
Modellbasierte Softwareentwicklung (MODSOFT)

Part II

Domain Specific Languages

Notations and Representations
(Introductions & xText)

Prof. Joachim Fischer /
Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk}@informatik.hu-berlin.de
LFE Systemanalyse, III.310

1

prolog
(1 VL)

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

Agenda

2

➡

Notations and Representations
Introduction

3

Eclipse Modeling Framework

4

structure

EMFnotation semantics

Repository

Revision Diff

Compilation
Unit

* *

prevnext

«relation,
fragmentation»

* *

Representation

5

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

«represents»

ModelRepresentation

Ambiguous Representation

6

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

▶ representations can be partial

▶ representations can be abstract

▶ can be ambiguous

«represents»

«represents»

Multiple Representations

7

«represents»

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

 public class Hello
 {
 main(args[])
 {
 std.p(
 "Hello\n");
 return 0;
 }
 }

«represents»

▶ there can multiple different representations for the same
model (even in the same notation)

“Secondary Notation”

▶ Representations often contain elements that do not represent
elements in the model.

▶ Classifiers for such elements are called secondary notations.

▶ Examples are

■ white spaces

■ documentation

■ position, sizes, colors in diagrams

■ order without meaning in the model

■ coding conventions

■ but not names

▶ Secondary notation contains meaningful information (at least for the
authors/readers) and are worth keeping.

8

Views

9

 public class Hello
 {
 int main(
 args[]);
 }

Hello::main(args[])
{
 std.p("Hello\n");
 return 0x0;
}

«represents»

«represents»

«view-of»

«view-of»

▶ multiple views represent different aspects of a model
(multiple views, again not necessarily ambiguous)

Notations

▶ Notations are descriptions of representations

▶ Notations depend on a meta-model
10

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

«represents»

ModelRepresentation

«instance-of» «instance-of»

«mapping»

Notation Meta-Model

Other Language as Notation

11

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

«represents»

Model ARepresentation

«instance-of» «instance-of»

«mapping»

Notation Meta-Model A

Model B

«instance-of»

Meta-Model B

«represents»

«mapping»

Mappings and Transformations

12

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

«instance-of» «instance-of»

«mapping»

Notation Meta-Model

Unidirectional Mappings (1)

▶ Bidirectional mappings in the sense of a bijective function
are often meaning less, they imply a homomorphism and
hence equivalence, i.e. no

■ abstraction

■ views

■ additions (secondary notation)

▶ Unidirectional mappings are often easy to describe and
implements, but two unidirectional mappings do not make
a bidirectional mapping.

13

Unidirectional Mappings (2)

14

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

«instance-of» «instance-of»

«mapping»

Notation Meta-Model

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

Unidirectional Mappings (3)

15

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

«instance-of» «instance-of»

«mapping»

Notation Meta-Model

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

Synchronization (1)

16

 public class Hello
 {
 int main(
 args[]);
 }

Hello::main(args[])
{
 std.p("Hello\n");
 return 0x0;
}

Synchronization (1) – Asymetric Mappings

17

 public class Hello
 {
 int main(
 args[]);
 }

Hello::main(args[])
{
 std.p("Hello\n");
 return 0x0;
}

Model-View-Controller

18

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

change

update

User

«instance-of» «instance-of»

«mapping»

Notation Meta-Model

▶ the reasonable example of bijective mappings, if secondary
notation is part of the model

Representation, Secondary Notation Model + Model

19

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

Representation SNM Model

Textual Notations

20

Mapping between Meta-Modeling Formalisms

21

OO-Meta-
Modeling XML Rel. DBs. Grammars Automata

M3 MOF Schema-
Schema

Rel. Alg. Math Math

M2 UML Schema E.-R.-M. Grammar Automata

M1 Model XML DB Program Word

M0 Things Data Data Thing Things

Strategies: Projection vs. Parsing

▶ Traditional context-free grammar based parsing of text
documents (Parsing)

■ create a new model when parsing

■ and synchronization is difficult

▶ Model-View-Controller style use of text elements that look
like a text document (Projection)

■ SNM+Model approach allows bijective mappings

■ does not feel like text editing

■ you can only type syntactically correct models

22

Projection with MPS

23

24

Parsing (1)

25

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

«represents»

ModelElement of CF-Language

«instance-of» «instance-of»

«mapping»

CF-Gammar Meta-Model

Context-Free Grammars

26

Owner : STRING ‘has’ Pet (‘and’ Pet)* ‘.’

