Implementation of SFA in the MESSI
framework

Bachelor’s Thesis Expose

Jakob Brand
Humboldt- Universitat zu Berlin

1 Introduction

In modern machine learning applications, the analysis of ordered sequences of real-valued
data points (referred to as time series) and especially similarity search across large sets
of time series are common tasks. As the amount of data gathered by applications, e.g.
as scientific data in biology or financial data in economics [7] tends to increase further,
index structures which are able to work on huge datasets are needed. To enable interac-
tive exploration for similarity search, low response times in the order of milliseconds are
necessary. In order to achieve this, Peng et al. introduced MESSI [1] as the first index for
time series which is designed to work with in-memory operations on modern hardware,
e.g. SIMD operations and multi-threading. MESSI uses the symbolic representation
SAX [3] as a compressed representation of time series prior to indexing, but there are
also other symbolic time series representations, as for example SFA [1]. Both represen-
tations guarantee the retrieval of queries with no false dismissals, but SFA provides a
tighter approximation of the data than SAX. The goal of this work is to implement the
SFA representation in the MESSI framework. While both symbolic representations in
the MESSI framework should give the same results for similarity search queries, their
response time and their index creation time should be compared.

2 Background & Related Work

2.1 Symbolic Representations

When performing similarity search on a high dimensional search space, the performance
of the search using spatial index structures (e.g. R-Trees) becomes worse than a linear
scan over the data already starting from around 20 dimensions, which is called the Curse
of Dimensionality [1].

This is why, when working with large amounts of high-dimensional data, a dimension-
ality reduction can be applied to the time series. A similarity search query can then
be solved approximately with an index in the reduced space. With the approximate
solution, the actual nearest neighbours can be efficiently found in the original space. A
symbolic representation of a time series approximates and discretizes the data points of
the series into a sequence over a fixed alphabet which results in a word representation.
Such a representation can further lower the memory consumption, so that the index
over the reduced time series can fit into main memory, enhancing the response time for
a similarity search query [1].

Two common approaches which will be further presented are SAX (Symbolic Aggre-
gate approXimation) and SFA (Symbolic Fourier Approximation). SAX is based on
approximation via PAA (Piecewise Approximate Aggregation) and a data-independent
discretization. SFA is based on approximation with discrete Fourier transformation
(DFT) and a data-dependent discretization called MCB (Multiple Coefficient Binning).

SAX/iSAX: As the SAX representation is based on PAA, a time series is split into
w equally sized time intervals and the mean value for each interval is calculated. These

root internal

{0*'0*,1*} [0*,1*,1*] [0*,1*,0*]
Internal nodes {00,1%,1%} [01,1%,1%]
/ \

a0 [01,10,1%] {01,11,1%)
PN

Terminal nodes — -

~ > {01,10,10} _{01,10,11}

>’

i/
SFA words

Figure 1: iSAX index [3] with a binary rep-
resentation of alphabet sizes

Figure 2: SFA trie [/]

mean values are then discretized by regions on the y-axis. The y-axis is divided by pre-
computed SAX breakpoints, which are calculated from equi-depth splitting a Gaussian
Distribution over the number of desired symbols [2]. As an enhancement to SAX, the
iSAX representation (indexable SAX) has been introduced to index large amounts of
data while still enabling a fast exact and approximate search. Both SAX and iSAX pro-
vide a lower bounding distance measure (defined in Section 2.2) in the reduced space for
the Euclidean Distance in the original space [3] to guarantee similarity search without
false dismissals.

In the iSAX representation, different alphabet sizes are used for the SAX words. The
words are constructed as binary numbers with alphabet sizes as power of two. Without
any recomputation, words with a higher alphabet cardinality can be obtained from words
with a lower alphabet cardinality for measuring lower bounding distances between them.
With these different alphabet cardinalities, the iSAX index (Figure 1) can be built from
nodes with low cardinalities. If the number of time series contained in a terminal node
exceeds an upper bound th, the SAX space is split. An internal node marks this split
and the cardinality of one interval in the terminal nodes is doubled. This results in an
index structure where the SAX space is subdivided by internal nodes until each terminal
node contains at most th time series [3].

SFA /indexable SFA: For the SFA representation, a DFT is applied on the time series
which yields the Fourier coefficients. As part of preprocessing, the discretization inter-
vals for each real and imaginary part of the coefficients are calculated using multiple
Equi-Depth-Binnings (MCB). With these discretizations, each time series can be repre-
sented by keeping the first w Fourier coefficients discretized by the MCB intervals. In
order to build an indexable data structure called SFA trie (Figure 2), the internal nodes
contain prefixes of the SFA words and, when splitting nodes, because the threshold th of
SFA words contained in the node has been reached, the prefix length gets increased [1].
The major difference between indexable SFA and iSAX is that SFA works with a fixed
alphabet size and an increasing approximation length, whereas iSAX does the opposite.

mean tightness of lower bounds, 256 symbols, 8 coefficients, time series length 256

0.6 . .
: DFT n—
SFA —
SFA-Dep
| ISAX
iSAX-MCB-Dep =1

T 1 T
0.5

0. .
0.45

0.4
0.35

0.3
0.25 .—ﬁ.

