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Abstract. Integrated access to multiple distributed and autonomous
RDF data sources is a key challenge for many semantic web applications.
As a reaction to this challenge, SPARQL, the W3C Recommendation
for an RDF query language, supports querying of multiple RDF graphs.
However, the current standard does not provide transparent query fed-
eration, which makes query formulation hard and lengthy. Furthermore,
current implementations of SPARQL load all RDF graphs mentioned in
a query to the local machine. This usually incurs a large overhead in
network traffic, and sometimes is simply impossible for technical or le-
gal reasons. To overcome these problems we present DARQ, an engine
for federated SPARQL queries. DARQ provides transparent query ac-
cess to multiple SPARQL services, i.e., it gives the user the impression
to query one single RDF graph despite the real data being distributed
on the web. A service description language enables the query engine to
decompose a query into sub-queries, each of which can be answered by
an individual service. DARQ also uses query rewriting and cost-based
query optimization to speed-up query execution. Experiments show that
these optimizations significantly improve query performance even when
only a very limited amount of statistical information is available. DARQ
is available under GPL License at http://darq.sf.net/.

1 Introduction

Many semantic web applications require the integration of data from distributed,
autonomous data sources. Until recently it was rather difficult to access and
query data in such a setting because there was no standard query language
or interface. With SPARQL [1], a W3C Recommendation for an RDF query
language and protocol, this situation has changed. It is now possible to make
RDF data available through a standard interface and query it using a standard
query language. The data does not need be stored in RDF but can be created on
the fly, e.g. from a relational databases or other non-RDF data sources (see D2R
Server1 and SquirrelRDF2). We expect that more and more content provider
will make their data available via a SPARQL endpoint. Nevertheless, it is still
difficult to integrate data from multiple data sources. RDF data integration is
1 D2R Server: http://www.wiwiss.fu-berlin.de/suhl/bizer /d2r-server/
2 SquirrelRDF: http://jena.sf.net/SquirrelRDF/



often done by loading all data into a single repository and querying the merged
data locally. In many cases this will not be feasible for legal or technical reasons.
Often it will not be allowed to create copies of the whole data source due to
copyright issues. Possible technical reasons are that local copies are not up-to-
date if the data sources change frequently, that data sources are too big, or that
the RDF instances are created on-the-fly from non-RDF data, like relational
databases, web services, or even websites. This clearly shows the need for virtual
integration of RDF datasets.

In this paper, we present DARQ3, a query engine for federated SPARQL
queries. It provides transparent query access to multiple, distributed endpoints as
if querying a single RDF graph. We introduce service descriptions that describe
the capabilities of SPARQL endpoints and a query optimization algorithm that
builds a cost-effective query plan considering limitations on access patterns [2].
Sources with limited access patterns require some some variables in a query to
be bound or fail to answer the query.

Related work. Data integration has been a research topic in the field
of database systems for a long time. Systems providing a single interface to
many underlying data sources are generally called federated information sys-
tems [3]. Solutions range from multi-database query languages (MDBQL) such
as SchemaSQL [4] to federated databases [5] to mediator based information sys-
tems (MBIS) [6]. While multi-database query languages require that the user
explicitly specifies the used data sources in the query MBIS hide the federation
from the user by providing a single, unified schema. In this notation, SPARQL
currently can be considered as a MDBQL for RDF allowing the user to specify
the graphs to be used in the query. In contrast, DARQ offers source transparency
to the user, but unlike MBIS it does not assume an integrated schema.

In [7] Stuckenschmidt et. al theoretically describe how to extend the Sesame
RDF repository to support distributed SeRQL queries over multiple Sesame RDF
repositories. They use a special index structure to determine the relevant sources
for a query. To this end, they restricted themselves to path queries. In [8] the au-
thors describe a system for SPARQL queries over multiple relational databases.
To our best knowledge there exists no system that supports SPARQL query
federation for multiple regular SPARQL endpoints. Also, none of the described
systems uses service descriptions to declaratively describe the data sources nor
do they support limitations on access patterns. A special characteristic of DARQ
is that it strongly relies on standards and is compatible with any endpoint that
supports the SPARQL standards. There is no other need for cooperation except
of the support of the SPARQL protocol.

