
Algorithms and Data Structures

Ulf Leser

Implementing Lists

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 2

Content of this Lecture

• ADT List
• Using an Array
• Using a Linked List
• Using a Double-linked List
• Iterators

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 3

Lists

• Very often, we want to manage a list of „things“
– A list of customer names that have an account on a web site
– A list of windows that are visible on the current screen
– A list of IDs of students enrolled in a course

• Lists are fundamental: There are objects and lists of objects
• Lists are ordered (1st, 2nd, … element), but without any

defined order (lexicographic , numerical, …)
– Unordered lists are typically called sets
– There are also sorted lists – maintaining a defined order

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 4

Representing Lists

• We already discussed an ADT for a list without order

• In the following, we work with ordered lists
– insert(L,t,p): Add element t at pos p of L; if p=|L|+1, add t to L
– delete(L,p): Delete element at position p of list L
– search(L,t): Return first pos of t in L if t∈L; return 0 otherwise
– elementAt(L,p): Return element at position p of L
– We require that the order of elements in the list is not changed by

any of these operations (but the positions will)

type list(T)
operators
 isEmpty: list → bool;
 add: list x T → list;
 delete: list x T → list;
 contains: list x T → bool;
 length: list → integer;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 5

Implementing Lists

• How can we implement this ADT?

• We shall discuss three options
– Arrays
– Linked-Lists
– Double-Linked lists

• We assume values of constant size
– E.g. real, no strings

type list(T)
import integer, bool;
operators
 isEmpty: list → bool;
 insert: list x integer x T → list;
 delete: list x int → list;
 search: list x T → integer;
 elementAt: list x integer → T
 length: list → integer;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 6

Just a Start

• Of course, there are many more issues
– If the list gets too large to fit into main memory

– If the list contains complex objects and should be searchable by
different attributes (first name, last name, age, …)

– If the list is stored on different computers, but should be accessible
through a single interface

– If multiple users can access and modify the list concurrently

– If the list contains lists as elements (nested lists)

– …

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 7

Just a Start

• Of course, there are many more issues
– If the list gets too large to fit into main memory

• See databases, caching, operating systems

– If the list contains complex objects and should be searchable by
different attributes (first name, last name, age, …)

• See databases; multidimensional index structures

– If the list is stored on different computers, but should be accessible
through a single interface

• See distributed algorithms, cloud-computing, peer-2-peer

– If different users can access and modify the list concurrently
• See databases; transactions; parallel/multi-threaded programming

– If the list contains lists as elements (nested lists)
• See trees and graphs

– …

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 8

Content of this Lecture

• ADT List
• Using an Array
• Using a Linked List
• Using a Double-linked List
• Iterators

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 9

Lists based on Arrays

• Probably the simplest method
– Fix a maximal number of elements max_length
– Access elements by their offset within the array
– Array must be dense – no “holes”
– We need to maintain the actual size

of the list – which positions are valid?
– We may insert only within this size

• Or immediately right for size

– We may delete only within size

class list {
 size: integer;
 a: array[1..max_length]

 func void init() {
 size := 0;
 }
 func bool isEmpty() {
 if (size=0)
 return true;
 else
 return false;
 end if;
 }
}

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 10

Insert, Delete, Search (Array of integer)

• Complexity (worst-case)?
– Insert: O(n)
– Delete: O(n)
– Search: O(n)
– elementAt: O(1)

func void insert (t real, p integer) {
 if size = max_length then
 return ERROR;
 end if;
 if p!=size+1 then
 if (size<p) or (p<1) then
 return ERROR;
 end if;
 for i := size downto p do
 A[i+1] := A[i];
 end for;
 end if;
 A[p] := t;
 size := size + 1;
}

func void delete(p integer) {
 if (size<p) or (p<1) then
 return ERROR;
 end if;
 for i := p .. size-1 do
 A[i] := A[i+1];
 end for;
 size := size - 1;
}

func int search(t real) {
 for i := 1 .. size do
 if A[i]=t then
 return i;
 end if;
 end for;
 return 0;
}

Problem!

func int elementAt(p int) {
 if p<1 or p>size then
 return ERROR;
 else
 return A[p];
 end if;
}

