
Algorithms and Data Structures 

Ulf Leser 

Priority Queues 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      2 

Specialized Queues: Priority Queues 

 
• Up to now, we assumed that all elements are equally 

important and that any of them could be searched next  
• What if some elements are more important than others? 
• In many applications, elements have a priority 

– Requests to data on disks in multi-core hardware 
– Request of memory blocks in multi-core hardware 
– Bandwidth in LANs (VoIP, streaming, …) 
– Next best move in board games 
– … 
– Next access always retrieves the currently most important element 

• Such data structures are called Priority Queues 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      3 

Differences 

 
• Counter examples 

– Stock exchange orders 
– Bandwidth on the internet (?) 
– Very delicate topic: Fairness versus priority 

• Difference to Self-Organizing Lists 
– Most important element is always retrieved next – should be O(1) 
– List should be kept ordered by priority 

 
• We next look at a scenario where new elements are 

inserted all the time, elements may change their priority, 
and the most important element is removed regularly 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      4 

Shortest Paths in a Graph 

• Task: Find the distance between X and  
all other nodes 
– Classical problem: Single-Source-Shortest-Paths  
– Famous solution: Dijkstra’s algorithm 

• E. Dijsktra: A Note on Two Problems in Connexion  
with Graphs. Numerische Mathematik 1 (1959), S. 269–271 

X 

1 

1 

2 
5 3 

2 

1 4 

3 

2 

6 
3 

3 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      5 

Assumptions 

• We assume that every node is reachable from X 
• Distance is the length (=sum of edge weights) of the shortest path 

– There might be many shortest paths, but distance is unique 
– We only want the distances and need no “witness paths” 

• We assume strictly positive edge weights 
– Whenever we extend a path with an edge, its length increases 
– Thus, no shortest path may contain a cycle 

X 

1 

1 

2 
5 3 

2 

1 4 

3 

2 

6 
3 

3 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      6 

Exhaustive Solution 

• First approach: Enumerate all paths 
– Need to break cycles (e.g. X – K3 – K4 – X – K3 - …) 
– Using DFS: X – K3 – K4 – X [BT-K4] – K5 – K6 [BT-K5] [BT-K4] 

[BT-K3] – K7 – K8 [BT-K7] – K6 [BT-K7] [BT-K3] – K2 – K6 [BT-K2] 
– K1 [BT-K2] [BT-K3] [BT-X] K6 - …  

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      7 

Redundant work 

• First approach: Enumerate all paths 
– Need to break cycles (e.g. X – K3 – K4 – X – K3 - …) 
– Using DFS: X – K3 – K4 – X [BT-K4] – K5 – K6 [BT-K5] [BT-K4] 

[BT-K3] – K7 – K8 [BT-K7] – K6 [BT-K7] [BT-K3] – K2 – K6 [BT-K2] 
– K1 [BT-K2] [BT-K3] [BT-X] K6 - …  

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      8 

Dijkstra’s Idea 

• Enumerate paths from X by their length 
– Neither DFS nor BFS 

• Assume we reach a node Y by a path p of length l and we 
have already explored all paths from X with length l’ ≤ l 
and that Y was not reached yet 

• Then p must be a shortest path between X and Y 
– Because any p’ between X and Y would have a prefix of length at 

least l and (a) a continuation with length>0 or (b) would not need 
a continuation (then p is as short as p’) 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

5 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      9 

Example for Idea  

• 1: X – K3 
• 2: X – K3 – K2 
• 2: X – K1 
• 4: X – K3 – K2 – K6 
• 4: X – K3 – K4 
• 4: X – K3 – K7 

 
 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

K3 1 
K2 2 
K1 2 
K6 4 
K4 4 
K7 4 
K5 5 
K8 7 

• 5: X – K3 – K4 – K5 
• 7: X – K3 – K7 – K8 
• Stop (all nodes found) 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      10 

Algorithmic Idea 

• Enumerate paths by iteratively extending already found 
short paths by all possible extensions 
– All edges outgoing from the end node of a short path 

• These extensions  
– … either lead to a node which we didn’t reach before – then we 

found a path, but cannot yet be sure it is the shortest 
– … or lead to a node which we already reached but we are not yet 

sure of we found the shortest path to it – update current best 
distance 

– … or lead to a node which we already reached and for which we 
also surely found a shortest path already – these can be ignored 

• Eventually, we enumerate nodes by their distance 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      11 

Algorithm 

• Assumptions 
– Nodes have IDs between 1 … |V| 
– Edges are (from, to, weight) 