Research on query optimization for SPARQL includes query rewriting [9] or
basic reordering of triple patterns based on their selectivity [10]. Optimization
for queries on local repositories has also focused on the use of specialized in-
dices for RDF or efficient storage in relational databases, e.g. [11, 12]. However,
none of the approaches targets SPARQL queries across multiple sources. There
has been a lot of research on query optimization in the context of databases

3 Distributed ARQ, as an extension to ARQ (http://jena.sourceforge.net/ARQ/ )



SELECT ?name ?mbox WHERE {
?x f o a f : name ?name .
?x f o a f :mbox ?mbox .
FILTER regex (?name , ”ˆTim” ) && regex (?mbox , ”w3c” )

} ORDER BY ?name LIMIT 5

Listing 1.1. Example SPARQL Query

and federated information systems. An excellent overview of distributed query
processing techniques can be found in [13]. In this paper, we show that exist-
ing techniques from relational systems, such as query rewriting and cost based
optimization for join ordering can be adopted to federated SPARQL. We also
propose a way to estimate the result sizes of SPARQL queries with only very
few statistical information.

Structure of this paper. The rest of the paper is structured as follows.
Section 2 gives a brief introduction to the SPARQL query language. In Section
3 we show the architecture of DARQ, give an introduce service descriptions and
describe the used query planning and optimization algorithms we use in our
current implementation. We show initial results of the evaluation of the system
in Section 4 and conclude and discuss future directions in Section 5.

2 Preliminaries

Before we describe our work on federated queries we give a short introduction
to the SPARQL query language and the operators of a SPARQL query that
are considered for this report. For a more detailed introduction to RDF and
SPARQL we refer the interested reader to [14, 1, 15]. In the following we use the
definitions from the SPARQL Recommendation in [1].

A SPARQL query Q is defined as tuple Q = (E,DS, R). Basis of SPARQL
query is an algebra expression E that is evaluated with respect to a RDF graph
in a dataset DS. The results of the matching process are processed according
to the definitions of the result form R (SELECT, CONSTRUCT, DESCRIBE,
ASK). The algebra expression E is build from different graph patterns and can
also also include solution modifiers, such as PROJECTON, DISTINCT, LIMIT,
or ORDER BY.

The simplest graph pattern defined for SPARQL is the triple pattern. A triple
pattern t is similar to a RDF triple but allows the usage of variables for subject,
predicate, and object:

t ∈ TP = (RDF -T ∪ V )× (I ∪ V )× (RDF -T ∪ V )

with RDF -T being the set of RDF Terms (RDF Literals and Blank Nodes), I
being a set of all IRIs, and V a set of all variables [1].

A basic graph pattern BGP is defined as a set of triple patterns BGP =
{t1..tn} with t1..tn ∈ TP . It matches a subgraph if all contained triple patterns
match. Basic graph patterns can be mixed with value constraints (FILTER)



and other graph patterns. The evaluation of basic graph patterns and value
constraints is order independent. This means, a structure of two basic graph
patterns BGP1 and BGP2 separated by a constraint C can be transformed into
one equivalent basic graph pattern followed by the constraint. We refer to a basic
graph pattern followed by one or more constraints as filtered basic graph pattern
(FBGP ).

Example 1. Listing 1.1 shows a SPARQL query with one filtered basic graph
pattern that retrieves the names and email addresses of persons whose name
start with ”Tim” and email address contains ”w3c”. The results are ordered by
the name, the number of results is limited to five.

