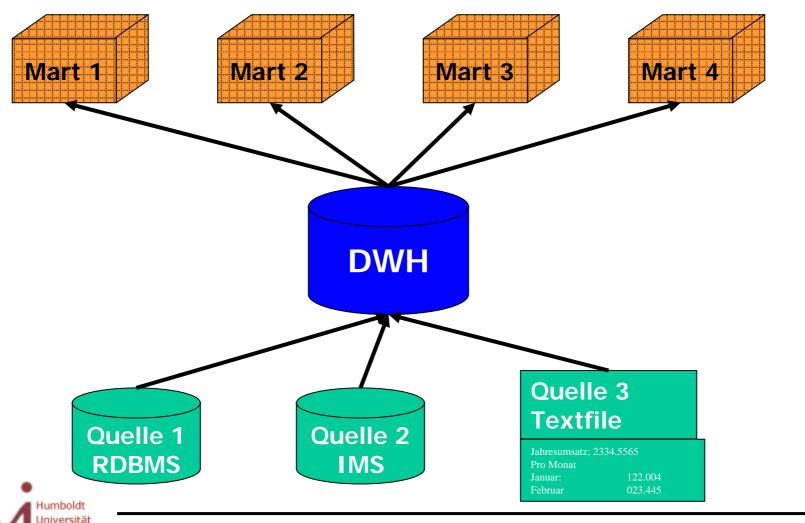
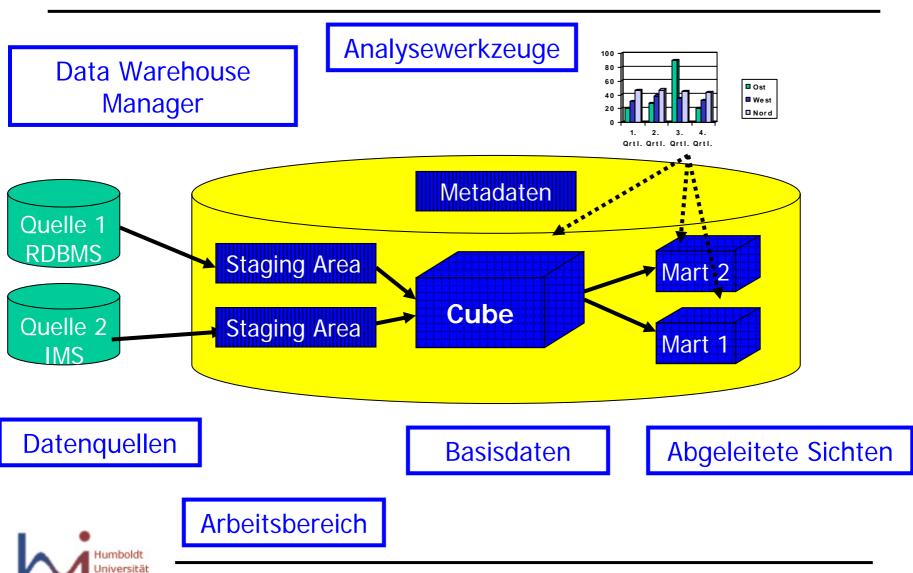
Data Warehousing

