verwenden die Ontologie, um passende Quellen zu finden
- Die einfachste Art der Integration vieler Quellen
 - So einfach, dass wir sie nicht unter Architekturen aufgeführt haben
- Pro und Contra
 - Einfach, schnell, billig, non-intrusive
 - Quellen müssen nicht kooperieren
 - Keine Anfragen
 - Keine Überwindung von Heterogenität, keine Transparenz
 - Keine Integration in unserem Sinne

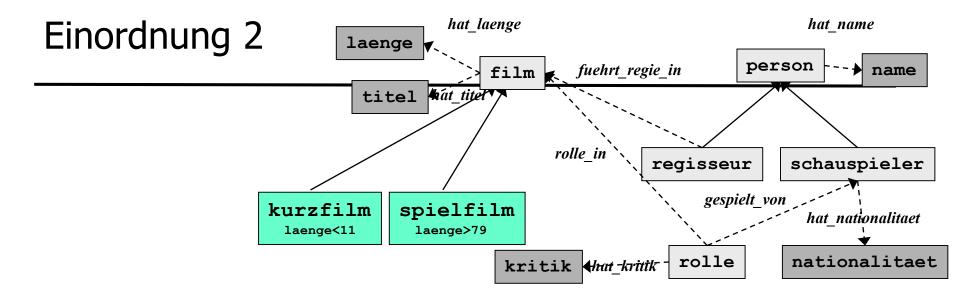

Integration durch Subsumption [AHK96]

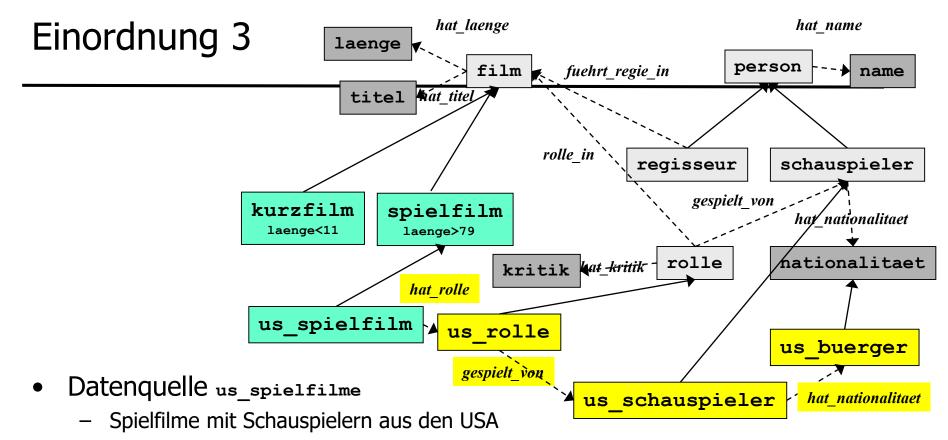
Unser Vorgehen


- Eine Domänenontologie O fungiert als globales Schema
- Exportrelationen der Quellen werden als Konzepte in O definiert
- Einordnung der Quellkonzepte in O durch Klassifikation
- Anfragen = abgeleitete Konzepte

Das Filmbeispiel

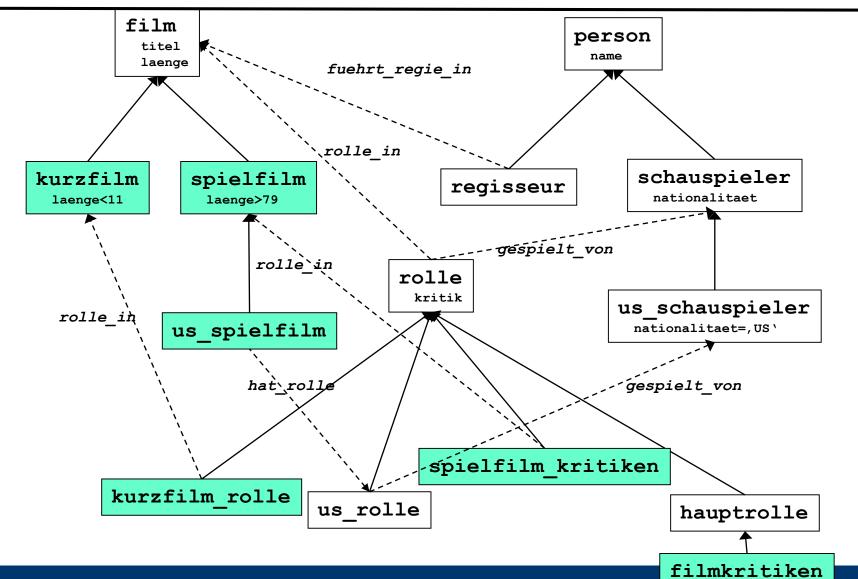
```
film(titel,typ,regisseur,laenge);
schauspieler(schauspieler_name,nationalitaet);
spielt(titel,schauspieler_name,rolle,kritik);
```