• We enumerate nodes by length 
of their shortest paths 
– In the first loop, we pick x and update 

distances (A) to all adjacent nodes 
– When we pick a node k, we already 

have computed its distance to x in A 
– We adapt the current best distances 

to all neighbors of k we haven’t 
picked yet 

• Once we picked all nodes, we 
are done 

1. G = (V, E); 
2. x : start_node;    # x∈V 
3. A : array_of_distances; 
4. ∀i: A[i]:= ∞; 
5. L := V; 
6. A[x] := 0; 
7. while L≠∅   
8.   k := L.get_closest_node(); 
9.   L := L \ k; 
10.  forall (k,f,w)∈E do 
11.    if f∈L then  
12.      new_dist := A[k]+w; 
13.      if new_dist < A[f] then 
14.        A[f] := new_dist; 
15.      end if; 
16.    end if; 
17.  end for; 
18.end while; 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      12 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 ∞ 

K2 ∞ 

K3 ∞ 

K4 ∞ 

K5 ∞ 

K6 ∞ 

K7 ∞ 

K8 ∞ 

• Pick x 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      13 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 ∞ 

K3 1 

K4 ∞ 

K5 ∞ 

K6 5 

K7 ∞ 

K8 ∞ 

• Pick x 
• Adapt distances to all neighbors 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      14 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 ∞ 

K3 1 

K4 ∞ 

K5 ∞ 

K6 5 

K7 ∞ 

K8 ∞ 

• Pick K3 (closest to x) 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      15 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 ∞ 

K6 5 

K7 4 

K8 ∞ 

• Pick K3 
• Adapt distances (from x) to all neighbors 

(of K3) 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      16 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 ∞ 

K6 5 

K7 4 

K8 ∞ 

• K3 is done (we cannot anymore find a  
shorter path) 

• Pick K1 (or K2) 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      17 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 ∞ 

K6 5 

K7 4 

K8 ∞ 

• Pick K1 
• Adapt distances to all neighbors 

– There are none 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      18 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 ∞ 

K6 5 

K7 4 

K8 ∞ 

• K1 is done 
• Pick K2 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      19 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 ∞ 

K6 4 

K7 4 

K8 ∞ 

• Pick K2 
• Adapt distances to all neighbors 

– K1 was picked already – ignore 
– We found a shorter path to K6 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      20 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 ∞ 

K6 4 

K7 4 

K8 ∞ 

• Pick K6 (or K4 or K7) 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      21 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 ∞ 

K6 4 

K7 4 

K8 ∞ 

• Pick K6 
• Adapt distances to all neighbors 

– There are none 

 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      22 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 ∞ 

K6 4 

K7 4 

K8 ∞ 

• Pick K7 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      23 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 ∞ 

K6 4 

K7 4 

K8 7 

• Pick K7 
• Adapt distances to all neighbors 

– K6 was visited already 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      24 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 ∞ 

K6 4 

K7 4 

K8 7 

• Pick K4 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      25 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 5 

K6 4 

K7 4 

K8 7 

• Pick K4 
• Adapt distances to all neighbors 

– X was visited already 

 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      26 

Example for Algorithm 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

K1 

K2 

K3 

K4 
K5 

K7 

K6 

K8 

3 

X 0 

K1 2 

K2 2 

K3 1 

K4 4 

K5 5 

K6 4 

K7 4 

K8 7 

• Pick K5 … Pick K8  
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      27 

A Closer Look 

• Algorithm seems to work 
– Proof and analysis will follow later 

• Central: get_closest_node() 
– Needs to find the node k in L for 

which A[k] is the smallest 
– A[k] may change all the time 

• Searching A? Resorting A? 
• Better: Organize L as priority 

queue 
– List of tuples (o, v) (object,value) 
– All additions and updates of v 
– Make get_closest_node as fast as 

possible 

1. G = (V, E); 
2. x : start_node;    # x∈V 
3. A : array_of_distances; 
4. ∀i: A[i]:= ∞; 
5. L := V; 
6. A[x] := 0; 
7. while L≠∅   
8.   k := L.get_closest_node(); 
9.   L := L \ k; 
10.  forall (k,f,w)∈E do 
11.    if f∈L then  
12.      new_dist := A[k]+w; 
13.      if new_dist < A[f] then 
14.        A[f] := new_dist; 
15.      end if; 
16.    end if; 
17.  end for; 
18.end while; 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      28 

Content of this Lecture 

 
 
 