Pet= Dog | Cat

Dog : ‘a’ ‘Dog’ ‘called’ STRING ‘(‘ INT ‘kg’ ‘)’
Cat : ‘a’ ‘Cat’ ‘called’ STRING ‘(‘ INT ‘kg’ ‘)’

“Markus” has a Dog “Fido” (20kg) and a Cat “Ham” (3kg).

a Cat called "Ham" (2 kg)

Owner

"Markus" has andPet

Dog

Pet

Cat

.

a Dog called "Fido" (20 kg)

AST

grammar

text

Context-Free Grammars

26

Owner : STRING ‘has’ Pet (‘and’ Pet)* ‘.’

Pet= Dog | Cat

Dog : ‘a’ ‘Dog’ ‘called’ STRING ‘(‘ INT ‘kg’ ‘)’
Cat : ‘a’ ‘Cat’ ‘called’ STRING ‘(‘ INT ‘kg’ ‘)’

“Markus” has a Dog “Fido” (20kg) and a Cat “Ham” (3kg).

a Cat called "Ham" (2 kg)

Owner

"Markus" has andPet

Dog

Pet

Cat

.

a Dog called "Fido" (20 kg)

AST

grammar

text

Parsing (2)

27

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

«instance-of» «instance-of»

AST Model

Meta-ModelGrammar

parse transform

Text

«mapping»

Parsing (2)

27

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

«instance-of» «instance-of»

AST Model

Meta-ModelGrammar

parse transform

Text

pretty print

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

«mapping»

Abstract Syntax Tree vs. EMF-Model

▶ AST is a representation of the model’s containment hierarchy

■ typically grammars are defined structurally equivalent to meta-
models

▶ AST does only contain unresolved cross-reference links

■ references via Ids (e.g. names)

■ depend on scoping (i.e. depend on namespaces, inheritance,
imports, etc.)

■ references can be broken

▶ AST is not validated

▶ AST might contain secondary notation (i.e. annotations,
comments)

28

Grammar-Meta-Model Mapping (1)

▶ hypothesis: representations are structurally similar (or even
equivalent) to their corresponding models

■ otherwise more complex mappings are required

▶ Symbols -> Classifier and -> AST-Nodes-> objects/values

▶ RHS positions -> Features | AST-child relations -> value sets

29

Grammar-Meta-Model Mapping (2)

30

Owner : STRING ‘has’ Pet (‘and’ Pet)* ‘.’

Pet= Dog | Cat

Dog : ‘a’ ‘Dog’ ‘called’ STRING ‘(‘ INT ‘kg’ ‘)’
Cat : ‘a’ ‘Cat’ ‘called’ STRING ‘(‘ INT ‘kg’ ‘)’

a Cat called "Ham" (2 kg)

Owner

"Markus" has andPet

Dog

Pet

Cat

.

a Dog called "Fido" (20 kg)

name="Markus"
Markus: Owner

name="Fido"
weight=20

Fido: Dog
name="Ham"
weight=2

Ham: Dog

pets pets

Grammar-Meta-Model Mapping (2)

30

Owner : STRING ‘has’ Pet (‘and’ Pet)* ‘.’

Pet= Dog | Cat

Dog : ‘a’ ‘Dog’ ‘called’ STRING ‘(‘ INT ‘kg’ ‘)’
Cat : ‘a’ ‘Cat’ ‘called’ STRING ‘(‘ INT ‘kg’ ‘)’

a Cat called "Ham" (2 kg)

Owner

"Markus" has andPet

Dog

Pet

Cat

.

a Dog called "Fido" (20 kg)

Owner->Owner: name=STRING ‘has’ pets+=Pet (‘and’ pets+=Pet)* ‘.’

Pet: Dog | Cat

Dog->Dog: ‘a’ ‘Dog’ ‘called’ name=STRING ‘(‘ weight=INT ‘kg’ ‘)’
Cat->Cat: ‘a’ ‘Cat’ ‘called’ name=STRING ‘(‘ weight=INT ‘kg’ ‘)’

name="Markus"
Markus: Owner

name="Fido"
weight=20

Fido: Dog
name="Ham"
weight=2

Ham: Dog

pets pets

Declarative vs. Imperative

▶ Mappings describe transformations. There are two possible ways:

▶ Declarative descriptions of transformations define conditions and
constraints that two models/ASTs must meet.

▶ Imperative descriptions of transformations define commands
that create a target model/AST from a source model/AST.

▶ Imperative transformation descriptions can implement
declarative descriptions when the conditions and constraints in
the declarative description are met for all possible pairs of source
and target models/ASTs. In practice often hard to achieve and
impossible to validate.

▶ Eventually imperative implementations have to be derived from
declarative descriptions (machines work imperative).

31

Grammar-Meta-Model-Mappings – Declarative vs. Imperative

▶ Grammars are declarative, they describe if a word is part of
the language generated by the grammar and they
declaratively describe a mapping between words and ASTs.

▶ Parsers are imperative implementations (using a stack
automaton). Result of transformation from source word is
target AST.

