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Abstract. Data integration projects in the life sciences often gather
data on a particular subject from multiple sources. Some of these sources
overlap to a certain degree. Therefore, integrated search results may be
supported by one, few, or all data sources. To reflect these differences,
results should be ranked according to the number of data sources that
support them. How such a ranking should look like is not clear per se.
Either, results supported by only few sources are ranked high because
this information is potentially new, or such results are ranked low because
the strength of evidence supporting them is limited.
We present two scoring schemes to rank search results in the integrated
protein annotation database Columba. We define a surprisingness score,
preferring results supported by few sources, and a confidence score, pre-
ferring frequently encountered information. Unlike many other scoring
schemes our proposal is purely data-driven and does not require users to
specify preferences among sources. Both scores take the concrete overlaps
of data sources into account and do not presume statistical independence.
We show how our schemes have been implemented efficiently using SQL.

1 Introduction

In research on molecular biology, very often knowledge from different domains
is needed to answer practical questions. Imagine a researcher asking for the
three-dimensional structure of a protein that participates in a certain metabolic
pathway and is associated with a certain disease. This researcher has to query
multiple data sources. For instance, she could access the Protein Data Bank
(PDB) [1] for the protein structure, KEGG [7] for pathway information, and
PubMed to find information about protein-disease associations. However, for
the latter two aspects many other data sources could be used as well.

We call those different aspects of biomedical objects a domain. For a protein
such domains are 3D structure, sequence, fold, functional classification, other
proteins it interacts with, processes it is involved in, diseases it is associated
with, etc. For many domains there exist multiple sources. For example, infor-
mation about pathways can be found in KEGG [7], aMAZE [9], Reactome [6],
and several other resources. These resources usually overlap extensionally, i.e.,
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Fig. 1. The figures in brackets state the total number of enzyme-enzyme pairs that
are connected through a chain of reaction → substrate → reaction. The figures in the
different partitions show the number of pairs that occur in only one, two, or all three
data sources.

store the same information (and not only the same kind of information) because
they partially draw their content from the same data sets. For three sources on
pathways the overlap can be seen in Figure 1. But the sources also contain dif-
ferent and potentially unique information, due to different methodology used to
curate, integrate, select, or produce the data. Thus, when a researcher looks for
the pathways a given protein is involved in, the results may vary considerably
depending on the chosen source. We want to provide users with a ranking of
search results depending on the particular set of data sources that support it.

1.1 Data Model

We assume that a user is interested in information about a particular class of
biological entities, called the primary domain P . Objects in P are described by
objects in other data sources. A group of data sources that contain information
about the same type of entities or even the same entities is called secondary
domain Di. The content of secondary domains is comprised of data from various
data sources Si1, . . . , Sim and link sources Ri1, . . . , Ril, where i is the secondary
domain. If the domain is clear i can be omitted.

The link sources R1, . . . , Rl contain entries (s, p) with s ∈ Si and p ∈ P , i.e.,
they provide links between objects in data sources of a secondary domain and
objects in the primary domain. Thus, every object in a data source of domain
Di is linked through link sources to one or more objects in P and vice versa. We
also say that an object in P is annotated by objects in data sources of Di. This
situation is depicted in Figure 2.

A query selects entries from P by setting conditions on annotations in differ-
ent domains. The result of a query, written as res(q) is the set of objects in P
that comply with these conditions through at least one data and one link source
for every domain mentioned in q. For a single result p ∈ res(q) we say that
the result is supported by at least one qualified annotation in every secondary
domain. As the data and link sources in a domain overlap, an annotation sup-
porting a result may stem from different data sources and may be linked by
different link sources. According to the degree of dependence between the data
and link sources of a domain, certain combinations of sources frequently support
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Fig. 2. The objects in the primary domain P are annotated by objects from three
secondary domains (D1 . . . D3). Every domain contains several secondary data and
link sources.

query results, while other combination of sources rarely do. We make use of this
fact to assign query results scores for confidence and surprisingness.