Filmquellen und globale Ontologie

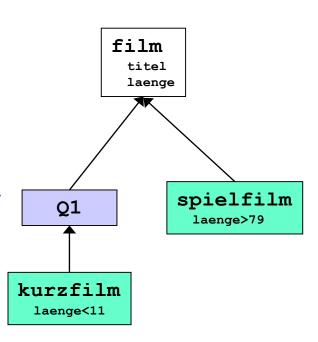

Datenquelle	Beschreibung
spielfilme(titel, regisseur, laenge)	Informationen über Spielfilme, die mindestens 80 Minuten Länge haben.
kurzfilme(titel, regisseur)	Informationen über Kurzfilme. Kurzfilme sind höchstens 10 Minuten lang.
filmkritiken(titel, regisseur, schauspieler, kritik)	Kritiken zu Hauptdarstellern von Filmen
us_spielfilme(titel, laenge, schauspieler_name)	Spielfilme mit US-amerikanischen Schauspielern
<pre>spielfilm_kritiken(titel, rolle, kritik)</pre>	Kritiken zu Rollen in Spielfilmen
<pre>kurzfilm_rollen(titel, rolle, schauspieler_name, nationalitaet)</pre>	Rollenbesetzungen in Kurzfilmen

hat laenge hat name Einordnung 1 laenge film K name fuehrt_regie_in person titel #at titel rolle in regisseur schauspieler gespielt von spielfilm hat_nationalitaet laenge>79 rolle nationalitaet kritik | | hat -kritik

- Datenquelle spielfilme
 - Filme mit einer Länge über 79 Minuten
 - spielfilm \equiv film \sqcap \forall laenge>79



- Datenquelle kurzfilme
 - Filme mit einer Länge unter 11 Minuten
 - kurzfilm ≡ film ∏ ∀laenge<11</p>


- Wir brauchen zunächst amerikanische Schauspieler und Rollen
 - us buerger ⊑ nationalitaet
 - us_schauspieler≡ schauspieler □ ∀hat_nationalitaet.us_buerger
 - us_rolle ≡ rolle □ ∀gespielt_von.us_schauspieler
- us_spielfilm ≡ spielfilm □ ∀hat_rolle.us_schauspieler
 - hat_rolle definieren als inverse Rolle zu rolle_in

Zusammen

Anfragebearbeitung

- Anfragen werden als Konzepte in DL definiert
 - Beispiel: Alle Filme, die kürzer als 20 Minuten sind
 - Q1 ≡ film \sqcap \forall laenge<20
- Per Subsumption in die Konzepthierarchie einordnen
 - kurzfilm ⊑ query1 ⊑ film
- Wo finden wir Antworten?
 - Alle spezielleren Konzepte sind sichere Antworten
 - Alle allgemeineren Konzepte sind potentielle Antworten
 - Ergebnis: Inhalt aller spezielleren Konzepte, die Datenquellen entsprechen

Inhalt dieser Vorlesung

- Semantische Heterogenität
- Semantische Integration
- Ontologien
- Beschreibungslogiken
- Ontologiebasierte Integration
- Bewertung und Einordnung

Anfrageplanung mit/ohne Ontologien

Föderiertes System	Ontologiebasierte Integration
Globales Schema Relationen und Attribute	Globale Ontologie Klassen und Rollen, Axiome
Korrespondenzen Explizite Spezifikation der Beziehungen	Quellen als Konzepte Definition mit gemeinsamem Vokabular und automatische Ableitung der Beziehungen
Anfrageplanung Global-as-View, Local-as-View, Query Containment	Subsumption Anfrage als Konzepte, Subsumption

Bewertung

- Ausdrucksstark zur Definition semantischer Unterschiede
 - Im Sinne von ISA Beziehungen, eingeschränkt auch für PART-OF
- Wird schnell komplex
 - Nur binäre Prädikate sehr viele Rollen
- Ontologiedesign ist eine eigene Disziplin
 - Je komplexer, je ausdrucksstärker die Modellierungssprache
 - Ontology Engineering wie geht man vor? Wann hört man auf?
- Wesentliche Erleichterung, wenn Ontologien als Standard akzeptiert werden

Literaturhinweise

- [AKS96] Arens, Y., Knoblock, C. A. and Shen, W.-M. (1996). "Query Reformulation for Dynamic Information Integration." Journal of Intelligent Information Systems Special Issue on Intelligent Information Integration 6(2/3): 99-130.
- [BBBG+98] Baker, P. G., Brass, A., Bechhofer, S., Goble, C., Paton, N. and Quinn, M. (1998). "Transparent Access to Multiple Biological Information Sources: An Overview", University of Manchester.
- [BS85] Brachman, R. J. and Schmolze, J. G. (1985). "An Overview of the KL-ONE Knowledge Representation System." Cognitive Science 9(2): 171-216.
- [Gru93] Gruber, T. R. (1993). "A Translation Approach to Portable Ontology Specifications." Knowledge Acquisition 5(2): 199-220.
- [HM01] Haarslev, V. and Möller, R. (2001). "Description of the RACER System and its Applications". Description Logics 2001, Stanford, CA.
- [Rud11] Rudolph, Sebastian (2011). "Foundations of Description Logics", Karlsruhe Institute of Technology