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Specialized Queues: Priority Queues 

 
• Up to now, we assumed that all elements are equally 

important and that any of them could be searched next  
• What if some elements are more important than others? 
• In many applications, elements have a priority 

– Requests to data on disks in multi-core hardware 
– Request of memory blocks in multi-core hardware 
– Bandwidth in LANs (VoIP, streaming, …) 
– Next best move in board games 
– … 
– Next access always retrieves the currently most important element 

• Such data structures are called Priority Queues 
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Differences 

 
• Counter examples 

– Stock exchange orders 
– Bandwidth on the internet (?) 
– Very delicate topic: Fairness versus priority 

• Difference to Self-Organizing Lists 
– Most important element is always retrieved next – should be O(1) 
– List should be kept ordered by priority 

 
• We next look at a scenario where new elements are 

inserted all the time, elements may change their priority, 
and the most important element is removed regularly 
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Shortest Paths in a Graph 

• Task: Find the distance between X and  
all other nodes 
– Classical problem: Single-Source-Shortest-Paths  
– Famous solution: Dijkstra’s algorithm 

• E. Dijsktra: A Note on Two Problems in Connexion  
with Graphs. Numerische Mathematik 1 (1959), S. 269–271 
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Assumptions 

• We assume that every node is reachable from X 
• Distance is the length (=sum of edge weights) of the shortest path 

– There might be many shortest paths, but distance is unique 
– We only want the distances and need no “witness paths” 

• We assume strictly positive edge weights 
– Whenever we extend a path with an edge, its length increases 
– Thus, no shortest path may contain a cycle 
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Exhaustive Solution 

• First approach: Enumerate all paths 
– Need to break cycles (e.g. X – K3 – K4 – X – K3 - …) 
– Using DFS: X – K3 – K4 – X [BT-K4] – K5 – K6 [BT-K5] [BT-K4] 

[BT-K3] – K7 – K8 [BT-K7] – K6 [BT-K7] [BT-K3] – K2 – K6 [BT-K2] 
– K1 [BT-K2] [BT-K3] [BT-X] K6 - …  
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Redundant work 

• First approach: Enumerate all paths 
– Need to break cycles (e.g. X – K3 – K4 – X – K3 - …) 
– Using DFS: X – K3 – K4 – X [BT-K4] – K5 – K6 [BT-K5] [BT-K4] 

[BT-K3] – K7 – K8 [BT-K7] – K6 [BT-K7] [BT-K3] – K2 – K6 [BT-K2] 
– K1 [BT-K2] [BT-K3] [BT-X] K6 - …  
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Dijkstra’s Idea 

• Enumerate paths from X by their length 
– Neither DFS nor BFS 

• Assume we reach a node Y by a path p of length l and we 
have already explored all paths from X with length l’ ≤ l 
and that Y was not reached yet 

• Then p must be a shortest path between X and Y 
– Because any p’ between X and Y would have a prefix of length at 

least l and (a) a continuation with length>0 or (b) would not need 
a continuation (then p is as short as p’) 
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Example for Idea  

• 1: X – K3 
• 2: X – K3 – K2 
• 2: X – K1 
• 4: X – K3 – K2 – K6 
• 4: X – K3 – K4 
• 4: X – K3 – K7 
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• 5: X – K3 – K4 – K5 
• 7: X – K3 – K7 – K8 
• Stop (all nodes found) 
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Algorithmic Idea 

• Enumerate paths by iteratively extending already found 
short paths by all possible extensions 
– All edges outgoing from the end node of a short path 

• These extensions  
– … either lead to a node which we didn’t reach before – then we 

found a path, but cannot yet be sure it is the shortest 
– … or lead to a node which we already reached but we are not yet 

sure of we found the shortest path to it – update current best 
distance 

– … or lead to a node which we already reached and for which we 
also surely found a shortest path already – these can be ignored 

• Eventually, we enumerate nodes by their distance 
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Algorithm 

• Assumptions 
– Nodes have IDs between 1 … |V| 
– Edges are (from, to, weight) 

• We enumerate nodes by length 
of their shortest paths 
– In the first loop, we pick x and update 

distances (A) to all adjacent nodes 
– When we pick a node k, we already 

have computed its distance to x in A 
– We adapt the current best distances 

to all neighbors of k we haven’t 
picked yet 

• Once we picked all nodes, we 
are done 

1. G = (V, E); 
2. x : start_node;    # x∈V 
3. A : array_of_distances; 
4. ∀i: A[i]:= ∞; 
5. L := V; 
6. A[x] := 0; 
7. while L≠∅   
8.   k := L.get_closest_node(); 
9.   L := L \ k; 
10.  forall (k,f,w)∈E do 
11.    if f∈L then  
12.      new_dist := A[k]+w; 
13.      if new_dist < A[f] then 
14.        A[f] := new_dist; 
15.      end if; 
16.    end if; 
17.  end for; 
18.end while; 
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Example for Algorithm 
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• Pick x 
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Example for Algorithm 
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• Pick x 
• Adapt distances to all neighbors 
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Example for Algorithm 
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• Pick K3 (closest to x) 
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Example for Algorithm 
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• Pick K3 
• Adapt distances (from x) to all neighbors 