1.2 Scoring of Results

This paper is about ranking results in a setting described above. Integrating
many sources instead of manually selecting some (the ’best’ ones) comes at the
risk of large result sets. Therefore, ranking of results becomes important. How-
ever, ranking is not a one-dimensional problem. Clearly, a user is most confident
in results supported by all data sources. In the previous example a result that
is supported by KEGG, aMAZE, and Reactome is one where users will be most
confident that it is biologically true. However, such results are sort-of common
place and thus potentially boring. Some researcher might be more interested in
the contrary, i.e., surprising results supported by only few sources. For exam-
ple, a result supported by Reactome but not by aMAZE is rather unexpected,
because Reactome is much smaller. Thus, a-priori chances to find a result sup-
ported only by Reactome are small. If this occurs it makes a good starting point
for a more thorough investigation with a higher chance to produce some new
findings.

Both scores, confidence and surprisingness, are important. It depends on the
concrete application which ranking scheme should be used for a search. In this
paper we present a method to compute both scores for integrated search results
over multiple domains where each domain is formed from multiple data and link
sources. In contrast to much of the related work, our method does not require
expert knowledge, but is merely based on the properties of the data sources
themselves, i.e., the overlaps between them.
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1.3 Paper outline

The paper is structured as follows. We discuss related work in the next sec-
tion. The surprisingness score is defined in Section 3 and the confidence score
in Section 4. In Section 5 we show how to expand both measures to multi-
domain queries. Section 6 describes the application of the scores in the integrated
database Columba. Section 7 shows how to implement the scoring scheme and
also gives some experimental results. Section 8 concludes the paper.

2 Related work

One option to use information from different data sources is to provide the user
only with information supported by all selected data sources, i.e., the information
a user is most confident in. Marcotte et al. [10] proposed such a method for
the reconstruction of metabolic pathways from protein-protein interaction data.
Clearly, their results are highly trustworthy, but a biologically correct protein-
protein interaction supported only by some data sources will not be considered.
In contrast Yanai & DeLisi [17] used a union of different interaction data sources.
This leads to good coverage, as all known interactions are listed, but possibly
also many incorrect protein-protein interactions are included.

The problem of giving the user all possible information ordered according to
some criteria is addressed by many projects. Internet search engines rank hits ac-
cording to their expected usefulness for the query. The protein-protein database
STRING [12] integrates information on protein-protein interactions from dif-
ferent data sources such as high-throughput experiments, literature search, or
sequence comparison. A confidence score for every object is created. This score
is either uniform within a data source, e.g., for an integrated source without
further knowledge, or individual for every object, e.g., when text mining meth-
ods are used to extract protein-protein interactions from publications. Similar
methods have been described in the area of functional analysis of microarray ex-
periments [5]. A general framework for specifying and using such quality scores
for query optimization and result ranking has been proposed in [13]. All these
methods build on expert knowledge about the data sources. Such ratings are
highly subjective and not easy to obtain.

In this paper we propose a method that ranks results without the need for
expert knowledge. A similar idea was proposed by Florescu et al. in [4] for the
purpose of query optimization. Given a query they want to optimize the ratio
between the execution cost and the size of the result set. To answer the query they
first estimate which sources will return most results and then choose k sources,
based on the selectivity of the source and the overlap with other sources.

A different approach is described by Lacroix et al. in [8] for estimating the
size of the result set. They assume a network of interlinked sources and data
objects. A query poses conditions on a start source and returns results from a
primary source by analyzing all paths from the start to the primary source. To
estimate the size of the result set they pre-compute overlap statistics for different
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paths using sampling. In Bleiholder et al. [2] these overlap statistics are used to
optimize queries over multiple data sources to solve the Budgeted Maximum
Coverage problem. In contrast to this work, we use a simpler model (primary
and secondary sources) and focus on ranking of results in result sets, not on
query optimization.