4 16 32 64 128

symbols

v

mean tlb

256

Figure 3: Tightness of lower bounds [/]

2.2 The Lower Bounding Property

An important property for symbolic representations to be used in the MESSI index is the
so-called Lower Bounding Property. The distance of two time series S and T of length
n is usually measured by the squared Euclidean Distance: D%(S,T) = S5 (s; — t;)2.
For a symbolic representation symb, a distance measure dist is a lower bound to the
Euclidean Distance, iff the distance between the symbolic representations of two time
series is always smaller or equal to the Euclidean Distance of the two time series:
(dist(symb(S), symb(T)) < Dg(S,T))[5]. Both iSAX and SFA provide MinDist func-
tions which satisfy the lower bounding property. The result of an approximate search
in the reduced space with such a distance measure is a superset of the result set in
the original space with the Euclidean Distance. Therefore, there are no false dismissals
when using the reduced space for a similarity search [5], so no results get lost by using
the symbolic representation. It is possible however that the result set returned in the
reduced dimensionality contains more elements (false-positive elements) which will be
filtered out when answering a query.

Another important thing to mention when comparing SAX and SFA regarding their
MinDist is that SFA has shown on datasets to have a tighter lower bound on average
than SAX/iSAX [1] (Figure 3). The reasons for SFA’s higher tightness of lower bounds
are the use of the discretization scheme MCB and of DFT rather than iSAX’s PAA for
approximation and fixed intervals for discretization. In terms of query answering, this
should result in less false-positive values as search results and more effective pruning of
candidates when traversing the index, resulting in better response times [0].

2.3 The MESSI Approach

The in-MEmory data SerieS Index (MESSI) is an index for time series with improved
performance at index construction and query answering compared to other state-of-
the-art index approaches. This improvement is obtained by utilizing modern hardware
techniques such as parallelization and SIMD instructions [!]. The index construction is
based on the iISAX representation: a number of threads (index workers) compute the
iSAX summaries (words), each for a part of the input data, and fill them into iISAX
buffers. These buffers are filled in a way that each buffer contains the iSAX summaries

which are stored in one root subtree of the tree index. After all iISAX summaries are
computed, these subtrees can be constructed. As every index worker thread gets an iISAX
buffer assigned, the subtrees for each buffer are constructed independent from each other.

For answering a query, the index is
traversed to the most promising leaf
node which stores pointers to the real
time series. The minimal true distance
to a full (non-approximated) data se-
ries of the leaf node is saved as Best-
So-Far (BSF). Then, the index work-
ers traverse the subtrees using the
lower bounding distance (MinDist) on
the iISAX words, either pruning sub-
trees or placing their leaf nodes‘ time
series in priority queues which are
then searched for elements with a
Fuclidean Distance lower than BSF.
When finding such an element, BSF
gets updated and will contain the 1-NN-answer after all priority queues are processed.

Calculate iSAX summaries

compute iSAX summaries
fill up index iSAX Buffers

Tree Construction
raw —

data

read each iSAX buffer;

iSAXbuffers sl place elements in

|| appropriate tree index
subtree

remove iSAX summaries (in
order) from priority queue(s)

calculate real distance

use result for better pruning by
updating BSF

\/\/\/q\“,ein

Search

‘ traverse index

P | Queues

1-NN answer

Figure 4: The MESSI workflow [!]

3 Objective & Motivation

The objective of this bachelor thesis is to implement the symbolic representation SFA
into the MESSI index and compare its performance on datasets to the ”standard”-
MESSI solution which utilizes the SAX representation. The breakpoints for the SAX
discretization are fixed, whereas SFA needs a training of the MCB discretization values
on the actual data prior to index construction. Therefore, the SFA approach is likely to
be slower in the index building phase. On the other hand, the higher tightness of lower
bound of SFA could return less false-positive results in the approximate search and be
more effective for pruning subtrees [1]. This could potentially result in a lower query
answering time for the SFA approach. These factors might have the potential to improve
the overall runtime of MESSI, which shall be investigated in this bachelor thesis.
Furthermore, a factor which might affect the SFA-approach in a negative way is the
amount of data given for training. If only a subset of the dataset is given, the training
of the MCB values only on this subset is faster than the training on the whole set. On
the other hand, these values might not be a good generalization for the entire dataset
and could potentially slow down the runtime of the search.

4 Implementation & Methods

In order to implement SFA into the MESSI index, following steps have to be considered
and implemented:

1. Training of the MCB breakpoints as part of preprocessing the time series (this step
is not needed for SAX) on the entire dataset or a subset

2. Building SFA words with DFT of the time series and discretization with the MCB
breakpoints instead of SAX words

3. Building the MESSI index on SFA words

4. Updating the MinDist-Calculation according to SFA

The code of MESSI is given in C by the authors including SIMD operations. The SFA
operations are given as pseudocode and in JAVA. Additionally, the Lernaean Hydra
Archive contains a C implementation of SFA [8]. The non-SIMD- and the SIMD-variants
of the functions from the MESSI-framework with iSAX will be compared to the newly
implemented non-SIMD-functions with SFA.