(of K3) 
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Example for Algorithm 
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• K3 is done (we cannot anymore find a  
shorter path) 

• Pick K1 (or K2) 
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Example for Algorithm 
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• Pick K1 
• Adapt distances to all neighbors 

– There are none 
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Example for Algorithm 
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• K1 is done 
• Pick K2 
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Example for Algorithm 
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• Pick K2 
• Adapt distances to all neighbors 

– K1 was picked already – ignore 
– We found a shorter path to K6 
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Example for Algorithm 
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• Pick K6 (or K4 or K7) 
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Example for Algorithm 
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• Pick K6 
• Adapt distances to all neighbors 

– There are none 
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Example for Algorithm 
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• Pick K7 
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Example for Algorithm 
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• Pick K7 
• Adapt distances to all neighbors 

– K6 was visited already 
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Example for Algorithm 
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Example for Algorithm 
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Example for Algorithm 
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A Closer Look 

• Algorithm seems to work 
– Proof and analysis will follow later 

• Central: get_closest_node() 
– Needs to find the node k in L for 

which A[k] is the smallest 
– A[k] may change all the time 

• Searching A? Resorting A? 
• Better: Organize L as priority 

queue 
– List of tuples (o, v) (object,value) 
– All additions and updates of v 
– Make get_closest_node as fast as 

possible 

1. G = (V, E); 
2. x : start_node;    # x∈V 
3. A : array_of_distances; 
4. ∀i: A[i]:= ∞; 
5. L := V; 
6. A[x] := 0; 
7. while L≠∅   
8.   k := L.get_closest_node(); 
9.   L := L \ k; 
10.  forall (k,f,w)∈E do 
11.    if f∈L then  
12.      new_dist := A[k]+w; 
13.      if new_dist < A[f] then 
14.        A[f] := new_dist; 
15.      end if; 
16.    end if; 
17.  end for; 
18.end while; 
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Content of this Lecture 

 
 
 

• Priority Queues 
• Using Heaps 
• Using Fibonacci Heaps 
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Priority Queues 

 
 

• A priority queue (PQ) is an ADT with 3 essential operations 
– add( o,v): Add element o with value (priority) v 
– getMin(): Retrieve element with highest priority 
– removeMin(): Remove element with highest priority 

• Typical additional operations 
– merge( p1, p2): Merge two PQs into one 
– create( L): Convert a list in a priority queue  
– delete( o): Delete o from PQ 
– changeValue( o, v): Change value of o to v 
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Other Applications 

• Games (e.g. chess) 
– The machine explores next movements but cannot look at all of 

them; give each move an assumed benefit and explore moves with 
probably highest benefit first (see also A* algorithm) 

• Multi-modal route planning 
– Find fastest route through a map (network) with multiple ways of 

transportation (feet, bus, train, …) between edges where edge 
weights change dynamically (delay, congestion, …) 

• And departure times may depend on arrival: Timetable-based routing  

• Quality of Service in a network 
– When bandwidth is limited, sort all transmission requests in a PQ 

and transmit by highest priority 

• … 
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Naive Implementations (with |Q|=n) 

• Using a linked list 
– add requires O(1) (at the end or start or anywhere) 
– getMin requires O(n) (bad) 
– deleteMin requires O(1) (if we keep the pointer after a getMin()) 
– update requires O(n) (first search object) 
– merge requires O(1) 

• Using a sorted linked list (by value/priority) 
– add requires O(n) (bad) 
– getMin requires O(1) (always first element) 
– deleteMin requires O(1) 
– update requires O(n) (search object, move to new position) 
– merge requires O(n+m) 
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Maybe Arrays? 