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 11

Properties

• We can access position p in constant time, but need to
move O(n) elements to insert/delete an element
– If all positions appear with the same probability, we expect n/2

operations on average (still O(n))
– In stacks or queues, insert/delete positions do not have the same

probabilities
– Unbalanced: Inserting at the end of an array costs O(1), inserting

at the start costs O(n) operations

• Disadvantages
– If max_length too small, we run into errors
– If max_length too large, we waste space

• Help: Dynamic arrays (with other disadvantages)
– See later

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 12

Arrays of Strings

• We assumed that every element of the list requires
constant space
– Elements are stored one-after-the-other in main memory
– Element at position p can be access directly by computing the

address of the memory cell

• What happens for other data types, e.g. strings?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 13

Arrays of Strings

• We assumed that every element of the list requires
constant space
– Elements are one-after-the-other in main memory
– Element at position p can be access directly by computing the

address of the memory cell

• What happens for other data types, e.g. strings?
– Each string actually is a list itself

• Implemented in whatever way
(arrays, linked lists, …)

– Thus, we are building a list of lists
– Array A holds pointer to strings
– Pointers require constant space

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 14

Summary

Array Linked list Double-linked l.

insert O(n)

delete O(n)

search O(n)

add anywhere to list O(1)

elementAt O(1)

Space Static, upfront

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 15

Content of this Lecture

• ADT List
• Using an Array
• Using a Linked List
• Using a Double-linked List
• Iterators

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 16

Linked Lists (here: of real values)

• The static space allocation is a severe problem of arrays
• Alternative: Linked lists

– Every list element is a tuple (value, next)
– value is the value of the element
– next is a pointer to the next

element in the list

• Disadvantage: O(n) additional
space for all the pointers
– Space complexity still O(n), but

practically this makes a true difference

• Certain properties make slightly
different operations attractive

class list {
 first: element;

func void init() {
 first := null;
 }
func bool isEmpty() {
 if (first=null)
 return true;
 else
 return false;
 end if;
 }
}

class element {
 value: real;
 next: element;
}

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 17

Search

• Return the first element with value=t, or null if no such
element exists
– Note: Here we return the element, not the position of the element
– Makes sense: Returned ptr necessary e.g. to change the value

func element search(t real) {
 e := first;
 if e.value = t then
 return e;
 end if;
 while (e.next != null) do
 e := e.next;
 if (e.value = t) then
 return e;
 end if;
 end while;
 return null;
}

first

first

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 18

Search

• Return the first element with value=t, or null if no such
element exists

func element search(t real) {
 if first=null then
 return null;
 end if;
 e := first;
 if e.value = t then
 return e;
 end if;
 while (e.next != null) do
 e := e.next;
 if (e.value = t) then
 return e;
 end if;
 end while;
 return null;}

first

first

first=null

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 19

Insert

func void insert (t real, p integer) {
 new := new element (t, null);
 e := first;
 if e=null then
 if p≠1 then
 return ERROR;
 else
 first := new;
 return;
 end if;
 end if;
 for i := 1 .. p-2 do
 if (e.next=null) then
 return ERROR;
 else
 e := e.next;
 end if;
 end for;
 new.next := e.next;
 e.next := new;
}

first

p=3

first

t

• insert(t, p) as insert(t, p-1) – insert after pth position

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 20

InsertAfter

• In linked lists, a slightly different operation also makes
sense: We insert after element t, not at position p
– E.g., we search an element p and want to

 insert a new element right after p

• No difference in complexity for arrays,
but large difference for linked lists

func void insertAfter (t real, p element) {
 new := new element (t, null);
 new.next := p.next;
 p.next := new;
}

first

t

p

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 21

Delete

func void delete(t real, p integer) {
 e := first;
 if (e=null) or (p<1) then
 return ERROR;
 end if;
 for i := 1 .. p-1 do
 if (e.next=null) then
 return ERROR;
 else
 e := e.next;
 end if;
 end for;
 ? PROBLEM ?
}

• Delete the p’th element of the list

first

p=2 e

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 22

Delete – Bug-free?

func void delete(t real, p integer) {
 e := first;
 if (e=null) or (p<1) then
 return ERROR;
 end if;
 for i := 1 .. p-1 do
 last := e;
 if (e.next=null) then
 return ERROR;
 else
 e := e.next;
 end if;
 end for;
 last.next := e.next;
}

• Delete the p’th element of the list

• What if p=1?

