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Content of this Lecture

• Phrase-Structure Parse Trees
• Probabilistic Context-Free Grammars
• Parsing with PCFG
• Other Issues in Parsing



Ulf Leser: Maschinelle Sprachverarbeitung 3

Parsing Sentences

• POS tagging studies the plain sequence of words in a 
sentence

• But sentences have more and non-consecutive structures
• Plenty of linguistic theories exist about the nature and 

representation of these structures / units / phrases / …
• Here: Phrase structure grammars

The astronomer saw 
the star with a 

telescope

The astronomer saw the star with a telescope
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Parsing Sentences

astronomer saw star with telescope
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The astronomer saw 
the star with a 

telescope

• POS tagging studies the plain sequence of words in a 
sentence

• But sentences have more and non-consecutive structures
• Plenty of linguistic theories exist about the nature and 

representation of these structures / units / phrases / …
• Here: Phrase structure grammars
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Phrase Structure Grammar

• Builds on assumptions
– Sentences consist of nested structures
– There is a fixed set of different structures (phrase types)
– Nesting can be described by a context-free grammar

1: S → NP VP 7: NP → NP PP
2: PP → P NP 8: NP → astronomer
3: VP → V NP 9: NP → telescope
4: VP → VP PP 10: NP → star
5: P → with
6: V → saw

astronomer saw star with telescope
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Ambiguity? 

astronomer saw star with ring
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Problem 1: Ambiguity! 

astronomer saw man with telescope
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Problem 2: Syntax versus Semantics

• Phrase structure grammars only capture syntax

1: S → NP VP 7: NP → NP PP
2: PP → P NP 8: NP → astronomer
3: VP → V NP 9: NP → telescope
4: VP → VP PP 10: NP → star
5: P → with
6: V → saw
V → ate
NP → moon
NP → cat
NP → cream

moon ate cat with cream
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telescope ate moon with cat

telescope saw cream with star
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Content of this Lecture

• Phrase-Structure Parse Trees
• Probabilistic Context-Free Grammars
• Parsing with PCFG
• Other Issues in Parsing
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Probabilistic Context-Free Grammars (PCFG)

• Also called Stochastic Context Free Grammars
• Idea: Context free grammars with transition probabilities

– Every rule gets a non-zero probability of firing
– Grammar still recognizes the same language
– But different parses usually have different probability

• Usages
– Find parse with highest probability (most probable meaning)
– Detect ambiguous sentences (>1 parses with similar probability)
– What is the overall probability of a sentence given a grammar?

• Sum of the probabilities of all derivations producing the sentence 
– Language models: Predict most probable next token in an 

incomplete sentence allowed by the grammar



Ulf Leser: Maschinelle Sprachverarbeitung 11

POS Tagging versus Parsing 

• The velocity of the seismic waves rises to …

• Difficult for a POS tagger: waves/Plural rises/Singular
– Needs to loo five tokens backwards

• Simple for a PCFG
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More Formal

• Definition
A PCFG is a 5-tuple (W, N, S, R, p) with
– W is a set of terminals (words) w1, w2, …
– N is a set of non-terminals (phrase types) N1,N2, …
– S is a designated start symbol
– R is a set of rules <Ni → ϕ>

• where ϕ is a sequence of terminals and/or non-terminals
– p is a function assigning a non-zero probability to every rule such 

that

( ) 1: =→∀ ∑
j

jiNpi ϕ



Ulf Leser: Maschinelle Sprachverarbeitung 13

Example

Rules          p 
1: S → NP VP 1,00
2: PP → P NP 1,00
3: VP → V NP 0,30
4: VP → VP PP 0,70
5: P → with 1,00
6: V → saw 1,00
7: NP → NP PP 0,80
8: NP → astronomer 0,10
9: NP → telescope 0,05
10: NP → man 0,05

astronomer saw man with telescope
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Example

1: S → NP VP 1,00
2: PP → P NP 1,00
3: VP → V NP 0,30
4: VP → VP PP 0,70
5: P → with 1,00
6: V → saw 1,00
7: NP → NP PP 0,80
8: NP → astronomer 0,10
9: NP → telescope 0,05
10: NP → man 0,05

astronomer saw man with telescope
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p(t1) = 1 *0,1*0,3*1*0,8*0,05*1*1*0,05 = 0,0006
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Example

1: S → NP VP 1,00
2: PP → P NP 1,00
3: VP → V NP 0,30
4: VP → VP PP 0,70
5: P → with 1,00
6: V → saw 1,00
7: NP → NP PP 0,80
8: NP → astronomer 0,10
9: NP → telescope 0,05
10: NP → man 0,05

p(t2) = 1*0,1*0,7*0,3*1*0,05*1*1*0,05 = 0,000525

astronomer saw man with telescope
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Implicit Assumptions

• Context-free: Probability of a derivation of a subtree under 
non-terminal N is independent of anything else in the tree
– Above N, left of N, right of N