SPARQL furthermore defines other types of graph patterns such as GRAPH,
UNION, or OPTIONAL. We omit these patterns here, because DARQ works on
basic graph patterns as we will see in Section 3.2. Note however, that the engine
is able to process all other patterns by distributing the FBGPs contained in
these patterns and doing local post-processing. This means that the FBGPs in
every of these pattens are handled separately, i.e. the scope for distribution and
cost-based optimization is always limited to one FBGP. DARQ correctly handles
the order-dependent OPTIONAL pattern, but may waste resources transferring
unnecessary results when OPTIONAL is used to express negation as failure.

3 DARQ: Federated SPARQL Queries

To provide transparent query access to multiple data sources we adopt an ar-
chitecture of mediator based information systems [6] as shown in Figure 1. The
DARQ query engine has the role of the mediator component. Non-RDF data
sources can be wrapped with tools such as D2R and SquirrelRDF. A DARQ
query engine itself can work as SPARQL endpoint and may be integrated by
another instance of DARQ. Data sources are described by service descriptions
(see Section 3.1). The query engine uses this information for query planning and
optimization. In contrast to MBIS the schema is not fixed and does not need to
be specified, but is determined by the underlying data sources.

A query is processed in 4 stages:

1. Parsing. In the first stage the query string is parsed into a tree model of
SPARQL. The DARQ query engine reuses the parser shipped with ARQ.

2. Query Planning. In the second stage the query engine decomposes the
query and builds multiple sub-queries according to the information in the
service descriptions, each of which can be answered by one known data source
(see Section 3.2).

3. Optimization. In the third stage, the query optimizer takes the sub-queries
and builds an optimized query execution plan (see Section 3.3).

4. Query Execution. In the fourth stage, the query execution plan is ex-
ecuted. The sub-queries are sent to the data sources and the results are
integrated.



Fig. 1. DARQ - integration architecture

3.1 Service Descriptions

To find the relevant information sources for the different triples in a query and to
decompose the query into sub-queries the query engine needs information about
the data sources. To this end, we introduce service descriptions which provide
a declarative description of the data available from an endpoint and allow the
definition of limitations on access patterns. Furthermore, service descriptions can
include statistical information used for query optimization. Service Descriptions
are represented in RDF.

Data Description A service description describes the data available from
a data source in form of capabilities. Capabilities define what kind of triple
patterns can be answered by the data source. The definition of capabilities is
based on predicates. The capabilities of a data source D are a set CD of tuples
c = (p, r) ∈ CD, where p is a predicate existing in D and r is a constraint on sub-
jects and objects. This constraint is a regular SPARQL filter expression that en-
ables a more precise source selection, e.g. we can express that a data source only
stores data about specific types of resources. We denote the constraint as func-
tion r(subject, object) with r : (RDF -T ∪ V )× (RDF -T ∪ V )→ {true, false}.
For example, the constraints can be used for horizontal partitioning. It is possi-
ble to define a constraint that says that a Service A can only answer queries for
names starting with a letter from A to R, whereas another service can answer
queries for names starting with a letter from Q to Z.

Limitations on Access Patterns Some data sources have limitations on ac-
cess patterns [2]. For example, a wrapper that transforms results from a web
form into RDF may require some input values that can be entered into the form
to compute the results. Another example is a wrapper for an LDAP server may
require that the name of a person or their email address is always included in
the query because the server owner does not allow other queries.



DARQ supports the definition of limitations on access patterns in the service
descriptions in form of patterns that must be included in a query. Because pred-
icates must be bound we use them as basis for the pattern definition. Let LD be
a set of limitations on access patterns for data source D and (S, O) ∈ LD be one
pattern with S and O being sets of predicates that must have bound subject (S)
or bound objects (O).