Modellierung im DWH

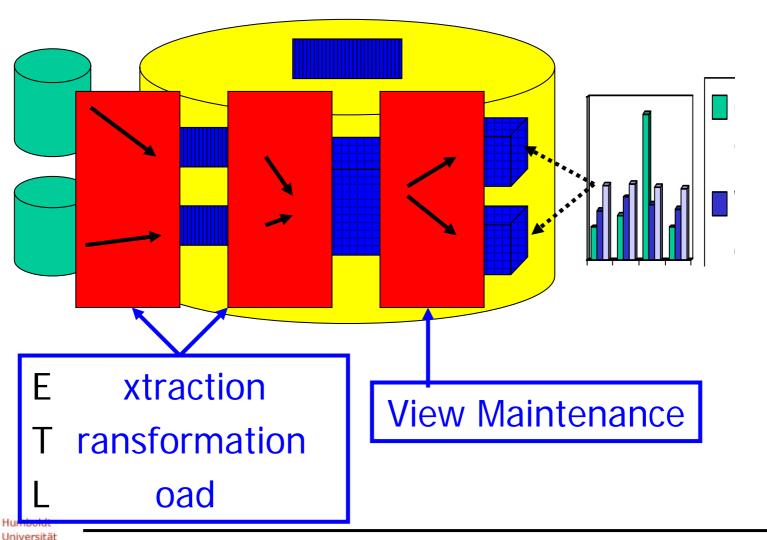
Das multidimensionale Datenmodell



Ulf Leser


Wissensmanagement in der Bioinformatik

Zusammenfassung: Hubs and Spokes



DWH Architektur

Informatik

DWH Prozesse

Transformationen in Staging Area

- Benutzte SQL
- Effiziente mengenorientierte Berechnungen möglich
- Vergleiche über Zeilen hinaus möglich
 - Schlüsseleigenschaft, Namensduplikaterkennung, ...
- Vergleiche mit Daten in Basisdatenbank möglich
 - Duplikate, Plausibilität (Ausreißer), Konsistenz (Artikel-Ids)
- Typisch: Tagging von Datensätzen durch Prüf-Regeln

```
UPDATE sales SET price=price/MWST;
UPDATE sales SET cust_name=
    (SELECT cust_name FROM customer WHERE id=cust_id);
...
UPDATE sales SET flag1=FALSE WHERE cust_name IS NULL;
...
INSERT INTO DWH
    SELECT * FROM sales WHERE f1=TRUE & f2=TRUE & ...
```

BULK Uploads

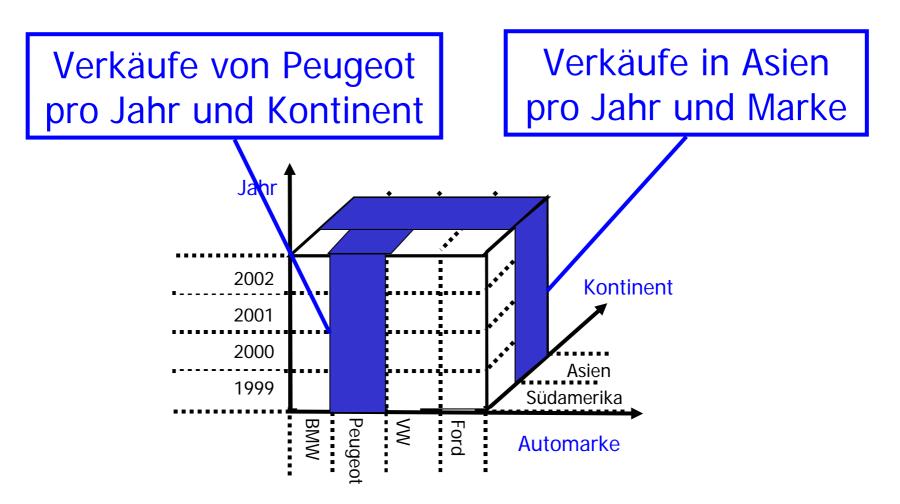
- Für große Datenmengen einzige ausreichend performante Schnittstelle
- Kritischer Prozess
 - Load-Vorgänge blockieren i.d.R. die komplette DB (Schreibzugriff auf komplette Tabelle)
 - Konsistenz, Trigger, ICs i.d.R. deaktiviert
 - Indexaktualisierung
 - Update oder Insert ? (Upsert!)
- Performance von LOAD oft limitierender Faktor

Inhalt dieser Vorlesung

- Das Multidimensionale Datenmodell (MDDM)
 - Grundidee
 - Formale Definition der Modellelemente
 - Beispiel