first

p=2 e

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 23

Delete – Bug-free

func void delete(t real, p integer) {
 e := first;
 if (e=null) or (p<1) then
 return ERROR;
 end if;
 if p=1 then
 first := e.next;
 return;
 end if;
 for i := 1 .. p-1 do
 last := e;
 if (e.next=null) then
 return ERROR;
 else
 e := e.next;
 end if;
 end for;
 last.next := e.next;
}

• Delete the p’th element of the list

first

p=2 e

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 24

Delete – faster

func void delete(t real, p integer) {
 e := first;
 if (e=null) or (p<1) or (p>size) then
 return ERROR;
 end if;
 if p=1 then
 first := e.next;
 return;
 end if;
 for i := 1 .. p-1 do
 last := e;
 e := e.next;
 end for;
 last.next := e.next;
}

• Delete the p’th element of the list

first

p=2 e

Stop: We neither
defined or maintain

a list size

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 25

DeleteThis

• In linked lists, a slightly different operation sometimes
makes more sense: Delete element t, not at position p
– Again: We search an element t and then

want to delete exactly t

• Big problem
– If we have t, we cannot directly access the

predecessor s of t (the s with s.next=t)
– We need to go through the entire list

to find t (again)
– Thus, deleteThis has the same complexity as

delete

– Remedy not so easy: If we found t, we
(clients) don’t want to keep predecessor of t

first

t

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 26

Two More Issues

• Show me the list

• What happens to deleted elements t?
– In most languages, the space occupied by t remains blocked
– These languages offer an explicit “dispose” which you should use
– Java: “Dangling” space is freed automatically by garbage collector

• After some (rather unpredictable) time

func String print() {
 if (first=null) then
 return “”;
 end if;
 tmp := “”;
 while (e≠null) do
 tmp := tmp+e.value;
 e := e.next;
 end for;
 return tmp;
}

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 27

Summary

Array Linked list Double-linked l.

Insert O(n) O(n)

InsertAfter O(n) O(1)

Delete O(n) O(n)

DeleteThis O(n) O(n)

Search O(n) O(n)

Add to list O(1) O(1)

elementAt O(1) O(n)

Space Static n+1 add. pointers
How?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 28

Double-Linked List

• Two modifications
– Every element holds pointers to next and to previous element
– List holds pointer to first and to last element

• Advantages
– deleteThis can be implemented in O(1)
– Concatenation of lists can be implemented in O(1)
– Addition/removal of last element can be implemented in O(1)

• Disadvantages
– Requires more space

• Beware of the space necessary for a pointer on a 64bit machine

– Slightly more complicated operations

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 29

Summary

Array Linked list Double-linked l.

Insert O(n) O(n) O(n)

InsertAfter O(n) O(1) O(1)

Delete O(n) O(n) O(n)

DeleteThis O(n) O(n) O(1)

Search O(n) O(n) O(n)

Add to start of list O(n) O(1) O(1)

Add to end of list O(1) O(n) O(1)

elementAt O(1) O(n) O(n)

concatenate O(n) O(n) O(1)

Space Static n+1 add. pointers 2(n+1)+2 add.
point.

Both first have to search
– critical operation

Very important
advantage

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 30

Outlook

• Can we do any better in search?

• Yes – if we sort the list on the searchable value
• Yes – if we know which elements are searched most often

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 31

Content of this Lecture

• ADT List
• Using an Array
• Using a Linked List
• Using a Double-linked List
• Iterators

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 32

Example

Meier Berlin

Müller Hamburg

Meyer Dresden

Michel Hamburg

Schmid Berlin

Schmitt Hamburg

Schmidt Wanne-Eikel

Schmied Hamburg

Berlin 2

Hamburg 4

Dresden 1

Wanne-Eikel 1

• Assume we have a list of customers with home addresses
• We want to know how many customers we have per city

– This is a “group-by” in database terms

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 33

Using a List

func void group_by(customers list;
 g groups) {
 if customers.isEmpty() then
 return;
 end if;
 c : customer;
 for i:= 1 .. customers.size do
 c := customers.elementAt(i);
 g.increment(c.city);
 end for;
}

class group {
 count: integer;
 city: string;
}

class groups
import group
…
increment: …

class customer{
 name: string;
 city: string;
}

• Assume we have a data type groups which maintains a list
of city and offers an operation increment(city)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 34

Complexity?