• Priority Queues 
• Using Heaps 
• Using Fibonacci Heaps 

 
 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      29 

Priority Queues 

 
 

• A priority queue (PQ) is an ADT with 3 essential operations 
– add( o,v): Add element o with value (priority) v 
– getMin(): Retrieve element with highest priority 
– removeMin(): Remove element with highest priority 

• Typical additional operations 
– merge( p1, p2): Merge two PQs into one 
– create( L): Convert a list in a priority queue  
– delete( o): Delete o from PQ 
– changeValue( o, v): Change value of o to v 

 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      30 

Other Applications 

• Games (e.g. chess) 
– The machine explores next movements but cannot look at all of 

them; give each move an assumed benefit and explore moves with 
probably highest benefit first (see also A* algorithm) 

• Multi-modal route planning 
– Find fastest route through a map (network) with multiple ways of 

transportation (feet, bus, train, …) between edges where edge 
weights change dynamically (delay, congestion, …) 

• And departure times may depend on arrival: Timetable-based routing  

• Quality of Service in a network 
– When bandwidth is limited, sort all transmission requests in a PQ 

and transmit by highest priority 

• … 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      31 

Naive Implementations (with |Q|=n) 

• Using a linked list 
– add requires O(1) (at the end or start or anywhere) 
– getMin requires O(n) (bad) 
– deleteMin requires O(1) (if we keep the pointer after a getMin()) 
– update requires O(n) (first search object) 
– merge requires O(1) 

• Using a sorted linked list (by value/priority) 
– add requires O(n) (bad) 
– getMin requires O(1) (always first element) 
– deleteMin requires O(1) 
– update requires O(n) (search object, move to new position) 
– merge requires O(n+m) 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      32 

Maybe Arrays? 

 
• Using a sorted array 

– add requires O(n) (bad - we find the position in log(n), but then 
have to free a cell by moving all elements after this cell) 

– getMin requires O(1) 
– deleteMin requires O(n) (bad) 

• PQs are typically used in applications where elements are 
inserted and removed (and updated) all the time 

• We need a DS that can change its size dynamically at very 
low cost while keeping a certain order (min element) 

• We want constant or at most log-time for all operations 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      33 

Content of this Lecture 

 
 
 

• Priority Queues 
• Using Heaps 

– Heaps 
– Operations on Heaps 
– Heap Sort 

• Using Fibonacci Heaps 
 
 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      34 

Heap-based PQ 

 
• Unsorted lists require O(n) for getMin 

– We don‘t know where the smallest element is 

• Sorted lists require O(n) for add 
– We don‘t know where to put the new element 

• Can we find a way to keep the list “a little sorted”? 
– Actually, we only need the smallest element at a fixed position 
– All other elements can be at arbitrary places 
– Maybe add/deleteMin could be faster than O(n), if they don’t 

need to keep the entire list sorted 

• One such structure is called a heap 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      35 

Heaps 

• Definition 
A heap is a labeled binary tree of depth d for which the 
following holds 
– Nodes are labeled with integers (the priorities) 
– Form-constraint (FC): The tree is complete except the last level 

• I.e.: Every node  at level  l<d-1 has exactly two children 
– Heap-constraint (HC): The label of node is smaller than that of all 

its children 3 

5 8 

10 9 12 15 

11 18 

Level 1 

Level 2 

Level 3 

Level 4 (d) 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      36 

Properties 

• Order 
– A heap is “a little” sorted: We know the smallest element (root) 
– We know the order for some pairs of elements (parent-successors), 

but for many pairs we don’t know which is bigger 
• E.g. nodes in the same level 

• Size 
– A complete binary tree with d levels has 

2d-1 nodes 
– A heap with m levels thus has  

between 2d-1-1 and 2d-1 nodes 
– A heap with n nodes  

has ceil(log(n+1)) levels  
 

 

3 

5 8 

10 9 12 15 

11 18 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      37 

Operations 

 
 

• Assume we store our PQ as a heap 
• Clearly, getMin() is possible in O(1) 

– Keep a pointer to the root 

• But … 
– How can we cheaply perform deleteMin() – such that the new 

structure again is a heap? 
– How can we cheaply add an element to a heap – such that the new 

structure again is a heap? 
– How can we cheaply create a list – by turning a given list into a 

heap? 