MDDM Grundidee

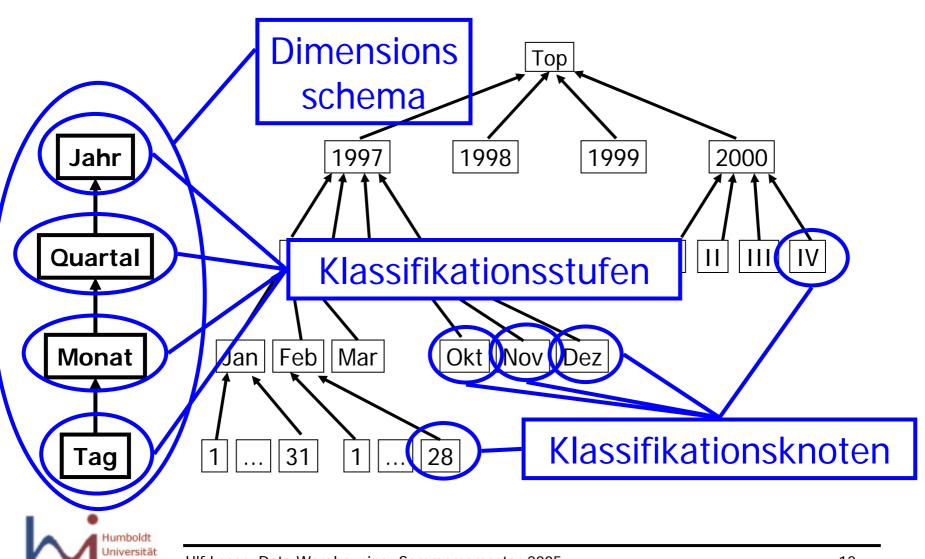
- Unterscheidung von
 - Fakten (Measures) Gemessene Werte
 - Dimensionen Beschreibung der Messwerte in Raum, Zeit, Organisation, ...
 - Klassifikationshierarchien Dimensionen haben hierarchische Struktur
- Metapher: Würfel (Cube) bzw. Hypercube
 - Fakten: Punkte im multidimensionalen Raum
 - Klassifikationshierarchien: Achsenbeschriftung in unterschiedlichem Verfeinerungsgrad
- Analyse durch Operationen auf dem Cube
 - Dimensionen ausblenden / einblenden
 - Auswahl von Subwürfeln (Flächen, Punkten, …)
 - Hierarchiestufe vergröbern/verfeinern



Beispiel

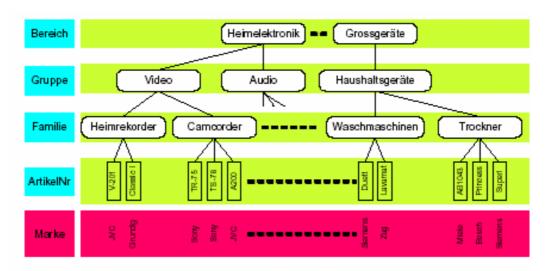
- Verkäufe von Autos pro Marke, Kontinent und Jahr gemessen in Euro
 - Fakten
 - Verkäufe in Euro
 - Dimensionen
 - Automarke
 - Kontinent
 - Jahr

Beispiel: Auswahl (Slicing)



Dimensionen

- Eindeutige Strukturierung des Datenraums
- Hoffentlich orthogonal
 - Abhängigkeiten zwischen Dimensionen bereiten an vielen Stellen Probleme – später
- Jede Dimension hat ein Schema
 - Tag, Woche, Jahr
 - Landkreis, Land, Staat
 - Produktgruppe, Produktklasse, Produktfamilie
- ... und Werte
 - (1, 2, 3, ..., 31), (1, ... 52), (1900, ..., 2003)
 - (...), (Berlin, NRW, Department-1, ...), (BRD, F, ...)

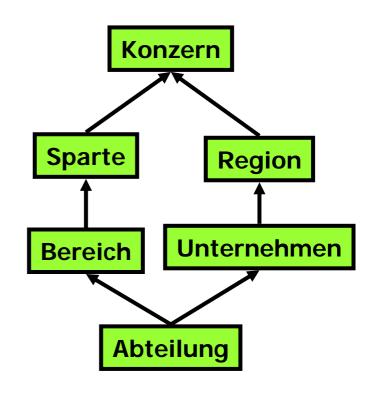


Dimension

Informatil

Produkthierarchie

Aus: Geppert, ETZ Zürich, Vorlesung "Data Warehouse"


- Elemente einer Stufe können geordnet sein
 - Geordnet: Zeit
 - Ungeordnet: Produkte

Formale Definition

Ziel

- Operationen auf einem MDDM exakt definieren
- Aus dem Modell muss man ersehen können, welche Verdichtungen semantisch sinnvoll sind und welche nicht
 - Tools bieten dann nur die sinnvollen Operationen an
- Optimierer können die Informationen für schnellere Anfragen benutzen
- Multidimensionale Modelle grafisch spezifizieren
 - Mit F/R nicht erreichbar