3 Surprisingness of Results

We now present a framework for measuring the surprisingness of a search result.
Confidence will be defined in Section 4. We develop our model starting from
a single domain with a single data and link source and then extend it to mul-
tiple data and link sources. The extension to multi-domain queries is given in
Section 5.

We assume that the result set contains objects from the primary source. The
user can restrict this set by setting conditions on objects in secondary domains.
An object in the primary source is contained in the result set if it is supported
by at least one qualified annotation in every queried domain.

3.1 Single Data Source

We start with the simple scenario of a single domain D, a single data source S,
and a single link source R as shown in Figure 3(a). Without loss of generality
we assume that every annotation s ∈ S is linked to at least one object p ∈ P
through at least on link r ∈ R (we can safely delete all other annotations and
links since they can never select entries in P ). A query selects objects in D and
determines the set of objects in P that are linked by at least one link in R.

For a given query q we calculate the probability that a randomly chosen
object p ∈ P is part of the result set of q. We first derive the a-priori probability
that a randomly chosen annotation s ∈ S is linked to a randomly chosen object
p ∈ P :

P ((s, p) ∈ R) =
|R|

|P × S|
=

|R|
|P | ∗ |S|

(1)

A randomly chosen p ∈ P takes part in the query result if it is linked to at
least one qualified annotation s ∈ S by at least one link r ∈ R. If we assume
that q selects k annotations and take into account that a single object in P can
be selected by multiple annotations in S, then the probability that a concrete
p ∈ res(q) is selected is precisely the probability that not none of the k selected
annotations is linked to p, which gives:

P (p ∈ res(q)) = 1−
(

1− |R|
|P | ∗ |S|

)k

(2)

Clearly, we could also estimate the value of k a-priori using attribute selec-
tivities. Note that this formula ranks all objects in a result set of a query equal.
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This is expected, as we want to rank a result by the subset of sources that sup-
ports it in any domain. Therefore, differences in the computed score only appear
when more than one source is present.

3.2 Multiple Sources in a Single Domain

We now extend our framework to the case of m data sources Si and l link sources
Rj , 1 ≤ i ≤ m and 1 ≤ j ≤ l for a single domain D as shown in Figure 3(b).

(a) Single data and link source. (b) Multiple data and link sources.

Fig. 3. An object p ∈ P is supported by objects s ∈ Si in a domain.

An object p ∈ P is in the result set of a given query q if it is supported by
at least one qualified annotation s linked through at least one link r. However,
s as well as r can be contained in various combination of sources. Consider the
situation shown in Figure 3(b) with three overlapping data sources S1, S2, and
S3 and two overlapping link sources R1 and R2. S1 and S3 strongly overlap, while
S2 mostly contains divergent data. In this situation it is likely that a query result
is linked to a qualified annotation contained in (S1 ∩ S3)\S2 or S2\(S1 ∪ S3).
Such query results shall be assigned a low score for surprisingness. We would
rate a result more unlikely and therefore more surprising that is supported by
a qualified annotation in S3\(S1 ∪ S2). Clearly, to compute the score we also
have to consider over which combination of link sources s is linked to p. Note
that according to our understanding of surprisingness, a high score might also be
assigned to results with incorrect annotations. This is in the line of our argument,
since errors can be considered surprising and certainly require user attention.

The space of all annotations in D is partitioned into disjoint subsets according
to the overlaps of data and link sources. Some of these subsets are represented by
different colors in Figure 3(b). We call these partitions in data sources Z1, . . . , Zn.
The assignment of annotations to partitions can be represented by a domain-
vector v of size m ∗ l for a domain with m data and l link sources. If annotation
s ∈ Si and (s, p) ∈ Rj we set vi,j = 1, and vi,j = 0 otherwise. In Figure 3(b)
an annotation contained in S1 ∩S3\S2 that is linked over R1 corresponds to the
domain-vector vi,1 = 101 and vi,2 = 000. It follows that 2m∗l different domain
vectors are possible. Now consider a single annotation s selected by q. Intuitively,
a p linked to s is the more surprising, the smaller the partition Zk is in which s
lies.
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However, we need some more work to derive a suitable definition for surpris-
ingness. We compute the surprisingness for each annotation selected by a query
which might later be aggregated into a score for an object p linked to multiple
annotations. Let Zk be the partition in which an annotation s lies that is selected
by a query q. We estimate the probability that p is verified by all sources that
contain Zk and no others, which depends on the a-priori overlaps of sources.
That means, we want to know how likely it is that a result for a given query is
verified by a certain combination of available sources. The less likely, the more
surprising is the result.