 
• Using a sorted array 

– add requires O(n) (bad - we find the position in log(n), but then 
have to free a cell by moving all elements after this cell) 

– getMin requires O(1) 
– deleteMin requires O(n) (bad) 

• PQs are typically used in applications where elements are 
inserted and removed (and updated) all the time 

• We need a DS that can change its size dynamically at very 
low cost while keeping a certain order (min element) 

• We want constant or at most log-time for all operations 
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Content of this Lecture 

 
 
 

• Priority Queues 
• Using Heaps 

– Heaps 
– Operations on Heaps 
– Heap Sort 

• Using Fibonacci Heaps 
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Heap-based PQ 

 
• Unsorted lists require O(n) for getMin 

– We don‘t know where the smallest element is 

• Sorted lists require O(n) for add 
– We don‘t know where to put the new element 

• Can we find a way to keep the list “a little sorted”? 
– Actually, we only need the smallest element at a fixed position 
– All other elements can be at arbitrary places 
– Maybe add/deleteMin could be faster than O(n), if they don’t 

need to keep the entire list sorted 

• One such structure is called a heap 
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Heaps 

• Definition 
A heap is a labeled binary tree of depth d for which the 
following holds 
– Nodes are labeled with integers (the priorities) 
– Form-constraint (FC): The tree is complete except the last level 

• I.e.: Every node  at level  l<d-1 has exactly two children 
– Heap-constraint (HC): The label of node is smaller than that of all 

its children 3 

5 8 

10 9 12 15 

11 18 

Level 1 

Level 2 

Level 3 

Level 4 (d) 
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Properties 

• Order 
– A heap is “a little” sorted: We know the smallest element (root) 
– We know the order for some pairs of elements (parent-successors), 

but for many pairs we don’t know which is bigger 
• E.g. nodes in the same level 

• Size 
– A complete binary tree with d levels has 

2d-1 nodes 
– A heap with m levels thus has  

between 2d-1-1 and 2d-1 nodes 
– A heap with n nodes  

has ceil(log(n+1)) levels  
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Operations 

 
 

• Assume we store our PQ as a heap 
• Clearly, getMin() is possible in O(1) 

– Keep a pointer to the root 

• But … 
– How can we cheaply perform deleteMin() – such that the new 

structure again is a heap? 
– How can we cheaply add an element to a heap – such that the new 

structure again is a heap? 
– How can we cheaply create a list – by turning a given list into a 

heap? 
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DeleteMin() 

• We first remove the root 
– Creates two heaps  
– We must connect them again 

• We take the „last“ node, 
place it in root, and “sift” it 
down the tree 
– Last node: right-most in the 

last level (actually, we can 
take any from the last level) 

– Sifting down: Exchange with 
smaller of both children as 
long as at least one child is 
smaller than the node itself 
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Analysis - Correctness 

 
• We need to show that FC and HC still hold 
• HC: Look at the tree after we sifted a node k. k may 

– … be smaller than its children. Then HC holds and we are done 
– … be larger than at least one child k2. Assume that k2 is the 

smaller of the two children (k1, k2) of k. We next swap k and k2. 
The new parent (k2) now is smaller than its children (k1, k), so the 
HC holds 

– After the last swap, k has no children – HC holds and we are done 

• FC: We remove one node, then we sift down  
– Removing last node doesn’t affect FC as we remove in the last level 
– Sifting does not change the topology of the tree (we only swap) 
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Analysis - Complexity 

 
 
 

• Recall that a heap with n nodes has ceil(log(n+1)) levels 
• During sifting, we perform at most one comparison and 

one swap in every level 
• Thus: O(ceil(log(n+1))) = O(log(n)) 
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Add() on a Heap 

 
 

• Cannot simply add on top  
• Idea: We add new element 

somewhere in last level 
and sift up 
– We might need a new level 
– Sifting up: Compare to 

parent and swap if parent is 
larger 
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Analysis 

 
• Correctness 

– HC 
• If parent has only one child, HC holds after each swap 
• Assume a parent k has children k1 and k2, k2 was swapped there in 

the last move, and k2<k. Since HC held before, k<k1, thus k2<k<k1. 
We swap k2 and k, and thus the new parent is smaller than its 
children. On the other hand, if k2≥k, HC holds immediately (and we 
don’t swap). 

– FC: See deleteMin() 

• Complexity: O(log(n)) 
– See deleteMin() 
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How to Find the Next Free / Last Occupied Node 

• What do we need to find? 
– For deleteMin, we use the right-most leaf on the last level  
– For add, we add the leaf right from the last leaf 

• We actually need the parent k 
– From |Q|=n, we can compute in O(1) the index p of the last leaf in 

the last level: p = n – 2^(floor(log(n))) 
• Or log(n+1) for add 

– The parent k of the node at p has index floor(p/2)’th in level d-1 
– The parent k’ of k has index floor(p/4)’th in level d-2 
– … 
– Now, in each node, we can decide whether to go left or right 
– Fast trick: Use the binary representation of p 
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Illustration 