Source D could contribute to the query answer of a query with graph pattern
P if it satisfies at least one of the defined access patters for D. Let bound(x) be
a function that returns false if x is a variable and true otherwise. An access
pattern (S, O) is satisfied if

(∀ps ∈ S\O : ∃(s, ps, o) ∈ P : bound(s))
∧(∀po ∈ O\S : ∃(s, po, o) ∈ P : bound(o))

∧(∀pb ∈ S ∩O : ∃(s, pb, o) ∈ P : bound(s) ∧ bound(o))

Example 2. To come back to the example of the LDAP server, the service
description in this example would contain two access patterns, (S1, O1) and
(S2, O2), with S1 = S2 = ∅ and O1 = {foaf : name} O2 = {foaf : mbox}

Statistical Information Defining statistical information about the data avail-
able from a data source helps the query optimizer to find a cost-effective query
execution plan. Service descriptions include the total number of triples Ns in
data source D and optionally information for each capability (p, r) ∈ CD: (1) The
number of triples nD(p) with the predicate p in D, (2) the selectivity sselD(p) of
a triple pattern with predicate p if the subject is bound (default= 1

nD(p) ), and (3)
the selectivity oselD(p) of a triple pattern with predicate p if the object is bound
(default=1). We deliberately use only these simple statistics because we expect
every data source to be able to provide them, or at least rough estimations.
More precise statistics such as histograms would be preferable but will not be
available from many sources. Future work should explore what other statistics
are required for more complex cost-models and how they can be estimated. In
this context, aggregate functions, such as count, could be a valuable addition to
future SPARQL version.

RDF Representation Service Descriptions are represented in RDF. Listing
1.2 shows an example service description for a FOAF data source, e.g. an LDAP
Server. The data source defined in the example can answer queries for foaf:name,
foaf:mbox and foaf:weblog. Objects for a triple with predicate foaf:name must
always start with a letter from A to R. In total it stores 112 triples. The data
source has limitations on access patters, i.e. a query must at least contain a
triple pattern with predicate foaf:name or foaf:mbox with a bound object. More
detailed examples of service descriptions can be found at http://darq.sf.net/



[ ] a sd : S e rv i c e ;
sd : c a p ab i l i t y [ sd : p r ed i c a t e f o a f : name ;

sd : o b j e c t F i l t e r ”REGEX(? object , ” ˆ [A−R] ” ) ” ;
sd : t r i p l e s 51 ] ;

sd : c a p ab i l i t y [ sd : p r ed i c a t e f o a f :mbox ;
sd : t r i p l e s 51 ] ;

sd : c a p ab i l i t y [ sd : p r ed i c a t e f o a f : weblog ;
sd : t r i p l e s 10 ] ;

sd : t o t a lT r i p l e s ”112” ;
sd : u r l ”EndpointURL” ;
sd : r equ i r edBind ings [ sd : ob jectBind ing f o a f : name ] ;
sd : r equ i r edBind ings [ sd : ob jectBind ing f o a f :mbox ] .

Listing 1.2. Example Service Description

3.2 Query Planning

When querying multiple data sources it is necessary to decide which data source
can contribute to answer a query. The process of finding relevant sources and
feasible sub-queries is referred to as query planning. In this section we de-
scribe the query planning algorithm used by DARQ. Query planning is based
on the information provided in the service descriptions. In the following let
R = {(d1, C1), .., (dn, Cn)} be a set of data sources d1..dn and their capabilities
C1..Cn, where Ci = {(pi,1, ri,1)..(pi,m, ri,m)}.

Source Selection A SPARQL query contains one or more filtered basic graph
patterns each containing the actual triple patterns. Query Planning is performed
separately for each filtered basic graph pattern. The algorithm for finding the
relevant data sources for a query simply matches all triple patterns against the
capabilities of the data sources. The matching compares the predicate in a triple
pattern with the predicate defined for a capability and evaluated the constraint
for subject and object. Because matching is based on predicates, DARQ currently
only supports queries with bound predicates.