Klassifikationsschema

Definition

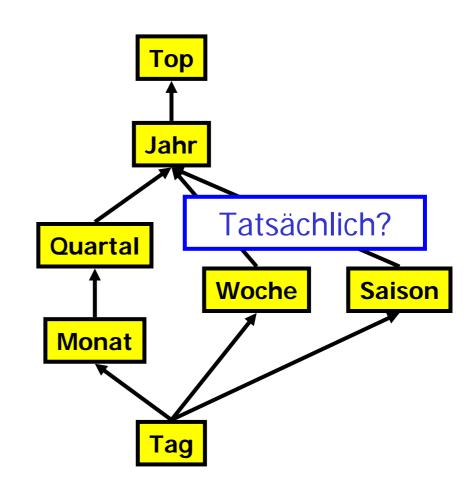
Ein Klassifikationsschema K (einer Dimension D) ist ein Quadrupel $(K_k, \rightarrow_k, K_s, \rightarrow_s)$ mit

- K_s ist die Menge von Klassifikationsstufen $\{k_0, ..., k_n\}$
- " \rightarrow_s " ist eine Halbordnung auf K_s mit größtem Element top (K_s)
 - D.h.: $\forall k \in K_s$: $k \to_s top(K_s)$
- K_k ist die Menge von Klassifikationsknoten $\{n_{0'} \dots n_m\}$
- Jeder Klassifikationsknoten n ist genau einer Klassifikationsstufe k zugeordnet
 - stufe(n) = k
 - $knoten(k) = \{n \mid n \in K_k \land stufe(n) = k\}$
- " \rightarrow_k " ist die Halbordnung auf K_s übertragen auf K_k
 - $k,l \in K_s$, $k \rightarrow_s l => \forall n \in knoten(k), m \in knoten(l): n \rightarrow_k m$

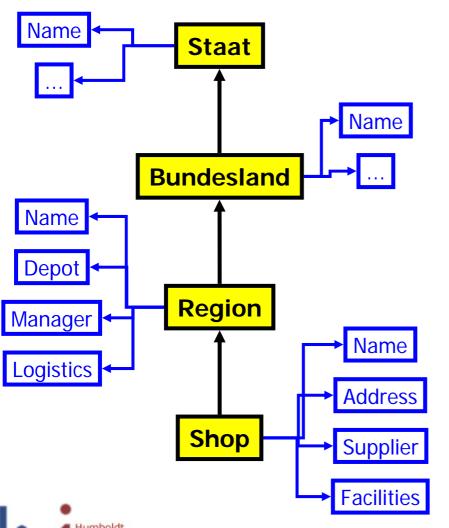
Bemerkung

- Eine Klassifikationsstufe hat mehrere Klassifikationsknoten, aber jeder Klassifikationsknoten ist genau einer Klassifikationsstufe zugeordnet
- Wir benutzen i.d.R. einfach \rightarrow für \rightarrow_k oder \rightarrow_s

Erläuterung


- Die Klassifikationsstufen sind die Schemaelemente der Dimension
- Das größte Element ist artifiziell es steht für "alles", also die Verdichtung in einen einzelnen Wert
 - Wir nennen es TOP
- Interpretation von "→"
 - Funktionale Abhängigkeit
 - Aggregierbarkeit
 - Tag bestimmt Monat bestimmt Jahr bestimmt TOP
 - $21.12.2003 \rightarrow 12.2003 \rightarrow 2003 \rightarrow TOP$
 - Produkt → Produktfamilie → Produktgruppe → TOP
 - "Asus M2400N" → Notebooks → Büroelektronik → TOP
- Beachte: Halbordnung ist immer zyklusfrei
- Klassifikationsknoten sind die Instanzen der Schemaelemente

Beispiel Halbordnung


Ordnung

- Tag → Monat
- Monat → Quartal
- Ouartal \rightarrow Jahr
- Tag → Woche
- Woche → Jahr
- Alle → Top
- Keine Ordnung
 - Quartal ? Woche
 - Monat ? Woche
- Transitivität
 - Tag \rightarrow Jahr

Knotenattribute

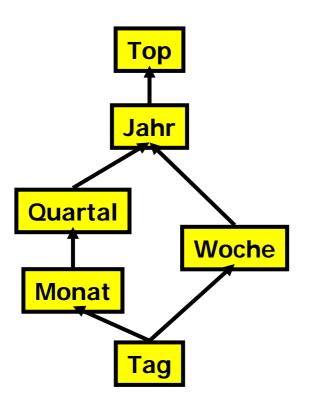
- Jede Klassifikationsstufe hat eine Menge von Attributen, die Knotenattribute
 - Teil des Schemas des Klassifikationsschemas
- Die Klassifikationsknoten haben Werte für diese Knotenattribute