To answer this we first estimate the probability that for a given query a result
is verified by a particular data source Sx provided that it is verified by at least
one source in D. This is different from Equation 2 because p can be selected by
other sources than Sx. Let qSx denote the subset of res(q) that is verified by Sx.
Using Bayes’s Theorem we get:

P (p ∈ qSx|p ∈ res(q)) =
P (p ∈ res(q)|p ∈ qSx) ∗ P (p ∈ qSx)

P (p ∈ res(q))
(3)

Clearly, the probability that an object is verified by at least one data source
provided that it is verified by a particular Sx, P (p ∈ res(q)|p ∈ qSx), is 1
because the first event logically implies the second one. The a-priori probability
P (p ∈ res(q)) is given by Equation 2, where |S| now denotes the set of all
unique annotations in D. We only miss the a-priori probability P (p ∈ qSx). For
this probability we must take into account that not every object in S is contained
in Sx and not every link in R links annotations s ∈ Sx to a p ∈ P . We therefore
can identify a subset of R, denoted as Rx, that only contains links from s ∈ Sx.
Analogously, we can distinguish a subset of P , called Px that contains entries p
that are supported by an annotation s ∈ Sx.

P (p ∈ qSx) = 1−
(

1− |Px|
|P |

∗ |Sx|
|S|

∗ |Rx|
|Px| ∗ |Sx|

)k

= 1−
(

1− |Rx|
|P | ∗ |S|

)k
(4)

Thus, Equation 3 can be rewritten as:

P (p ∈ qSx|p ∈ res(q)) =
1−

(
1− |Rx|

|P |∗|S|
)k

1−
(
1− |R|

|P |∗|S|
)k

(5)

We now determine the probability that a particular p is supported by qual-
ified annotations in a partition Zk. Here as well we denote the subset of res(q)
verified by annotations in Zk as qZk. This gives:
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P (p ∈ qZk|p ∈ res(q)) =
1−

(
1−

∣∣∣ T
Si⊇Zk

Ri

∖ S
Si 6⊇Zk

Ri

∣∣∣
|P |∗|S|

)k

1−
(
1− |R|

|P |∗|S|
)k

(6)

3.3 Surprisingness Score of a Single Annotation

To value the surprisingness of a single annotation we use the measure of self-
information as defined by Shannon. Consider a domain-vector v as a symbol
in a message, the self-information of v, I(v), depends on the probability of its
occurrence and is defined as I(v) = − log2(P (v)). Accordingly, we calculate the
surprisingness score for p that is contained in the result set of a given query by
applying the probability that p is supported by an s ∈ Zk using Equation 7.
Definition 1 formalizes this approach:

Definition 1 (Surprisingness for a single annotation) Let q be a query se-
lecting an annotation s, let p be linked to s, and let s lie in partition Zk of D.
The surprisingness S(p, s) of p with respect to s is defined as:

S(p, s) = − log2 P (p ∈ qZk|p ∈ res(q)) (7)

3.4 Surprisingness Score for a Single Domain

Equation 7 only gives the probability that a given p is linked to a given anno-
tation s selected by a query q. But we want a score for p given all its linked
annotations selected by q, as shown in Figure 4. Therefore, we will need to
aggregate scores of multiple s.

Fig. 4. An object linked to two qualified annotations.