▶ Grammar-Meta-Model-Mappings seem declarative, but are
actually imperative. Transformation is executed via
traversing the AST (depth first), classifier and feature
annotations are used to execute create objects and assign
values to value sets commands.

32

Grammar-Meta-Model Mapping – Imperative

33

Owner : STRING ‘has’ Pet (‘and’ Pet)* ‘.’

Pet= Dog | Cat

Dog : ‘a’ ‘Dog’ ‘called’ STRING ‘(‘ INT ‘kg’ ‘)’
Cat : ‘a’ ‘Cat’ ‘called’ STRING ‘(‘ INT ‘kg’ ‘)’

a Cat called "Ham" (2 kg)

Owner

"Markus" has andPet

Dog

Pet

Cat

.

a Dog called "Fido" (20 kg)

Owner->Owner: name=STRING ‘has’ pets+=Pet (‘and’ pets+=Pet)* ‘.’

Pet: Dog | Cat

Dog->Dog: ‘a’ ‘Dog’ ‘called’ name=STRING ‘(‘ weight=INT ‘kg’ ‘)’
Cat->Cat: ‘a’ ‘Cat’ ‘called’ name=STRING ‘(‘ weight=INT ‘kg’ ‘)’

name="Markus"
Markus: Owner

name="Fido"
weight=20

Fido: Dog
name="Ham"
weight=2

Ham: Dog

pets pets

Owner->Owner :
name=STRING
‘has’
pets+=Pet (‘and’ pets+=Pet)*
‘.’

Pet: Dog | Cat

Dog->Dog:
‘a’ ‘Dog’ ‘called’
name=STRING
(‘and’ ‘is’ ‘friend’ ‘of’ friends+=[STRING:Pet])*
‘(‘ weight=INT ‘kg’ ‘)’

Cat->Cat:
‘a’ ‘Cat’ ‘called’
name=STRING
‘(‘ weight=INT ‘kg’ ‘)’

Grammar-Meta-Model Mapping – Cross References

34

“Markus” has a Dog called “Fido” and is friend
of “Ham” (20kg) and a Cat called “Ham” (2kg).

▶ To what attribute refers the reference?

▶ Where to find possibly references Pets?

▶ What is with name collisions?

Owner->Owner :
name=STRING
‘has’
pets+=Pet (‘and’ pets+=Pet)*
‘.’

Pet: Dog | Cat

Dog->Dog:
‘a’ ‘Dog’ ‘called’
name=STRING
(‘and’ ‘is’ ‘friend’ ‘of’ friends+=[STRING:Pet])*
‘(‘ weight=INT ‘kg’ ‘)’

Cat->Cat:
‘a’ ‘Cat’ ‘called’
name=STRING
‘(‘ weight=INT ‘kg’ ‘)’

Grammar-Meta-Model Mapping – Cross References

34

“Markus” has a Dog called “Fido” and is friend
of “Ham” (20kg) and a Cat called “Ham” (2kg).

▶ To what attribute refers the reference?

▶ Where to find possibly references Pets?

▶ What is with name collisions?

Resolving Cross References – Scopes

▶ scope(EObject, EReference)->List<EObject> = all
elements that could be linked from a specific object using a
specific reference
■ scope(Fido, friends) = { Fido, Ham, Maestro, Angela }

■ scope(Fido, friends) = { Ham, Maestro, Angela }

■ scope(Fido, friend) = { Ham }

▶ scope has to be computable based on containment hierarchy
only

▶ Scopes are also useful for implementing code completion

35

“Markus” has a Dog called “Fido” (20kg) and a Cat called “Ham” (2kg).
“Kathi” has a Cat called “Maestro” (1kg) and a Cat called “Angela” (3kg).

Identifier in Complex Scoping Systems, e.g. Java

▶ In most programming languages we use non globally unique identifier
and scoping to uniquely identify referenced elements.

■ System.out.println(“Hello World.”);

▶ Identifier can be more than a name, e.g. can also comprise static types of
arguments.

▶ A qualified identifier is a globally unique identifier

■ java.lang.System.out

■ java.io.PrintWriter#println(String)

▶ What elements an identifier identifies depends on its scope.

▶ One identifier can identify multiple elements in the same scope (e.g.
hidden names, but not overloading)

▶ Complex scopes through: imports, inheritance, overloading, overwriting,
hiding

36

Resolving Cross References – Scoping with Identifier

▶ scope(EObject, EReference) -> List<EObject>

▶ qualifiedId(EObject) -> Id

▶ isSuffix(Id,Id) -> boolean

▶ compare(Id,Id) -> int

▶ This could be described with OCL or similar languages. No
real declarative mapping is known.

37

Resolving Cross References – Scoping with Identifier

▶ scope(EObject, EReference) -> List<EObject>

▶ qualifiedId(EObject) -> Id

▶ isSuffix(Id,Id) -> boolean

▶ compare(Id,Id) -> int

▶ This could be described with OCL or similar languages. No
real declarative mapping is known.