 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      38 

DeleteMin() 

• We first remove the root 
– Creates two heaps  
– We must connect them again 

• We take the „last“ node, 
place it in root, and “sift” it 
down the tree 
– Last node: right-most in the 

last level (actually, we can 
take any from the last level) 

– Sifting down: Exchange with 
smaller of both children as 
long as at least one child is 
smaller than the node itself 

 

3 

5 8 

10 9 12 15 

11 18 18 

5 8 

10 9 12 15 

11 
5 

18 8 

10 9 12 15 

11 
5 

9 8 

10 18 12 15 

11 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      39 

Analysis - Correctness 

 
• We need to show that FC and HC still hold 
• HC: Look at the tree after we sifted a node k. k may 

– … be smaller than its children. Then HC holds and we are done 
– … be larger than at least one child k2. Assume that k2 is the 

smaller of the two children (k1, k2) of k. We next swap k and k2. 
The new parent (k2) now is smaller than its children (k1, k), so the 
HC holds 

– After the last swap, k has no children – HC holds and we are done 

• FC: We remove one node, then we sift down  
– Removing last node doesn’t affect FC as we remove in the last level 
– Sifting does not change the topology of the tree (we only swap) 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      40 

Analysis - Complexity 

 
 
 

• Recall that a heap with n nodes has ceil(log(n+1)) levels 
• During sifting, we perform at most one comparison and 

one swap in every level 
• Thus: O(ceil(log(n+1))) = O(log(n)) 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      41 

Add() on a Heap 

 
 

• Cannot simply add on top  
• Idea: We add new element 

somewhere in last level 
and sift up 
– We might need a new level 
– Sifting up: Compare to 

parent and swap if parent is 
larger 
 

3 

5 8 

10 9 12 15 

11 18 1 

3 

5 

10 1 

11 18 

3 

1 

10 5 

11 18 
1 

3 

10 5 

11 18 

8 

12 15 

8 

12 15 

8 

12 15 

9 

9 

9 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      42 

Analysis 

 
• Correctness 

– HC 
• If parent has only one child, HC holds after each swap 
• Assume a parent k has children k1 and k2, k2 was swapped there in 

the last move, and k2<k. Since HC held before, k<k1, thus k2<k<k1. 
We swap k2 and k, and thus the new parent is smaller than its 
children. On the other hand, if k2≥k, HC holds immediately (and we 
don’t swap). 

– FC: See deleteMin() 

• Complexity: O(log(n)) 
– See deleteMin() 

 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      43 

How to Find the Next Free / Last Occupied Node 

• What do we need to find? 
– For deleteMin, we use the right-most leaf on the last level  
– For add, we add the leaf right from the last leaf 

• We actually need the parent k 
– From |Q|=n, we can compute in O(1) the index p of the last leaf in 

the last level: p = n – 2^(floor(log(n))) 
• Or log(n+1) for add 

– The parent k of the node at p has index floor(p/2)’th in level d-1 
– The parent k’ of k has index floor(p/4)’th in level d-2 
– … 
– Now, in each node, we can decide whether to go left or right 
– Fast trick: Use the binary representation of p 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      44 

Illustration 

• For deleteMin, we need x (or 
x’); for add, we need y (or y’) 
– p(x)=0, p(y)=1, p(x’)=4, p(y’)=5 
– Binary: 000, 001, 100, 101 

• Go through bitstring from left-
to-right 

• Next bit=0: Go left 
• Next bit=1: Go right 

 
• Allows finding k in O(log(n)) 

 

p’ 

p 

x y 

0 1 

00 01 10 11 

000 001 

010 011 

100 101 

110 111 

x’ y’ 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      45 

Summary 

Linked list Sorted linked list Heap 

getMin() O(n) O(1) O(1) 

deleteMin() O(1) O(1) O(log(n)) 

add() O(1) O(n) O(log(n)) 

merge() O(1) O(n1+n2) O(log(n1)*log(n2)) 

Space n add. pointer n add. pointer n add. pointer 

Heaps can be kept efficiently in 
an array – no extra space, but 

limit to heap size 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      47 

Creating a Heap 

 
• We start with an unsorted list with n elements 
• Naïve algorithm: Start with empty heap and perform n 

additions 
– Obviously requires O(n*log(n))  

• Better: Bottom-Up-Sift-Down 
– Build a tree from the n elements fulfilling the FC (but not HC) 

• Simple fill a tree level-by-level – this is in O(n) 

– Sift-down all nodes on the second-last level 
– Sift-down all nodes on the third-last level 
– … 
– Sift down root 

 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      48 

Analysis 

• Correctness 
– After finishing one level, all subtrees starting in this level are heaps 

because sifting-down ensures FC and HC (see deleteMin()) 
– Thus, when we are done with the first level (root), we have a heap 