Suppose, the primary domain contains protein structures and the secondary
domain multiple data sources about scientific publications. Assume we query
with a keyword and receive a structure p that is linked to multiple qualified
publications. If all publications are contained in the same combination of data
sources, intuitively the number of publications that verify p does not influence



9

its surprisingness. In this case p shall be assigned the same surprisingness score
as assigned to a single publication. Now imagine p is linked to multiple qualified
publications contained in different combinations of data sources as depicted in
Figure 4. Clearly, if most selected publications linked to p are highly surprising
we also want to assign p a high surprisingness score. We therefore define the
surprisingness of p as the average of the surprisingness scores for every qualified
publication that supports p.

Definition 2 (Surprisingness for multiple annotations) Let q be a query
and p ∈ res(q) be linked to a set T of annotations selected by q. The surprising-
ness S(p, T ) of p is defined as:

S(p, T ) =
1
|T |

∑
s∈T

S(p, s) (8)

4 Confidence of Results

As explained in Section 1, researches are not solely interested in highly surprising
query results but also in trustworthy results. A researcher might want to rank
those results high that are likely to be correct. Having multiple data sources in
a domain, intuitively every data source that verifies a query result p increases
the confidence in the correctness of p. Thus, a straightforward method to value
the confidence of a query result would be to count the number of sources verify-
ing the result. But here too we have to consider that the different data sources
within a domain are not independent. If, for example, a query result p is verified
by two data sources, the confidence in p being correct is the higher the lower
the degree of dependence between those data sources is, because then it is more
likely that information contained in both sources is the outcome of independent
experiments rather than information stemming from the same resource.

Consider again the situation shown in Figure 3(b). We are most confident
in annotations that are contained in S1 ∩ S2 ∩ S3 and linked through both link
sources R1 and R2. If we consider annotations s1 ∈ (S1 ∩S3)\S2 and s2 ∈ (S1 ∩
S2)\S3, both linked only over R1, we intuitively assign s2 a higher confidence
score because S1 and S3 strongly overlap, while S1 and S2 do not. More generally,
for the confidence score we want to use the probability that an annotation is
contained in a combination of sources given that the annotation is contained in
at least one source.

Definition 3 (Confidence for a single annotation) Let q be a query select-
ing an annotation s, let p be linked to s through r, and let s be contained in the
the partition Zk. The confidence C(p, s) of p with respect to s is defined as:

C(p, s) = 1− log2

∣∣ ⋂
Si⊇Zk

Si

∣∣∣∣ ⋃
Si⊇Zk

Si

∣∣ (9)
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Resulting from Definition 3 the score for a p linked to an annotation s that
is contained in only one source is 1. Note, the confidence score for p1 that is
annotated by s1 ∈ Zk is always lower or equal to the score for p2 annotated
by s2 ∈ Zl, with Zl being the intersection between data sources in Zk and an
additional data source Si.

So far, we considered the confidence for a result supported by only a single
annotation. We shall now show how to aggregate confidence scores for multiple
annotations. While the number of qualified annotations linked to a query result
p does not influence its score for surprisingness, it clearly enhances the trust in
the correctness of p. As we consider every single annotation as an evidence that
p is an answer to a given query we sum up the confidence scores of all qualified
annotations linked to p to calculate the confidence score of p.

Definition 4 (Confidence for multiple annotations) Let q be a query and
p ∈ res(q) be linked to a set T of annotations selected by q. The confidence
C(p, T ) of p is defined as:

C(p, T ) =
∑
s∈T

C(p, s) (10)

5 Multi-domain Query Results

In the last two sections we defined scores for surprisingness and confidence for
single domain queries. In this section we explain how to use these values to
compute a surprisingness and confidence score in a multi-domain setting.

We assume that different secondary domains are statistically independent.
We can make that assumption as according to our model we group data sources
that contain information about the same type of biological entities in one domain.
To compute an overall surprisingness score we add up scores from all secondary
domains given in a query. We do this as we consider a result surprising when
it is surprising for at least one domain. In contrast, for the confidence, only
those results of multi-domain queries shall be ranked high that have high confi-
dence scores in many domains. To ensure this, we normalize single domain scores
resulting from Equation 10 before multiplying all scores for the multi-domain
confidence score.