• For deleteMin, we need x (or 
x’); for add, we need y (or y’) 
– p(x)=0, p(y)=1, p(x’)=4, p(y’)=5 
– Binary: 000, 001, 100, 101 

• Go through bitstring from left-
to-right 

• Next bit=0: Go left 
• Next bit=1: Go right 

 
• Allows finding k in O(log(n)) 

 

p’ 

p 

x y 

0 1 

00 01 10 11 

000 001 

010 011 

100 101 

110 111 

x’ y’ 
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Summary 

Linked list Sorted linked list Heap 

getMin() O(n) O(1) O(1) 

deleteMin() O(1) O(1) O(log(n)) 

add() O(1) O(n) O(log(n)) 

merge() O(1) O(n1+n2) O(log(n1)*log(n2)) 

Space n add. pointer n add. pointer n add. pointer 

Heaps can be kept efficiently in 
an array – no extra space, but 

limit to heap size 
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Creating a Heap 

 
• We start with an unsorted list with n elements 
• Naïve algorithm: Start with empty heap and perform n 

additions 
– Obviously requires O(n*log(n))  

• Better: Bottom-Up-Sift-Down 
– Build a tree from the n elements fulfilling the FC (but not HC) 

• Simple fill a tree level-by-level – this is in O(n) 

– Sift-down all nodes on the second-last level 
– Sift-down all nodes on the third-last level 
– … 
– Sift down root 
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Analysis 

• Correctness 
– After finishing one level, all subtrees starting in this level are heaps 

because sifting-down ensures FC and HC (see deleteMin()) 
– Thus, when we are done with the first level (root), we have a heap 

• Analysis 
– We look at the cost per level h (1 … log(n)=d) 
– For every node at level h, we need at most d-h operations 
– At level h≠d, there are 2h-1 nodes 

• For nodes at level d, we don’t do anything 

– Over all levels, this yields 
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Side Note: Heap Sort 

• Heaps also are a suitable data structure for sorting 
• Heap-Sort (a classical sorting algorithm) 

– Given an unsorted list, first create a heap in O(n) 
– Repeat 

• Take the smallest element and store in array in O(1) 
• Re-build heap in O(log(n)) 

– Call deleteMin( root) 

– Until heap is empty – after n iterations 

• Thus: O(n*log(n)) 
– Average-case only slightly better 

• Can be implemented in-place when heap is stored in array 
– See [OW93] for details 
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Content of this Lecture 

 
 
 

• Priority Queues 
• Using Heaps 
• Using Fibonacci Heaps 
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Fibonacci-Heaps (very rough sketch) 

• A Fibonacci Heap (FH) is a forest of (non-binary) heaps 
with disjoint values 
– All roots are maintained in a double-linked list 
– Special pointer (min) to the smallest root 
– Accessing this value (getMin()) obviously is O(1) 

Source: S.Albers, 
Alg&DS, SoSe 2010 
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Maintainance of a FH 

• FHs are maintained in a lazy fashion 
– add(v): We create a new heap with a single element node with 

value v. Add this heap to the list of heaps; adapt min-pointer, if v is 
smaller than previous min 

• Clearly O(1) 

– merge(): Simple link the two root-lists and determine new min (as 
min of two mins) 

• Clearly O(1) 

• Deleting an element (deleteMin()) needs more work 
– Until now, we just added single-element heaps 
– Thus, our structure after n add() is an unsorted list of n elements 
– Finding the next min element after deleteMin() in a naïve 

manner would require O(n) 
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deleteMin() on FH 

• Method is not complicated 
– We first remove the min element 
– We then go through the root-list and merge heaps with the same 

rank (=# of children) until all heaps in the list have different ranks 
– Merging two heaps in O(1): (1) Find the heap with the smaller root 

value; (2) Add it as child to the root of the other heap 

• But analysis is fairly complicated 
– The above method is O(n) in worst case 

• But after every clean-up, the root-list is much smaller than before 
• Subsequent clean-ups need much less time 

– Amortized analysis shows: Average-case complexity is O(log(n)) 
– Analysis depends on the growth of the trees during merge – these 

grow as the Fibonacci numbers 
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Disadvantage 

 
 

• Though faster on average, Fibonacci Heaps have 
unpredictable delays 

• No log(n) upper bound for every operation 
• Not suitable for real-time applications etc. 
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Summary 

Linked list Sorted 
linked list 

Heap Fibonacci 
Heap 

getMin() O(n) O(1) O(1) O(1) 

deleteMin() O(1) O(n) O(log(n)) O(log(n))* 

add() O(1) O(n) O(log(n)) O(1) 

merge() O(1) O(n1+n2) O(log(n)) O(1) 

*: Amortized analysis 
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