Let BGP be a set of triple patterns in a filtered basic graph pattern. The
result of the source selection is a set of data sources Dj for each triple pattern
tj = (sj , pj , oj) ∈ BGP with

Dj = {d|(d, C) ∈ R ∧ ∃(pj , r) ∈ C : r(sj , oj) = true}

Building Sub-Queries The results from source selection are used to build
sub-queries that can be answered by the data sources. Sub-queries consist of one
filtered basic graph pattern per data source. We represent a sub-query as triple
(T, C, d), where T is a set of triple patterns, C is a set of value constraints and
d is the data source that can answer the sub-query. Algorithm 1 shows how the
sub-queries are generated. If a triple pattern matches exactly one data source
(Di = {d}) the triple will be added to the set of a sub-query for this data source.
All triples in this set can later be sent to the data source in one sub-query. If a
triple matches multiple data sources the triple must be sent individually to all
matching data sources in separate sub-queries.



Example 3. Let data source A and B be two data sources with the capabilities
(name,true) and (mbox,true). A stores the triple (a, name,"Tim"), B stores the
triple (a ,mbox,"Tim@x.y"). The query shown in Listing 1.1 will return no
results if sent to A and B with both triple patterns or the correct result if triple
patterns are sent in separate sub-queries and the results are joined afterwards.

Algorithm 1 Sub-query generation
Require: T = {t1, .., tn}, // set of triple patterns

D = {D1, .., Dn} // sets of data sources matching to the triple patterns
1: queries = ∅ , separateQueries = ∅
2: for each ti ∈ T do
3: if Di = {d} then
4: q = queries.getQuery(d)
5: if q not null then
6: q.T = q.T + ti

7: else
8: queries = queries + ({ti} , {} , d)
9: end if

10: else
11: for each dj ∈ Di do
12: separateQueries = separateQueries + ({ti} , {} , dj)
13: end for
14: end if
15: end for
16: return queries ∪ seperateQueries // Return all queries

3.3 Optimization

After query planning the query plan consists of multiple sub-queries. The task of
the query optimizer is to build a feasible and cost-effective query execution plan
considering limitations on the access patterns. To build the plan we use logical
and physical query optimization.

Logical Optimization Logical query optimization uses equalities of query ex-
pressions to transform a logical query plan into an equivalent query plan that
is likely to be executed faster or with less costs. The current implementation of
DARQ uses logical query optimization in two ways. First, we use rules based on
the results in [15] to rewrite the original query before query planning so that
basic graph patterns are merged whenever possible and variable are replaced by
constants from filter expressions.

Example 4. Listing 1.3 shows the original query submitted by the user. There
are two separate Basic Graph Patterns, each with one triple pattern. In the



rewritten query that is shown in Listing 1.4 the two patterns are merged. Also,
variables that occur in filters with an equal operator are substituted. In our
example, ?name is substituted by "Tim".

SELECT ?mbox WHERE {
{ ?x f o a f : name ?name . }
FILTER (?name = ”Tim” )

&& regex (?mbox , ”w3c” )
{ ?x f o a f :mbox ?mbox . }

}

Listing 1.3. Query before rewriting

SELECT ?mbox WHERE {
?x f o a f : name ”Tim” .
?x f o a f :mbox ?mbox .
FILTER regex (?mbox , ”w3c” )

}

Listing 1.4. Query after rewriting

Second, we move possible value constraints into the sub-queries to reduce the
size of intermediate results as early as possible. Let Q = (T, C, d) be a sub-query
and FGP = (T ′, C ′) a filtered basic graph pattern. The value constraint C ′ can
be moved to the sub-query if all variables in the constraint are also used in the
triple patterns in the sub-query. Filters that contain variables from more than
one sub-query and that cannot be split using a limited set of rules are applied
locally inside the DARQ query engine.

Example 5. Listing 1.1 shows a query with a conjunctive filter on two attributes.
Let us assume that the two triple patterns are split into two sub-queries for
services A and B. In this case, the single filter cannot be moved into the sub-
queries because one of the variables would be unbound. However, to benefit
from filtering at the remote site the conjunction can be split into two filters
FILTER regex(?name, "^Tim") and FILTER regex(?mbox, "w3c") that can
then be moved into the sub-queries. If the optimizer is not able to split a filter
using its limited set of rewriting rules, it will apply the filter locally, inside
DARQ, as soon as all used variables are bound.