• Place-invariant: Probability of a given rule r is the same 
anywhere in the tree
– Probability of a subtree is independent of its position in the 

sentence
• Semantic-unaware: Probability of terminals do not depend 

on the co-occurring terminals in the sentence
– Semantics is not considered
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Usefulness (of a good PCFG)

• Tri-gram models are the better language models
– Work at word level – conditional probabilities of word sequences

• PCFG are a step towards resolving ambiguity, but not a 
complete solution due to lack of semantics

• PCFG can produce robust parsers 
– When learned on a corpus with a few, rare errors, these are cast 

into rules with low probability
• Have some implicit bias (work-arounds known)

– E.g. small trees get higher probabilities
• State-of-the-art parser combine PCFG with additional 

formalized (semantic) knowledge
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Three Issues 

• Given a PCFG G and a sentence s∈L(G)
– Issue 1: Decoding (or parsing): Which chain of rules (derivation) 

from G produced s with the highest probability?
– Issue 2: Evaluation: What is the overall probability of s given G?

• Given a context free grammar G’ and a set of sentences S 
with their derivation in G’ 
– Issue 3: Learning: Which PCFG G with the same rule set as G’ 

produces S with the highest probability?
– We make our life simple: (1) G’ is given, (2) sentences are parsed
– Removing assumption (2) leads to an EM algorithm, removing (1) is 

hard (structure learning)
• Obvious relationships to corresponding problems in HMMs
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Chomsky Normal Form

• We only consider PCFG with rules of the following form 
(Chomsky Normal Form, CNF)
– N → w Non-terminal to terminal
– N → N’ N’’ Non-terminal to two non terminals
– Note: For any CFG G, there exists a CFG G’ in Chomsky Normal 

Form such that G and G’ are weakly equivalent, i.e., accept the 
same language (but with different derivations)

• Accordingly, a PCFG in CNF has |N|3+|N|*|W| parameter
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Issue 3: Learning

• Given a context free grammar G’ and a set of sentences S 
with their derivations in G’: Which PCFG G with the same 
rule set as G’ produces S with the highest probability?

• A simple Maximum Likelihood approach will do

– |.|  Number of occurrence of a rule in the set of derivations
– *    Any rule consequence

( )
*

:
→

→
=→∀

i

ji
ji N

N
Npi

ϕ
ϕ
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Content of this Lecture

• Phrase-Structure Parse Trees
• Probabilistic Context-Free Grammars
• Parsing with PCFG
• Other Issues in Parsing
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Issue 2: Evaluation

• Given a PCFG G and a sentence s∈L(G): What is the 
overall probability of s given G?
– We did not discuss this problem for HMM, but for PCFG it is simpler 

to derive parsing from evaluation
• Naïve: Find all derivations of s, sum-up their probabilities

– Problem: There can be exponentially many derivations
• We give a Dynamic Programming based algorithm
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Idea

• Recall that a PCFG builds on a CFG in CNF
• Definition

The inside probability of a sub-sentence wp … wq to be 
produced by a non-terminal Ni is defined as

βi(p,q) = p(wpq | Ni,pq,G)

– wpq: Sub-sentence of s starting at token 
wp at pos. p until token wq at pos. q

– Ni,pq: Non-terminal Ni producing wpq
– From now on, we omit the „G“ 

• We search βS(1,n) for a sentence with n token

wp wq

Ni,pq

…
…
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• We compute βS(1,n) by induction over the length of all 
sub-sentences

• Start: Assume p=q (sub-sent of length 1). Since we have a 
CNF, the rule producing wpp must have the form Ni,pp→wpp

βi(p,p) = p(wpp | Ni,pp) = p(Ni,pp → wpp)

– These are parameters of G and can be 
lookup up for all (i,p)

• Induction: Assume p<q. Since we are 
in CNF, the derivation must look like 
this for some d with p≤d≤q
– And we know all βi(a,b) with (a-b)<(q-p)

Induction

wd+1

Ni,pq

… wqwp … wd

Nr,pd Ns,(d+1)q
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Derivation

• βi(p,q) 
= p(wpq|Ni,pq,G)
= …

wd+1

Ni,pq

… wqwp … wd

Nr,pd Ns,(d+1)q
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Derivation

wd+1

Ni,pq

… wqwp … wd

Nr,pd Ns,(d+1)q
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Chain rule of 
conditional 
probabilities

Independence 
assumptions in 

CFG
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Example

1: S → NP VP 1,00
2: PP → P NP 1,00
3: VP → V NP 0,70
4: VP → VP PP 0,30
5: P → with 1,00
6: V → saw 1,00

1 2 3 4 5
1 βNP(1,1)=0,1

2 βV(2,2)=1 
βNP(2,2)=0,04 

3 βNP(3,3)=0,18

4 βP(4,4)=1

5 βNP(5,5)=0,18

7: NP → NP PP 0,40
8: NP → astronomer 0,10
9: NP → telescope 0,18
10: NP → man 0,18
11: NP → saw 0,04
12: NP → ears 0,10

astronomer saw man with telescope
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Example

1: S → NP VP 1,00
2: PP → P NP 1,00
3: VP → V NP 0,70
4: VP → VP PP 0,30
5: P → with 1,00
6: V → saw 1,00

