Wintersemester 2011/12 10. Januar 2012

Übungsblatt 10

Aufgabe 56 *mündlich* Berechnen Sie $\varphi(75\,600)$, $\varphi(14\,948)$, $\log_{7,3} 4$, $\log_{37,2} 3$, ord₇(2) und ord₃₁(2).

Aufgabe 57 Zeigen Sie:

 $m\ddot{u}ndlich$

- (a) Primzahlpotenzen p^k sind keine Carmichaelzahlen. Hinweis: Berechnen Sie $(p^{k-1}+1)^{p^k-1} \mod p^k$.
- (b) Jede Carmichaelzahl n ist quadratfrei.
- (c) Eine ungerade, zusammengesetzte und quadratfreie Zahl n ist genau dann eine Carmichaelzahl, wenn p-1 für jeden Primteiler p von n die Zahl n-1 teilt.
- (d) Jede Carmichaelzahl n lässt sich in drei teilerfremde Faktoren $n_1, n_2, n_3 > 1$ zerlegen.
- (e) 561, 2465, 1729, 172081, 294409 und 56052361 sind Carmichaelzahlen.

Aufgabe 58 mündlich

Eine ungerade zusammengesetzte Zahl n heißt stark pseudoprim zu einer Basis $a \in \mathbb{Z}_n^*$ falls der Miller-Rabin-Test diese Zahl bei Wahl der Basis a als prim klassifiziert (n ist also genau dann stark pseudoprim zur Basis a, wenn $a \in \mathcal{P}_n^{MRT}$ ist).

Zeigen Sie, dass die Zahl $n_1=3215031751$ stark pseudoprim zu jeder der Basen 2, 3, 5, 7 ist. (Tatsächlich ist dies die einzige Zahl $n<2,5\cdot10^{10}$ mit dieser Eigenschaft.)

Aufgabe 59 Betrachten Sie folgendes Zufallsexperiment: mündlich

Ein probabilistischer Primzahltest T (mit einseitiger Fehlerwahrscheinlichkeit ε im Fall einer zusammengesetzten Eingabe) wird auf eine zufällig gewählte ungerade Binärzahl $n \in [2^l, 2^{l+1} - 1]$ angewandt.

Bestimmen Sie näherungsweise die Wahrscheinlichkeiten der beiden Ereignisse »n ist prim« (Ereignis A) und »T(n) gibt prim aus« (Ereignis B). Wie groß sind die bedingten Wahrscheinlichkeiten Pr $[A \mid B]$, Pr $[B \mid \overline{A}]$ und Pr $[B \mid A]$ im Fall $\varepsilon = 2^{-m}$, m = 1, 2, 5, 10, 20, 30, 50, 100? Interpretieren Sie diese Zahlen.

 ${\it Aufgabe~60} \hspace{1.5cm} \textit{m\"{u}\it{i}\it{n}\it{d}\it{l}\it{i}\it{c}\it{h}}$

Zeigen Sie, dass ein Public-Key-Kryptosystem nicht komplexitätstheoretisch sicher sein kann.

Aufgabe 61 10 Punkte

Für eine ungerade Zahl n sei $j = \max\{0 \le i \le m \mid \exists a \in \mathbb{Z}_n^* : a^{2^i u} \equiv_n -1\}$, wobei $n-1=2^m u$ und u ungerade ist. Zudem sei $J_n=\{a \in \mathbb{Z}_n^* \mid a^{2^j u} \equiv_n \pm 1\}$.

- (a) Berechnen Sie für n = 221 die Mengen $\mathcal{P}_n^{\text{FT}}$, $\mathcal{P}_n^{\text{MRT}}$ und J_n .
- (b) Zeigen Sie, dass n genau dann zusammengesetzt ist, wenn die Kongruenz $x^2 \equiv_n 1$ eine nichttriviale Lösung z (d.h. $z \not\equiv_n \pm 1$) der Form $w^{2^j u}$ hat.
- (c) Folgern Sie, dass $x \mapsto wx$ eine Injektion von $\mathcal{P}_n^{\text{MRT}}$ in die Menge $\mathbb{Z}_n^* \mathcal{P}_n^{\text{MRT}}$ (und daher $\|\mathcal{P}_n^{\text{MRT}}\| \leq \varphi(n)/2$) ist.

Aufgabe 62 mündlich

Ein RSA-Exponent $e \in \mathbb{Z}_{\varphi(n)}^*$ heiße schwach, wenn für alle $x \in \mathbb{Z}_n$ gilt: $x^e \equiv_n x$. Zeigen Sie, dass für jeden RSA-Modul n = pq genau $\varphi(n)/\log V(p-1,q-1) \ge 2$ schwache RSA-Exponenten existieren. Wie können diese erkannt bzw. wie kann ihre Verwendung ausgeschlossen werden?

Aufgabe 63 mündlich

Zwei RSA-Exponenten $e_1, e_2 \in \mathbb{Z}_{\varphi(n)}^*$ heißen äquivalent, wenn für alle $x \in \mathbb{Z}_n$ gilt: $x^{e_1} \equiv_n x^{e_2}$.

- (a) Zeigen Sie, dass zwei RSA-Exponenten e_1 und e_2 genau dann äquivalent sind, wenn $e_1 \equiv_v e_2$ gilt, wobei v = kgV(p-1, q-1) ist.
- (b) Folgern Sie, dass der Entschlüsselungsexponent d aus e auch über die Kongruenz $ed \equiv_v 1$ bestimmt werden kann.

Aufgabe 64 mündlich

Ein RSA-Klartext $x \in \mathbb{Z}_n$ heiße Fixpunkt für den RSA-Exponenten e, wenn $x^e \equiv_n x$ ist. Bestimmen Sie die Anzahl der Fixpunkte in Abhängigkeit von e und n.

Aufgabe 65 mündlich

Sei A ein effizienter Algorithmus, der einen zufällig gewählten RSA-Kryptotext $y \in \mathbb{Z}_n$ mit Wahrscheinlichkeit $\epsilon > 0$ dechiffriert. Transformieren Sie A in einen effizienten probabilistischen Algorithmus B, der jeden RSA-Kryptotext $y \in \mathbb{Z}_n$ bei Eingabe von y und einer Unärzahl 0^n mit Wahrscheinlichkeit $> 1 - 2^{-n}$ dechiffriert.

Aufgabe 66 10 Punkte

- (a) Verschlüsseln Sie den Klartext x=444 mit dem öffentlichen RSA-Schlüssel (613, 989).
- (b) Der Kryptotext y=444 wurde mit dem RSA-Schlüssel k=(613,989) erzeugt. Bestimmen Sie den zugehörigen Klartext.
- (c) Faktorisieren Sie die Zahl n=9382619383 mit dem Verfahren der Differenz der Quadrate.
- (d) Faktorisieren Sie die Zahl n=4386607 bei Kenntnis von $\varphi(n)=4382136$.