To compare the SAX- and the SFA-approach, mainly their query response time on
different datasets and the parameter configurations (alphabet size and word length) for
1-NN queries will be relevant. The authors of the MESSI paper used several synthetic
datasets with sizes between 50GB-200GB and two real datasets, Seismic and SALD [1].
The data series have a size of 256 points, except for SALD with 128 points. Therefore,
the approaches should also be compared on these real and similar synthetic datasets.
Furthermore, additional real seismological datasets will be used.

But also other parameters might be interesting to assess advantages and disadvantages
of the approaches, e.g. the amount of false-positive values returned by the approximate
search or the amount of nodes which are pruned during the search.

5 Outlook

There are a few points which would be interesting to further investigate concerning
the use of SFA in the MESSI framework. On the one hand, SFA approximates using
DFT, but it could also be modified to use any other approximation, e.g. the principal
component analysis (PCA), which might have an influence on the response time. Another
possible extension would be, instead of just replacing the SAX-words in the framework
by SFA-words, to also modify the index construction to build SFA tries as used by
the indexable SFA structure [1]. However, the latter modification would require lots of
changes in the MESSI framework and is not trivial.

6 References

[1] Botao Peng, Panagiota Fatourou and Themis Palpanas. MESSI: In-Memory Data
Series Indexing. April 2020. DOI: 10.1109/ICDE48307.2020.00036. http://helios
.mi.parisdescartes.fr/~themisp/publications/icde20-messi.pdf

[2] Jessica Lin, Eamonn Keogh, Li Wei and Stefano Lonardi. Experiencing SAX: a novel
symbolic representationof time series. April 2007. DOI: 10.1007/s10618-007-0064-z.
https://link.springer.com/content/pdf/10.1007/s10618-007-0064~-z.pdf

http://helios.mi.parisdescartes.fr/~themisp/publications/icde20-messi.pdf
http://helios.mi.parisdescartes.fr/~themisp/publications/icde20-messi.pdf
https://link.springer.com/content/pdf/10.1007/s10618-007-0064-z.pdf

3]

Jin Shieh and Eamonn Keogh. iSAX: Indexing and Mining Terabyte Sized Time
Series. August 2008. DOI: 10.1145/1401890.1401966. https://www.cs.ucr.edu/~e
amonn/iSAX.pdf

Patrick Schéafer and Mikael Hogqvist. SFA: A Symbolic Fourier Approximation
and Index for Similarity Search in High Dimensional Datasets. March 2012. DOI:
10.1145/2247596.2247656. https://www2.informatik.hu-berlin.de/~schaefpa/
sfa_trie.pdf

Christos Faloutsos, M. Ranganathan and Yannis Manolopoulos. Fast subsequence
matching in time-series databases. May 1994. DOI: 10.1145/191843.191925. http:
//www.cs.cmu.edu/~christos/PUBLICATIONS.OLDER/sigmod94.pdf

Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra and Michael Pazzani. Lo-
cally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases.
May 2001. DOI: 10.1145/376284.375680. https://www.cs.rutgers.edu/~pazzani
/Publications/locally.pdf

Themis Palpanas. Data series management: The road to big sequence analytics.
August 2015. DOI: 10.1145/2814710.2814719. http://helios.mi.parisdescartes
.fr/~themisp/publications/sigrec15-bisemvision.pdf

Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, Houda Benbrahim. The
Lernaean Hydra of Data Series Similarity Search. https://github.com/karimaech
ihabi/lernaean-hydra

https://www.cs.ucr.edu/~eamonn/iSAX.pdf
https://www.cs.ucr.edu/~eamonn/iSAX.pdf
https://www2.informatik.hu-berlin.de/~schaefpa/sfa_trie.pdf
https://www2.informatik.hu-berlin.de/~schaefpa/sfa_trie.pdf
http://www.cs.cmu.edu/~christos/PUBLICATIONS.OLDER/sigmod94.pdf
http://www.cs.cmu.edu/~christos/PUBLICATIONS.OLDER/sigmod94.pdf
https://www.cs.rutgers.edu/~pazzani/Publications/locally.pdf
https://www.cs.rutgers.edu/~pazzani/Publications/locally.pdf
http://helios.mi.parisdescartes.fr/~themisp/publications/sigrec15-bisemvision.pdf
http://helios.mi.parisdescartes.fr/~themisp/publications/sigrec15-bisemvision.pdf
https://github.com/karimaechihabi/lernaean-hydra
https://github.com/karimaechihabi/lernaean-hydra

	Introduction
	Background & Related Work
	Symbolic Representations
	The Lower Bounding Property
	The MESSI Approach

	Objective & Motivation
	Implementation & Methods
	Outlook
	References