1 2 3 4 5
1 βNP=0,1 -

2 βV=1 
βNP=0,04 

βVP=0,7*1*0,18=
0,126

3 βNP=0,18 -

4 βP=1 βPP=1*1*0,18=
0,18

5 βNP=0,18

7: NP → NP PP 0,40
8: NP → astronomer 0,10
9: NP → telescope 0,18
10: NP → man 0,18
11: NP → saw 0,04
12: NP → ears 0,10

astronomer saw man with telescope

No rule X→NP V or X→NP NP Must be VP→ V NP with p=0.7
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Example

1: S → NP VP 1,00
2: PP → P NP 1,00
3: VP → V NP 0,70
4: VP → VP PP 0,30
5: P → with 1,00
6: V → saw 1,00

1 2 3 4 5
1 βNP=0,10 - βS=1*0,1*0,126=

0,0126

2 βV=1,00 
βNP=0,04 βVP=0,126 -

3 βNP=0,18 - βNP=0,4*0,18*0,18=
0,01296

4 βP=1,00 βPP=0,18

5 βNP=0,18

7: NP → NP PP 0,40
8: NP → astronomer 0,10
9: NP → telescope 0,18
10: NP → man 0,18
11: NP → saw 0,04
12: NP → ears 0,10

astronomer saw man with telescope
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Example

1 2 3 4 5
1 βNP=0,1 - βS=0,0126 - βS=…

2 βV=1 
βNP=0,04 βVP=0,126 - βVP1+βVP2=…

3 βNP=0,18 - βNP=0,01296

4 βP=1 βPP=0,18

5 βNP=0,18

astronomer saw man with telescope
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saw man with telescope
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PP

P NP

VP

VP

saw man with telescope

PP

NP P NPV
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Note

• This is the Cocke–Younger–Kasami (CYK) algorithm for 
parsing with context free grammars, enriched with 
aggregations / multiplications for computing probabilities

• Same complexity: O(n3*|G|)
– n: Sentence length
– |G|: Number of rules in the grammar G
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Issue 1: Decoding / Parsing

• Once evaluation is solved, parsing is simple
• Instead of summing over all derivations, we only chose the 

most probable deviation of a sub-sentence for each 
possible root

• Let δi(p,q) = p(wpq|Ni,pq) be the most probable derivation 
of sub-sentence p..q from a non-terminal root Ni

• This gives

– We omit induction start and backtracing
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Content of this Lecture

• Phrase-Structure Parse Trees
• Probabilistic Context-Free Grammars
• Parsing with PCFG
• Other Issues in Parsing
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Treebanks

• A treebank is a set of sentences (corpus) whose phrase 
structures are annotated
– Training corpus for PCFG
– Not many exist; very costly, manual task

• Most prominent: Penn Treebank
– Marcus, Marcinkiewicz, Santorini. "Building a large annotated corpus of English: The 

Penn Treebank." Computational linguistics 19.2 (1993): 313-330.
• ~5500 citations (!)

– 2,499 stories from a 3-years Wall Street Journal (WSJ) collection
– Roughly 1 Million tokens, freely available

• Deutsche Baumbanken
– Deutsche Diachrone Baumbank, 3 historical periods, small
– Tübinger Baumbank, 38.000 Sätze, 345.000 Token
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Using Derivation History

• Phrase structure grammars as described here are kind-of 
simplistic

• One idea for improvement: Incorporate dependencies 
between non-terminals
– Probability of rules is not identical across all positions in a sentence
– Trick: Annotate derivation of a non-terminal in its name and learn 

different probabilities for different derivations

Source: MS99; from Penn Treebank

1: S → NP VP
2: PP → P NP
3: VP → V NP
…
7: NPVP → NP PP
7a: NPPP → NP PP
…

Read: NP 
generated 
from a VP
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Lexicalization

• Second idea: Incorporate word semantics (lexicalization)
– Clearly, different verbs take different arguments leading to 

different structures (similar for other word types)
– Trick: Learn a model for each 

head word of a non-terminal
• VPwalk, VPtake, VPeat, VP…

– Requires much larger training 
corpus and sophisticated 
smoothing

Source: MS99; from Penn Treebank
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Dependency Grammars

• Phrase structure grammars are not the only way to 
represent structural information within sentences

• Popular alternative: Dependency trees
– Every word forms exactly one node
– Edges describe the syntactic relationship between words: object-of, 

subject-of, modifier-of, preposition-of, …
– Different tag sets exist

subject-of

det-of

aux-of

obj-of

mod-of

Source: Wikipedia
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Self-Assessment

• Which assumptions are behind PCFG for parsing?
• What is the complexity of the parsing problem in PCFG?
• Assume the following rule set … Derive all derivations for 

the sentence … together with their probabilities. Mark the 
most probable derivation.

• Derive the complexity of the decoding algorithm for PCFG
• What is the head word of a phrase in a phrase structure 

grammar?
• When are two grammars weakly equivalent?
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