6 Multi-domain Setting: Columba

In this section we introduce our real world example, where the scores presented
in this paper are beneficial. We developed the integrated database Columba [14].
This database focuses on protein structures from the Protein Data Bank (PDB)
[1] that are annotated by objects of different domains, such as fold, sequence,
function, publication, metabolic pathway, or taxonomic classification.

We apply our scoring methods for ranking query results to parts of the
Columba database. We use as primary domain the protein structures given by
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Fig. 5. The PDB annotated by secondary domains that contain multiple data sources.
Note, the size and overlap of data and link sources does not necessarily reflect reality.

the PDB. Objects in the PDB are annotated by the secondary domains sequence,
publication, and metabolic pathway as shown in Figure 5.

The domain sequence contains the data source Swiss-Prot [3] and has three
different link sources linking entries from Swiss-Prot to entries in the PDB,
namely PDBSWS [11], Seq2Struct [16], and MSD [15]. The overlap of link sources
is given by identical entries in the sources.

Data sources for the domain metabolic pathway are KEGG [7], aMAZE [9],
and Reactome [6]. To compare these heterogeneous data sources we extract in-
formation on the level of reactions. We store enzyme-enzyme pairs that are
connected through a path enzyme → reaction → substrate → reaction → en-
zyme. The overlap of data sources is given by identical enzyme-enzyme pairs.
If we consider enzymes as nodes and a pair of enzymes as edges in a graph we
can compute paths between enzymes. We therefore can answer queries such as
”Which PDB entries are less than 3 steps away from an enzyme with EC num-
ber 2.7.1.1 (Hexokinase)”. The data sources are linked to the PDB through EC
numbers given in the PDB as well as in the three data sources.

In the third domain publications we use PubMed as data source. The articles
referenced in PubMed can be linked directly to the PDB using the references
given in the PDB. But articles in PubMed can also be linked to the PDB via
Swiss-Prot.

A multi-domain query for this setting is for example ”Give me all protein
structures that are up to 7 steps away from an enzyme with EC number 1.14.16.1
(Phenylalanine hydroxylase), linked to entries in Swiss-Prot that contain the
keyword Phenylalanine catabolism, and linked to publications that mention the
disease Phenylketonuria”. This query returns in total 17 PDB chains. Using our
scoring scheme we can rank the results according to their surprisingness and
their confidence.
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7 Implementation and Evaluation

In this section we show which values can be precomputed and how to implement
this computation inside a relational database environment. We additionally show
for some exemplary queries the impact of surprisingness and confidence scores.

7.1 Precomputation of Values

To compute the surprisingness of an object S(p, T ) we must first compute for
every object in a domain the probability P (p ∈ qZk|p ∈ res(q)) as given by
Equation 6. We therefore require information about the size of the primary
domain and the size of data and link sources in secondary domains. To gather
|P | we simply count the number of objects in the primary domain. To gather
|S| and |R| we first have to integrate all objects of the data and link sources
of Di and then count the number of unique objects in both integrated sources.
Knowing these values we can compute the value c1 = 1− |R|

|P |∗|S| for domain Di.
But we also require the size of different partitions of data and link sources. To
gather these data we precompute and store the domain-vector v for every unique
object in S of dimension Di. We can determine the size for every partition Zk

by determining the frequency of different patterns in v, denoted as freq(v). But
to solve Equation 6 we require the value for the size of partitions in the link
sources, denoted as link size(v). We can determine link size(v) by summing up
for every s ∈ Zk the number of (s, p) ∈ R. Knowing this value we can compute
the value c2 = 1 − link size(v)

|P |∗|S| . The only value in Equation 6 that can not be
precomputed is k, the number of qualified objects in Di. But we can substitute
variables in Equation 6 to gain the following equation for S(p, s):