Klassifikationspfade

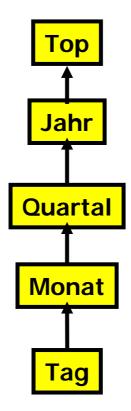
Definition

Ein Klassifikationspfad P in einem Klassifikationsschema K mit Klassifikationsstufen K_s ist eine Menge $\{p_0, ..., p_m\}$ mit

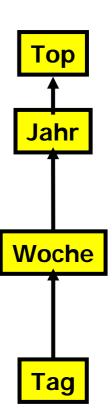
- $\{p_0, ..., p_m\} \subseteq K_s$
- $p_m = top(K_s)$
- $\forall p_i$, $1 \le i \le m$: $p_{i-1} \to p_i$ und $\not\exists q: p_{i-1} \to q \to p_i$
- Die Länge des Pfades P ist |P|=m+1
- Der Klassifikationslevel von p_i in P ist i


Bedeutung

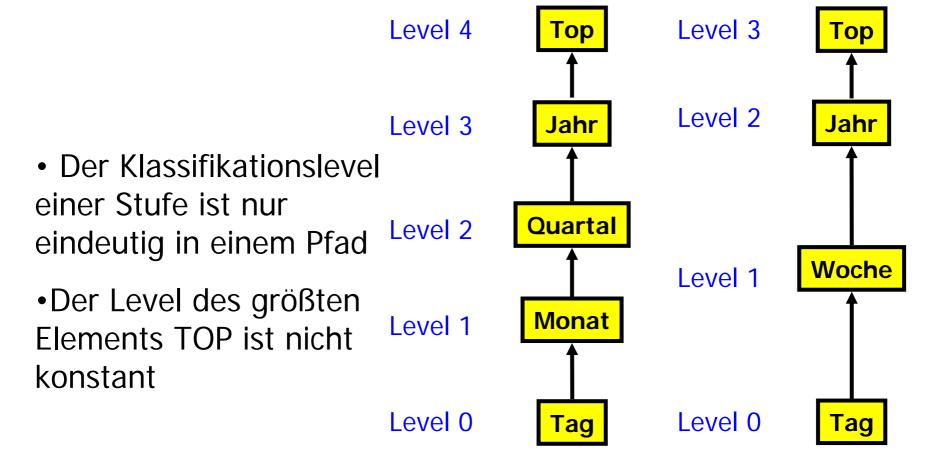
- Ein Pfad ist damit eine voll geordnete Teilmenge von K_s
- Jeder Pfad beinhaltet das größte Element TOP
- Verdichtung wird nur entlang von Klassifikationspfaden definiert
 - Und damit entlang funktionaler Abhängigkeiten



Beispielpfade


Klassifikationsschema

Pfad 1



Pfad 2

Klassifikationsstufen und Pfade

Klassifikationshierarchie

Definition

 Die Klassifikationshierarchie H zu einem Klassifikationsschema K mit Pfad P ist der Baum mit Knoten N und Kanten E wie folgt:

$$N = \bigcup_{p_i \in P} knoten(p_i)$$

$$E = \left\{ (n, m) \middle| \begin{array}{c} n, m \in N \land n \to m \land \\ \exists j : n \in knoten(p_j) \land m \in knoten(p_{j+1}) \end{array} \right\}$$

Beachte

- Klassifikationshierarchie = Knotenhierarchie in einem Pfad
- Jede Klassifikationshierarchie ist balanciert: Alle Pfade Wurzel-Blatt haben die selbe Länge |P|

Dimension

- Definition Eine Dimension $D=(K, \{P_1,...,P_j\})$ besteht aus
 - Einem Klassifikationsschema K
 - Einer Menge von Pfaden P_i in K
- Bemerkungen
 - D muss nicht alle Pfade enthalten, die es in K gibt
 - Designentscheidung
 - Nicht alle Klassifikationsstufen von K müssen in einem Pfad enthalten sein
 - Aber man wird seine Pfade so wählen, dass doch
- Schreibweise
 - D.k bezeichnet eine Klassifikationsstufe k aus D
 - Ein D.k kann in mehreren Pfaden vorkommen