Physical Optimization Physical query optimization has the goal to find the
’best’ query execution plan among all possible plans and uses a cost model to
compare different plans. In case of federated queries with distributed sources
network latency and bandwidth have the highest influence on query execution
time. Thus, the main goal in our system is to reduce the amount of transferred
data and to reduce the number of transmissions, which will lead to less transfer
costs and faster query execution. We use the expected result size as the cost
factor of sub-queries.

We use iterative dynamic programming for optimization considering limita-
tions on access patterns. Currently, we support two join implementations:

– nested-loop join (./) The nested-loop join is the simplest join implemen-
tation. For every binding in the outer relation, we scan the inner relation
and add the bindings that match the join condition to the result set.

– bind join (./B)The bind join was introduced in [16]. Basically it is a nested
loop join where intermediate results from the outer relation are passed to the



inner to be used as filter. This means that DARQ sends out the sub-query for
the inner relation multiple times with the join variables bound. We use the
bind join for data sources with limitations on access patterns. Furthermore,
it can help to drastically reduce the transfer costs if the unbound query
would return a large result set.

We calculate the result size of joins with

|R(q1 ./ q2)| = |R(q1)| |R(q2)| sel12
where q1 and q2 are the joined query plan elements, i.e sub-query or join,

|R(q)| is the result size of q, and sel12 is a selectivity factor for the join attributes.
For DARQ, we currently set sel12 = 0.5 because the current statistics in the
service descriptions do not provide enough information for a better estimation.

The (transfer) costs of a nested loop join is estimated as

C(q1 ./ q2) = |R(q1)| ct + |R(q2)| ct + 2cr

while the costs of a bind join are estimated as

C(q1 ./B q2) = |R(q1)| ct + |R(q1)| cr + |R(q′2)| ct

with ct and cr being the transfer costs for one result tupel4 and one query,
respectively, and q′2 being the query with variables bound with values of a result
tuple from q1.

Query result size estimation The result size estimation for a sub-query is based
on the statistics provided in the service descriptions. Currently, service descrip-
tions include for each capability (p, r) ∈ Cd of service d: (1) the number of
triples nd(p) with the predicate p in data source d, (2) the average selectivity
sseld(p) if the subject is bound, and (3) the average selectivity oseld(p) if the
object is bound. With this information we estimate the result size of a query
with a single triple pattern (s, p, o) that is sent to a service d using the function
costd : TP × V → N with

costsd((s, p, o), b) =


nd(p) if ¬bound(s, b) ∧ ¬bound(o, b),
nd(p) ∗ oseld(p) if ¬bound(s, b) ∧ bound(o, b),
nd(p) ∗ sseld(p) if bound(s, b) ∧ ¬bound(o, b),
0.5 if bound(s, b) ∧ bound(o, b).

where b is a set of previously bound variables and bound(x, b) is a function
that returns true if x is bound given the bound variables in b and false otherwise.

Estimating the result size of a combination of two or more triple patterns
is more complex. Note that adding a triple pattern to a query can restrict the
result size or introduce new results because of a join. Adding more triple patterns
4 For simplicity, we currently disregard the specific tuple size



with the same subject will not introduce new results, but rather reduce the
result size. In contrast, adding triple pattern with another subject potentially
increases the result size. Thus, we start with estimating the result size for all
triple patterns with the same subject or subject variable. Let T = {t1, ..., tn} be
a set of triple patterns where t1, ...tn all have the same subject. Triple patterns
with a bound object restrict the possible solutions. We use the minimum function
over all triple patters with a bound object to estimate an upper bound for the
number of subjects. Note that this is different from the attribute independence
assumption that is widely used in SQL query optimization [17]. Triple patterns
with an unbound object can introduce new bindings for the used object variable.
The overall result size for the set of triple patterns is the product of number of
subjects and the result sizes of all triple patterns with unbound object. Using the
cost function for a single triple pattern we estimate the result size of as follows:

costsd(T, b) = min
v∈Tbound

(costsd(v, b)) ∗
∏

u∈Tunbound

costsd(u, b)

with

Tbound = {t|t = (s, p, o) ∈ T ∧ bound(o)} and
Tunbound = {t|t = (s, p, o) ∈ T ∧ ¬bound(o)}