• Analysis 
– We look at the cost per level h (1 … log(n)=d) 
– For every node at level h, we need at most d-h operations 
– At level h≠d, there are 2h-1 nodes 

• For nodes at level d, we don’t do anything 

– Over all levels, this yields 

)(2*
2

*
2

22*)(*2)(
1

1

1

1
1

1

1
1

1

1 nOnhnhhhdnT
h

h

d

h
h

d
d

h

hd
d

h

h ==≤==−= ∑∑∑∑
∞

=

−

=

−
−

=

−−
−

=

−



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      49 

Side Note: Heap Sort 

• Heaps also are a suitable data structure for sorting 
• Heap-Sort (a classical sorting algorithm) 

– Given an unsorted list, first create a heap in O(n) 
– Repeat 

• Take the smallest element and store in array in O(1) 
• Re-build heap in O(log(n)) 

– Call deleteMin( root) 

– Until heap is empty – after n iterations 

• Thus: O(n*log(n)) 
– Average-case only slightly better 

• Can be implemented in-place when heap is stored in array 
– See [OW93] for details 

 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      50 

Content of this Lecture 

 
 
 

• Priority Queues 
• Using Heaps 
• Using Fibonacci Heaps 

 
 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      51 

Fibonacci-Heaps (very rough sketch) 

• A Fibonacci Heap (FH) is a forest of (non-binary) heaps 
with disjoint values 
– All roots are maintained in a double-linked list 
– Special pointer (min) to the smallest root 
– Accessing this value (getMin()) obviously is O(1) 

Source: S.Albers, 
Alg&DS, SoSe 2010 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      52 

Maintainance of a FH 

• FHs are maintained in a lazy fashion 
– add(v): We create a new heap with a single element node with 

value v. Add this heap to the list of heaps; adapt min-pointer, if v is 
smaller than previous min 

• Clearly O(1) 

– merge(): Simple link the two root-lists and determine new min (as 
min of two mins) 

• Clearly O(1) 

• Deleting an element (deleteMin()) needs more work 
– Until now, we just added single-element heaps 
– Thus, our structure after n add() is an unsorted list of n elements 
– Finding the next min element after deleteMin() in a naïve 

manner would require O(n) 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      53 

deleteMin() on FH 

• Method is not complicated 
– We first remove the min element 
– We then go through the root-list and merge heaps with the same 

rank (=# of children) until all heaps in the list have different ranks 
– Merging two heaps in O(1): (1) Find the heap with the smaller root 

value; (2) Add it as child to the root of the other heap 

• But analysis is fairly complicated 
– The above method is O(n) in worst case 

• But after every clean-up, the root-list is much smaller than before 
• Subsequent clean-ups need much less time 

– Amortized analysis shows: Average-case complexity is O(log(n)) 
– Analysis depends on the growth of the trees during merge – these 

grow as the Fibonacci numbers 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      54 

Disadvantage 

 
 

• Though faster on average, Fibonacci Heaps have 
unpredictable delays 

• No log(n) upper bound for every operation 
• Not suitable for real-time applications etc. 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      55 

Summary 

Linked list Sorted 
linked list 

Heap Fibonacci 
Heap 

getMin() O(n) O(1) O(1) O(1) 

deleteMin() O(1) O(n) O(log(n)) O(log(n))* 

add() O(1) O(n) O(log(n)) O(1) 

merge() O(1) O(n1+n2) O(log(n)) O(1) 

*: Amortized analysis 


	Foliennummer 1
	Specialized Queues: Priority Queues
	Differences
	Shortest Paths in a Graph
	Assumptions
	Exhaustive Solution
	Redundant work
	Dijkstra’s Idea
	Example for Idea 
	Algorithmic Idea
	Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	A Closer Look
	Content of this Lecture
	Priority Queues
	Other Applications
	Naive Implementations (with |Q|=n)
	Maybe Arrays?
	Content of this Lecture
	Heap-based PQ
	Heaps
	Properties
	Operations
	DeleteMin()
	Analysis - Correctness
	Analysis - Complexity
	Add() on a Heap
	Analysis
	How to Find the Next Free / Last Occupied Node
	Illustration
	Summary
	Creating a Heap
	Analysis
	Side Note: Heap Sort
	Content of this Lecture
	Fibonacci-Heaps (very rough sketch)
	Maintainance of a FH
	deleteMin() on FH
	Disadvantage
	Summary