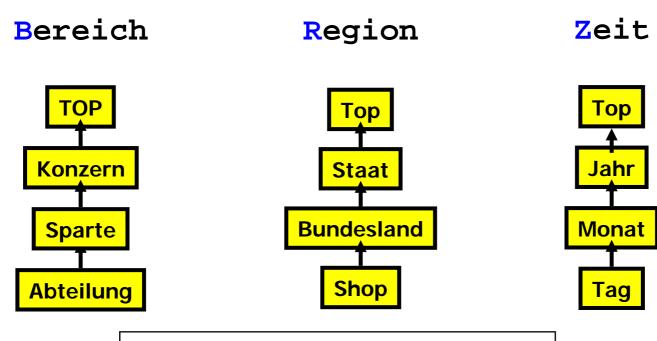
Granularität

- Definition Gegeben eine Menge U von n Dimensionen $D_1, ..., D_n$. Eine Granularität G über U ist eine Menge $\{D_1, k_1, ..., D_n, k_n\}$ für die gilt
 - k_i ist eine Klassifikationsstufe in D_i
 - Es gibt keine funktionalen Abhängigkeiten zwischen den Klassifikationsstufen $D_1.k_1,...,D_n.k_n$
- Bemerkungen
 - Abkürzung: Lässt man in U eine Dimension D_i weg, meint dies implizit D_i.TOP
 - Zweite Bedingung ist immer erfüllt, wenn keine funktionalen Abhängigkeiten zwischen Dimensionen bestehen
 - Beispiel: Nicht gleichzeitig Dimensionen Zeit und "Fiskalisches Jahr" in einer Granularität betrachten
 - Mit einer Granularität legt man fest, in welcher Detailstufe Fakten in den einzelnen Dimensionen beschrieben werden
 - Eine Granularität ist ein Hyperwürfel in einer bestimmten Auflösung
 - Operationen navigieren zwischen Granularitäten

Halbordnung auf Granularitäten

Definition

Auf der Menge aller Granularitäten zu einer Menge U von Dimensionen ist eine Halbordnung "≤" wie folgt definiert

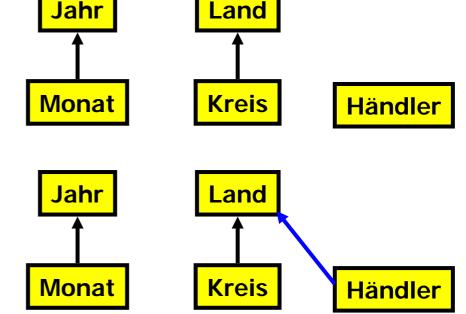

- Sei $G_1 = \{D_1^1.k_1^1, \dots, D_n^1.k_n^1\}$ und $G_2 = \{D_1^2.k_1^2, \dots, D_n^2.k_n^2\}$
- Ordne die Dimensionen in G_1' und G_2' beliebig, aber gleich
- Es gilt $G_1 \le G_2$ genau dann wenn
 - $\forall i: D_i^1.k_i^1 \to D_i^2.k_i^2 \text{ oder } D_i^1.k_i^1 = D_i^2.k_i^2$

Benutzung

- Beschreibung der Transformation von Granularitäten
- Anfrageoptimierung: Wiederverwendung von Aggregaten

Beispiel

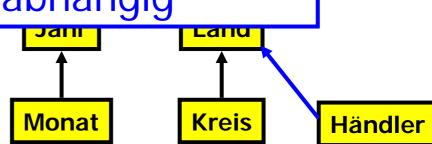
- (B.Sparte, R.Shop, Z.Tag)
- ≤ (B.Sparte, R.Shop, Z.Monat)
- ≤ (B.Sparte, R.Top, Z.Monat)
- \leq (B.Top, R.Top, Z.Top)
 - (B.Sparte, R.Staat, Z.Tag)
 - ? (B.Konzern, R.Shop, Z.Tag)