S(p, s) =
1− (c2)k

1− (c1)k
(11)

To compute the confidence score for a result p we must compute C(p, s) as
given by Equation 9. Here we require the size of all unions and intersections of
data sources Si that contain s. Both values are independent of a particular query
and therefore can be precomputed using freq(v). For a given domain-vector v of
length n the sum of freq(v ′) with v′ : v′ ∧ v = v is the size of the intersection
and the sum of freq(v ′′) with v′′ : v′′ ∧ v 6= 0n is the size of the union for a
combination of sources. We can thus write Equation 9 as:

C(p, s) = 1−

∑
v′∧v=v

freq(v′)∑
v′′∧v 6=0n

freq(v′′)
(12)

We can precompute the confidence score C(p, s) for all possible intersections
of sources in Di, but we have to store 2m∗l confidence values for one domain with
m data and l link sources. This means, we can precompute the size of partitions
and unions only for a limited number of data and link sources. But we expect
that in real world applications such as Columba this will not be a problem. If
the problem arises, some heuristics for precomputation must be introduced.
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7.2 Implementation

Precomputation The integrated database Columba is implemented on Post-
GreSQL 8.2. In Columba every data and every link source is stored in its own
table. For every domain we store the domain-vectors v in a separate table. We
precompute and store all sizes and frequencies mentioned in the last section in
statistics tables. To compute freq(v ′) and freq(v ′′) we use the provided functions
bit and() and bit or()of PostGreSQL.

Execution of Queries We now describe how to use the precomputed values to
compile a ranked result set for a given query. The compilation of the result set
with scores is done in four steps. For every domain given in the query we first
select all annotations s fulfilling the conditions posed in the query and link them
to entries in P . In this step we also return the precomputed values for every
pair (p, s), including C(p, s). In the second step we determine k and calculate
S(p, s). In the third step we aggregate the surprisingness and confidence scores
of a single domain for an object p. In the last step – if the query poses conditions
on multiple domains – we aggregate the scores for an object p over all domains.

We will explain this by a simple example that selects chains of protein struc-
tures from the PDB that are supported by entries in Swiss-Prot, which contain
the keyword Phenylalanine catabolism. Figure 6 shows the SQL query to find
all combinations of PDB chains and qualified entries in Swiss-Prot. For every
combination we return the values for c1 and c2 and the confidence score C(p, s).
In the next step we determine k by counting all unique Swiss-Prot ids and then
compute S(p, s). In the last step we aggregate the scores for every PDB chain
by averaging over the surprisingness scores and sum over the confidence scores.

SELECT seq_int_links.pdb_chain, swissprot.id,

stats.c1, stats.c2, stats.confidence_ps

FROM swissprot, seq_int_data, seq_int_links, stats

WHERE swissprot.keyword = ’Phenylalanine catabolism’

AND swissprot.id = seq_int_data.swissprot_id

AND seq_int_data.vector = stats.vector

AND swissprot.id = seq_int_links.swissprot_id

Fig. 6. SQL query to return all PDB chain - Swiss-Prot id combinations given the
keyword Phenylalanine catabolism and some constants.

7.3 Evaluation

Overlap of Sources in Columba The three data sources that link Swiss-Prot
entries to chains in the PDB have an overlap of 51,051, i.e., most of the links of
MSD (total 69,785) and PDBSWS (total 69,303) are contained in that overlap
(data not shown). Seq2Struct contains in total 216,539 links, i.e., most links
between the PDB and Swiss-Prot are only contained in that source. The overlap



14

for the data sources of metabolic networks is given in Figure 1. aMAZE contains
the highest number of enzyme-enzyme combinations, mainly due to the fact
that reactions in aMAZE are always bi-directional. In the publications domain
we have 73,945 links from PDB chains directly to PubMed, most of which are
contained in the 223,156 links over Swiss-Prot to PubMed.