37

“Markus” has a Dog called “Fido” and friends with “Maestro” (20kg) and a
Cat called “Ham” (2kg).
“Kathi” has a Cat called “Maestro” (1kg) and a Cat called “Angela” (3kg).

Resolving Cross References – Scoping with Identifier

▶ scope(EObject, EReference) -> List<EObject>

▶ qualifiedId(EObject) -> Id

▶ isSuffix(Id,Id) -> boolean

▶ compare(Id,Id) -> int

▶ This could be described with OCL or similar languages. No
real declarative mapping is known.

37

“Markus” has a Dog called “Fido” and friends with “Maestro” (20kg) and a
Cat called “Ham” (2kg).
“Kathi” has a Cat called “Maestro” (1kg) and a Cat called “Angela” (3kg).

Validation

▶ as usual, EMF validation framework, Java, OCL, or other
languages

▶ type system is a typical part of validation rules (static type
safety)

▶ type system and scoping can depend on each other

■ scope depends on type, e.g. in out.println(“Hello”) type of out
is relevant

■ type can only be determined if identifier is resolved, e.g. need to
know what out refers two

■ validation before cross-reference resolution or vice versa?

38

Text to Model Transformation + Resolution + Validation

39

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

AST Model

parse transform

Text

resolution of
references +
validation

creates proxies for referenced objects,
identifier is coded into the proxy URI.

replaces proxys with resolved elements

via generated parser, e.g. ANTLR

Mapping between Grammar Formalism and Ecore

▶ A meta-model can be generated from a grammar

▶ A grammar can be generated from a meta-model

40

Owner->Owner: name=STRING ‘has’ pets+=Pet (‘and’ pets+=Pet)* ‘.’

Pet: Dog | Cat

Dog->Dog: ‘a’ ‘Dog’ ‘called’ name=STRING ‘(‘ weight=INT ‘kg’ ‘)’
Cat->Cat: ‘a’ ‘Cat’ ‘called’ name=STRING ‘(‘ weight=INT ‘kg’ ‘)’

Mapping between Grammar Formalism and Ecore

▶ A meta-model can be generated from a grammar

▶ A grammar can be generated from a meta-model

40

Owner->Owner: name=STRING ‘has’ pets+=Pet (‘and’ pets+=Pet)* ‘.’

Pet: Dog | Cat

Dog->Dog: ‘a’ ‘Dog’ ‘called’ name=STRING ‘(‘ weight=INT ‘kg’ ‘)’
Cat->Cat: ‘a’ ‘Cat’ ‘called’ name=STRING ‘(‘ weight=INT ‘kg’ ‘)’

Mapping between Grammar Formalism and Ecore

▶ A meta-model can be generated from a grammar

▶ A grammar can be generated from a meta-model

40

Owner->Owner: name=STRING ‘has’ pets+=Pet (‘and’ pets+=Pet)* ‘.’

Pet: Dog | Cat

Dog->Dog: ‘a’ ‘Dog’ ‘called’ name=STRING ‘(‘ weight=INT ‘kg’ ‘)’
Cat->Cat: ‘a’ ‘Cat’ ‘called’ name=STRING ‘(‘ weight=INT ‘kg’ ‘)’

Owner->Owner: ‘{’
‘name’ ‘:’ name=STRING
‘pets’ ‘:’ ‘[‘ pets+=Pet ‘]’

‘}’

Pet: Dog | Cat

Dog->Dog: ‘{‘
‘name’ ‘:’ name=STRING
‘weight’ ‘:’ weight=INT

‘}’
...

And what about?

▶ Representations that consist of multiple texts? Like multiple
files?

■ containment hierarchies over multiple resources

■ reference resolution, scoping over multiple resources

■ imports as secondary notation

▶ Non structural equivalent representations

■ AST and model containment hierarchies do not match: “Fido” is
a Dog (20kg) and “Ham” is a Cat (2kg). “Markus” owns “Fido”
and “Ham”.

■ Complex mapping chain with intermediate model and model-to-
model transformation necessary.

▶ Inheritance in the meta-model?
41

Summary

▶ Projection and Parsing

▶ Mapping between Grammar and Meta-Model allows Text-to-
Model transformation

▶ Reference resolution outside simple grammar-meta-model
mapping

▶ Scoping can be used to describe reference resolution

▶ Validation based on the model

42

xText

43

xText Video

44

xText Basics

45

xText Grammar vs. Meta-Model

46

xText Grammar

47

Validation and Extensions in xText

48

Dependency Injection

49

Extending xText

50

Eclipse Text Editors

51

Eclipse Text-Editors

52

▶

Graphical Notations

53

GEF, GMF, Sirius, Graphity

54