Würfelschema

- Definition
 Ein Würfelschema WS=(G,F) besteht aus
 - Einer Granularität G
 - Einer Menge F von unterschiedlichen Fakten F_i
- Definition Ein Würfel W ist eine Instanz eines Würfelschema (G,F) $W = dom(G) \times dom(F)$ $= knoten(D_1.k_1) \times ... \times knoten(D_n.k_n) \times dom(F_1) \times ... \times dom(F_m)$
- Bemerkung
 - Die Werte dom(G) geben die Koordinaten der Werte dom(F) an
 - Verhältnis Würfelschema zu Würfel ist wie Relationenschema zu Relation

Kein Würfelschema

- Autoverkäufe pro Zeit (Monat, Jahr) , Händler und Region (Kreis, Land)
- Drei Dimensionen
 - Monat \rightarrow Jahr
 - Händler
 - Kreis \rightarrow Land
- Aber: EU Recht!
 - Händler → Land
 - Damit können wir keine Granularität bauen

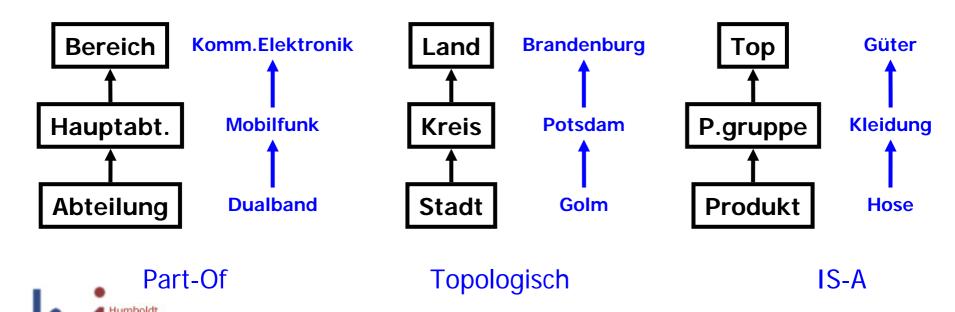

Kein Würfelschema

- Autoverkäufe pro Zeit (Monat, Jahr) , Händler und Region (Kreis, Land)
- Drei Dimensionen
 - Monat \rightarrow Jahr
 - Händler

Modellierung ist anwendungsabhängig

Jahr

- Aber: EU Recht!
 - -Händler → Land


Land

Händler

Semantik von Kanten

- Die Hierarchie von Klassifikationsstufen wird durch funktionale Abhängigkeiten bestimmt
- Das beinhaltet zunächst keine Bestimmung der Semantik der Kanten

Ein längeres Beispiel

- Wir bauen ein DWH zur Verwaltung von Lagerbeständen
- Fakten
 - Bestand und Delta von Artikeln
- Klassifikationsschema K
 - Zeit
 - · Klassifikationsstufen: Monat, Quartal, Woche, Jahr
 - Ort
 - Klassifikationsstufen: Region, Land
 - Produkt
 - Klassifikationsstufen: Artikel, Artikelgruppe, Bereich

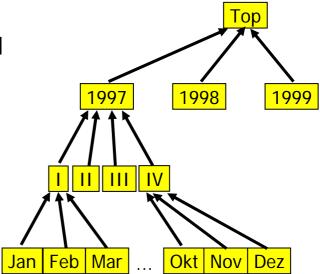
Klassifikationsschema

Halbordnung

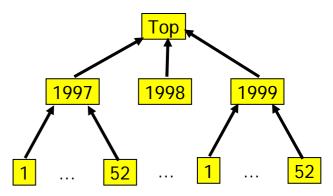
- Top ← Jahr
- Jahr ← Quartal
- Quartal ← Monat
- Jahr ← Woche
- Top ← Land
- Land ← Region
- Top ← Bereich
- Bereich ← Artikelgruppe
- Artikelgruppe ← Artikel
- > Struktur der Dimensionen

Pfade

- P_1 : Top \leftarrow Jahr \leftarrow Quartal \leftarrow Monat
- P_2 : Top \leftarrow Jahr \leftarrow Woche
- P₃: Top ← Land ← Region
- P₄: Top ← Bereich ← Artikelgruppe ← Artikel
- ➤ Entlang der Pfade sind Verdichtungen im Modell sinnvoll