Queries on Columba To evaluate our approach we queried the Columba
database using keywords on a single domain, e.g., ”Give me all PDB chains anno-
tated by Swiss-Prot entries that contain the keyword Phenylalanine catabolism”.
We used all distinct keywords from Swiss-Prot (in total 881) to query the se-
quence domain and 1,000 randomly chosen MeSH terms to query the publication
domain. For evaluation we excluded empty result sets and result sets in which
all entries had the same confidence or surprisingness score. This results in 727
result sets for the sequence domain and 695 for the publication domain.

For every result set we normalized the confidence and surprisingness scores
to gain values between 0 and 1. We sorted entries in the result set into 11 buckets
([0, 0.1), [0,1, 0.2), ..., and an own bucket for [1]) according to their confidence
or surprisingness scores. Figures 7(a)-(d) show the average frequencies of entries
in a bucket for the result sets of the sequence and publication domain.
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(a) Confidence – sequence domain.
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(b) Surprisingness – sequence domain.
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(c) Confidence – publication domain.
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(d) Surprisingness – publication domain.

Fig. 7. Average frequency and standard deviation of normalized confidence and sur-
prisingness scores for queries on the sequence and the publication domain.

Figures 7(a) and (c) show that on average only 14 % of the entries in a result
set for the sequence and 12 % for the publication domain have a normalized
confidence value of 1. Most entries in the result set (50 % for sequence and 82 %
for publication domain) have normalized confidence values between 0 and 0.2.
Figures 7(b) and (d) show the data for the surprisingness score. In both domains



15

on average about 9 % of entries in result sets have a normalized surprisingness
score of 1. Here as well the largest bucket is the bucket that contains entries
with scores between 0 and 0.1. The high standard deviation for all buckets can
be explained by varying distributions of scores within the result sets. Consider
a result set in which the entries only have two different scores, which is typical
for small result sets. Clearly, a subset of entries will be in the bucket with value
1, while the other subset is in one of the remaining 10 buckets. This subset
can contain one entry or all but one entry of the result set. The figures for the
metabolic pathway domain are not displayed. Concluding, the figures indicate
that both scores will nicely rank entries in the result set for the given domains.

We now present an exemplary query on multiple domains and parts of its
result set. The query ”Give me all PDB chains that are annotated by Swiss-
Prot entries with the keyword Glycolysis, that are linked to PubMed articles
containing the word Glycolysis, and that are at most three steps away from
the protein with EC number 2.7.1.1 (Hexokinase)” returns 109 chains from the
PDB. Table 1(a) and 1(b) show the top 5 results sorted either by confidence or
surprisingness.

Table 1. The top 5 query results for different sorting.

(a) Sorted by Confidence

PDB
id

chain Confidence Surprising-
ness

1dqr A 1.0 20.6
1dqr B 1.0 20.6
1g98 A 0.6 18.3
1g98 B 0.6 18.3
1xtb A 0.6 18.3

(b) Sorted by Surprisingness

PDB
id

chain Confidence Surprising-
ness

1pky C 0.1 22.8
2pgi - 0.5 22.2
1c7q A 0.5 22.2
1c7r A 0.5 22.2
1i33 D 0.1 22.2

The most confident results are structures for the protein phosphoglucose
isomerase. This is expected as the protein is only one reaction away from the
hexokinase in the glycolysis pathway. Note, the top 5 most surprising results
contain completely different chains in the PDB, including a pyruvate kinase
(1pky) that is also in the glycolysis pathway, but further away from hexokinase
than phosphoglucose isomerase.

8 Conclusion

In this paper we defined the surprisingness and the confidence score for an object
in a result set that is annotated by multiple, possibly overlapping data sources.
Both scores can be used to rank objects in a result set. We showed its appli-
cability to biological data using parts of the integrated database Columba. In
the future we plan to integrate both scoring schemes in the Columba web inter-
face. In addition we will further investigate the possibility to extend both score



16

definitions to also account for the distribution of source combinations within a
single result set.
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