Finally, we must combine the groups of triples with one subject to to compute
the estimated result size for the complete sub-query. The result sizes of the
single triple groups strongly depend of the already bound variables. Algorithm
2 builds groups of triple patterns with same subjects and then incrementally
selects the group with the minimal result size considering the variables bound
by the previously selected groups. We calculate the overall costs of the query as
the product of the result sizes of all groups.

4 Evaluation

In this section we evaluate the performance of the DARQ query engine. The
prototype was implemented in Java as an extension to ARQ5. We used a subset
of DBpedia6. DBpedia contains RDF information extracted from Wikipedia.
The dataset is offered in different parts. The names of the parts we used can be
found in the description column of Table 1(a).

The dataset has about 31.5 million triples in total. For our experiments we
split the dataset into multiple parts located at different endpoints as shown in
Table 1(a). To make sure that the endpoints are not a bottleneck in our setup we
split all data over two Sun-Fire-880 machines (8x sparcv9 CPU, 1050Mhz, 16GB

5 http://jena.sf.net/ARQ/
6 http://dbpedia.org (Version 2.0)



Algorithm 2 Result size estimation for a general basic graph pattern
Require: T = {t1, .., tn} // basic graph pattern
1: result = 1 , bindings = ∅ , groups = {g1, .., gm} = buildGroups(T )
2: while groups 6= ∅ do
3: g = null , costs = positiveInfinity
4: for each gi ∈ groups do
5: c = costs(gi, bindings)
6: if c < costs then
7: g = gi , costs = c
8: end if
9: end for

10: groups = groups− {g} , bindings = bindings ∪ var(g)
11: result = result ∗ costs
12: end while
13: return result

RAM) running SunOS 5.10. The SPARQL endpoints were provided using Vir-
tuoso Server 5.0.37 with an allowed memory usage of 8GB . Note that, although
we use only two physical servers, there were five logical SPARQL endpoints.
DARQ was running on Sun Java 1.6.0 on a Linux system with Intel Core Duo
CPUs, 2.13 GHz and 4GB RAM. The machines were connected over a standard
100Mbit network connection.

(a) data sources

No. Description #triples

S1 Articles 7.6M
S2 Categories 6.4M
S3 Yago 2M
S4 Infoboxes 14.6M
S5 Persons 0.6M

Total 31.5M

(b) queries

No. Used sources #results

Q1 S4, S5 452
Q2 S4, S5 452
Q3 S2, S4, S5 6
Q4 S1, S3, S4, S5 1166

Table 1. Overview on data sources and queries

We run four example queries and evaluated the runtime with and without
optimization. For queries without optimization we used the ARQ 1.5 default
execution strategies without any changes, i.e. bind joins of all sub-queries in
order of appearance. The queries can be found in Listings 1.5-1.8. The queries
use different numbers of sources and have different result sizes. An overview is
given in Table 1(b). For all queries we had a timeout of 10 minutes. Q1 and
Q2 demonstrate the effect of pushing filters into the sub-queries. Q3 and Q4 are
rather complex queries, involving three to four sources, but have very different

7 http://virtuoso.openlinksw.com/



result sizes. The results shown in the following are the average values over four
runs.