• We run once through costumers: O(n)
• Complexity of elementAt depends on list implementation
• For linked lists, this gives O(n2) in total

– Only O(n) for arrays, but these had other problems

• Not satisfactory: We are doing unnecessary work
– We only need to follow pointers – but driven by the client
– One useful access pattern: Access all elements one after the other
– But our data type “list” has no state, i.e., no “current” position
– Without in-list state, the state (variable i) must be managed

outside the list, and the list must be put to the right state again for
every operation (elementAt)

– Remedy: Stateful list ADT

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 35

Stateful Lists

type slist(T)
import
 integer, bool;
operators
 isEmpty: slist → bool;
 setState: slist x integer → slist;
 insertHere: slist x T → slist;
 deleteHere: slist x T → slist;
 getNext: slist → T;
 search: slist x T → integer;
 size: slist → integer;

• Impl: List holds an internal
pointer p_current
– This is the state

• p_current can be set to
position p using setState()

• insertHere inserts after
p_current, deleteHere
deletes p_current

• getNext() returns element
at position p_current and
increments p_current by 1

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 36

Using Stateful Lists

• Advantage: getNext() can be implemented in O(1)
– Using linked lists or arrays

func void group_by(customers stateful_list;
 g groups) {
 if customers.isEmpty() then
 return;
 end if;
 c : customer;
 customers.setState(1);
 for i:= 1 .. customers.size-1 do
 c := customers.getNext();
 groups.increment(c.city);
 end for;
 print groups;
}

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 37

Iterators

• slist only allows to manage one state per list
• What if multiple threads want to read the list concurrently?

– Every thread needs its own pointer
– These pointers cannot be managed easily in the (one and only) list

itself

• Iterators
– An iterator is an object created by a list which holds list state

• One p_current per iterator

– Multiple iterators can operate independently on the same list
– Implementation of iterator depends on implementation of list, but

can be kept secret from the client
– Iterators know about list states (more exposure), but clients don’t

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 38

Using an Iterator

func void group_by(customers stateful_list
 g groups) {
 if customers.isEmpty() then
 return;
 end if;
 c : customer;
 it := customers.getIterator();
 while it.hasNext() do
 c := it.getNext();
 groups.increment(c.city);
 end while;
 print groups;
}

class iterator_for_linked_list (T) {
 p_current: T;

 func iterator init(l list) {
 p_current := l.getFirst();
 }

 func bool hasNext() {
 return (p_current ≠ null);
 }

 func T getNext() {
 if p_current = null then
 return ERROR;
 end if;
 tmp := p_current;
 p_current := p_current.next;
 return tmp;
 }
}

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 39

Take Home Message

• Finding robust ADTs that can remain stable for many

applications is an art
– See the complexity of standardization processes, e.g. Java

community process
– Growing trend to standardize ADTs / APIs

• Different implementations of an ADT yield different
complexities of operations

• Therefore, one needs to look “behind” the ADT if efficient
implementations for specific operations are required

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 40

Exemplary Questions

• Give pseudo-code for an efficient implementation to delete

all elements with a given value v in a (a) linked list, (b)
double-linked list

• What is the complexity of searching in an array (a) value at
given position p; (b) value at the end of the list; (c) all
positions with a given value

• A skip list is a linked list where every element also holds a
pointer to the 1st, 2nd, 4th, 8th, … log(n)th successor
element. (a) Analyze the space complexity of a skip list.
What is the complexity of (b) accessing the ith element and
of (c) accessing the first element with value v?

	Foliennummer 1
	Content of this Lecture
	Lists
	Representing Lists
	Implementing Lists
	Just a Start
	Just a Start
	Content of this Lecture
	Lists based on Arrays
	Insert, Delete, Search (Array of integer)
	Properties
	Arrays of Strings
	Arrays of Strings
	Summary
	Content of this Lecture
	Linked Lists (here: of real values)
	Search
	Search
	Insert
	InsertAfter
	Delete
	Delete – Bug-free?
	Delete – Bug-free
	Delete – faster
	DeleteThis
	Two More Issues
	Summary
	Double-Linked List
	Summary
	Outlook
	Content of this Lecture
	Example	
	Using a List
	Complexity?
	Stateful Lists
	Using Stateful Lists
	Iterators
	Using an Iterator
	Take Home Message
	Exemplary Questions