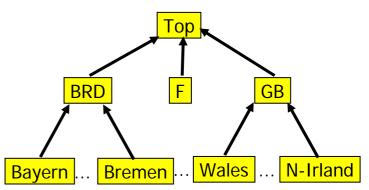

Klassifikationsknoten

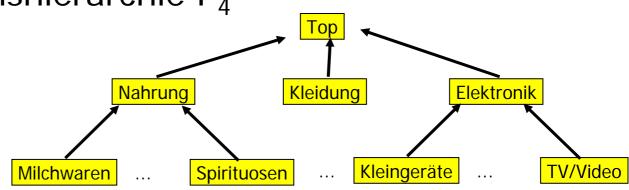
Jahr **–** 1997, 1998, 1999 **Ouartal** I, II, III, IV (pro Jahr) Woche 1-52 (pro Jahr) Monate - 1-3 (pro Quartal I), 4-6 (pro Quartal II), ... I and Deutschland, Frankreich, Großbritannien, ... Region - Bayern, Berlin, ..., Departament1, Departament2, ... Bereich Kleidung, Nahrung, Elektronik, ... Artikelgruppe Oberbekleidung, Unterbekleidung, Spirituosen, Kindernahrung, Kleingeräte, TV/Video, ... **Artikel**



Klassifikationshierarchien 1

Klassifikationshierarchie zu P₁


Klassifikationshierarchie zu P₂



Klassifikationshierarchien 2

Klassifikationshierarchie P₃

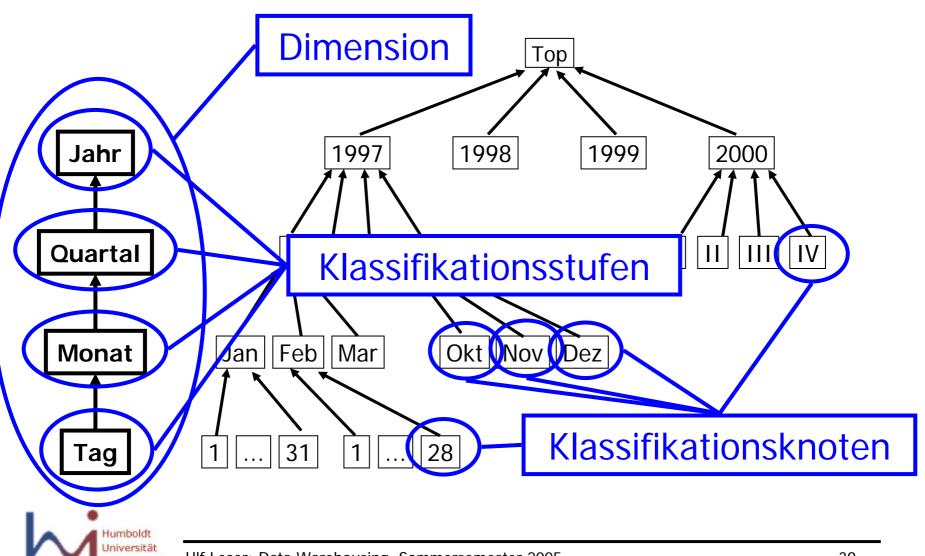
Klassifikationshierarchie P₄

Dimensionen

- Dimension ZEIT
 - $-(K, \{P_1, P_2\})$
 - Umfasst Monat, Quartal, Woche, Jahr
- Dimension ORT
 - $(K, \{P_3\})$
 - Umfasst Region, Land
- Dimension PRODUKT
 - $(K, \{P_4\})$
 - Umfasst Artikel, Artikelgruppe, Bereich
- Dimensionen enthalten mehrere Pfade und damit Klassifikationsstufen

Granularität, Würfel

Mögliche Granularitäten


- G₁ = (Zeit.Woche, Ort.Land, Produkt.Artikel)
- G₂ = (Zeit.Jahr, Ort.Gebiet, Produkt.TOP)
- Halbordnung:
 - (Zeit.Woche, Ort.Gebiet, Produkt.Artikel)
 - ≤ (Zeit.Jahr, Ort.Gebiet, Produkt.Bereich)
 - ≤ (Zeit.Jahr, Ort.Top, Produkt.Bereich)
 - ≤ (Zeit.ZOP, Ort.Top, Produkt.Top)

Würfelschema

- Granularität plus Menge von Fakten (F₁=Bestand, F₂=Delta)
- Würfel: Instanz des Würfelschemas
- > Operationen auf Würfeln verändern die Granularität
- > Ziel: Nur sinnvolle Operationen zulassen

Zusammenfassung