/∗ Find a l l movies o f a c t o r s
born in Par i s ∗/

SELECT ?p ?m WHERE {
?p dbpedia2 : b i r thP lace : Par i s .
?p f o a f : name ?name .
?m dbpedia2 : s t a r r i n g ?p .
}

Listing 1.5. Q1

/∗ Find a l l movies o f a c t o r s
born in Par i s ∗/
SELECT ?p ?m WHERE {
?p f o a f : name ?name .
?p dbpedia2 : b i r thP lace ? pa r i s .
?m dbpedia2 : s t a r r i n g ?p .
FILTER (? pa r i s=
<http :// dbpedia . org / r e sou r c e /

Paris >)
}}

Listing 1.6. Q2

/∗Find name , b irthday and image o f
german music ians born in Ber l i n ∗/
SELECT ?n ?b ?p ?img WHERE {
?p f o a f : name ?n .
?p dbpedia2 : b i r th ?b .
?p dbpedia2 : b i r thP lace : Be r l i n .
?p skos : sub j e c t

cat : German musicians .
OPTIONAL { ?p f o a f : img ?img }}

Listing 1.7. Q3

/∗ Find a l l Movies with ac t o r s
born in London with an image ∗/
SELECT ∗ WHERE { ?n rd f : type

yago : MotionPictureFilm103789400 .
?n dbpedia2 : s t a r r i n g ?p .
?p dbpedia2 : b i r thP lace : London .
?p f o a f : name ?name .
?n rd f s : l a b e l ? l a b e l .
?n f o a f : d ep i c t i on ?img .
FILTER (LANG(? l a b e l ) = ’ en ’ ) .}

Listing 1.8. Q4

Figure 2(a) shows the query execution times. The experiments show that
our optimizations significantly improve query evaluation performance. For query
Q1 the execution times of optimized and unoptimized execution are almost the
same. This is due to the fact that the query plans for both cases are the same and
bind joins of all sub-queries in order of appearance is exact the right strategy.
For queries Q2–Q4 the unoptimized queries took longer than 10 min to answer
and timed out, whereas the execution time of the optimized queries is quiet
reasonable. The optimized execution of Q1 and Q2 takes almost the same time
because Q2 is rewritten into Q1.
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Figure 2(b) shows the time needed for query planning and optimization
(transformation time). We can see that transformation times for optimized queries
increase with query complexity from around 300 ms to 2800ms. Compared to
this transformation times for unoptimized queries (query planning only) are neg-
ligible, around 30–40 ms. However, in comparison to the performance gains for
query execution, the transformation times including optimization still remain
very small.

Our evaluations show that even with a very limited amount of statistical
information it is possible to generate query plans that perform relatively well.
All queries where answered within less than one and a half minutes. Of course
it would be possible for the user to write down triple patterns in exact the right
order for ARQ, but this is in conflict with the declarative nature of SPARQL.
Note that optimized queries in DARQ will be less performant if all the sub-
queries are very unselective, e.g. contain no values for subject and object or
a very unselective filter. In this case DARQ has few possibilities to improve
performance by optimization.

5 Conclusion and Future Work

DARQ offers a single interface for querying multiple, distributed SPARQL end-
points and makes query federation transparent to the client. One key feature of
DARQ is that it solely relies on the SPARQL standard and therefore is com-
patible to any SPARQL endpoint implementing this standard. Using service
descriptions provides a powerful way to dynamically add and remove endpoints
to the query engine in a manner that is completely transparent to the user.
To reduce execution costs we introduced basic query optimization for SPARQL
queries. Our experiments show that the optimization algorithm can drastically
improve query performance and allow distributed answering of SPARQL queries
over distributed sources in reasonable time. Because the algorithm only relies on
a very small amount of statistical information we expect that further improve-
ments are possible using techniques as described in [16, 13]

An important issue when dealing with data from multiple data sources are
differences in the used vocabularies and the representation of information. In
further work, we plan to work on mapping and translation rules between the
vocabularies used by different SPARQL endpoints. Also, we will investigate gen-
eralizing the query patterns that can be handled and blank nodes and identity
relationships across graphs.
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