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This Course 

• Introduction    2 
• Abstract Data Types   1 
• Complexity analysis   1 
• Styles of algorithms    1 
• Lists, stacks, queues   2 
• Sorting (lists)    3 
• Searching (in lists, PQs, SOL)  5 
• Hashing (to manage lists)  2 
• Trees (to manage lists)   4 
• Graphs (no lists!)    5 
• Sum     21/26 
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Content of this Lecture 

 
 

• Graphs 
• Definitions  
• Representing Graphs 
• Traversing Graphs 
• Connected Components 
• Shortest Paths 

 
 
 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      4 

Graphs 

• There are objects and there are relations between objects 
• Directed trees can represent hierarchical relations 

– Relations that are asymmetric, cycle-free, binary 
– Examples: parent_of, subclass_of, smaller_than, … 

• Undirected trees can represent cycle-free, binary relations 
• This excludes many (cyclic) real-life relations 

– friend_of, similar_to, reachable_by, html_linked_to, … 

• (Classical) Graphs can represent all binary relationships 
• N-ary relationships: Hypergraphs 

– exam(student, professor, subject), borrow(student, book, library) 
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Types of Graphs 

 
 

• Most graphs you will see are binary 
• Most graphs you will see are simple 

– Simple graphs: At most one edge between any two nodes 
– Contrary: multigraphs 

• Some graphs you will see are undirected, some directed 
• This lecture: Only binary, simple, finite graphs 
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Exemplary Graphs 

• Classical theoretical model: Random Graphs 
– Create every possible edge with a fixed probability p 

 
 
 
 
 
 

 
 

– In a random graph, the degree of every node has expected value 
p*n, and the degree distribution follows a Poisson distribution 
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Web Graph 

• Graph layout is difficult 
[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg] 

Note the 
strong local 
clustering 

This is not a 
random 
graph 
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Universities Linking to Universities 

• Small-World Property 
[http://internetlab.cindoc.csic.es/cv/11/world_map/map.html] 
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Human Protein-Protein-Interaction Network  

• Still terribly incomplete 
• Proteins that are close in the graph likely share function 
[http://www.estradalab.org/research/index.html] 
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Word Co-Occurrence 

• Words that are close have similar meaning 
– Close: Appear in the same contexts 

• Words cluster into topics 
[http://www.michaelbommarito.com/blog/] 
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Social Networks 

• Six degrees of separation 
[http://tugll.tugraz.at/94426/files/-1/2461/2007.01.nt.social.network.png] 
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Road Network 

• Specific property: Planar graphs 
[Sanders, P. &Schultes, D. (2005).Highway Hierarchies Hasten Exact Shortest Path Queries. In 13th 

European Symposium on Algorithms (ESA), 568-579.] 
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More Examples 

 
 
 
 

• Graphs are also a wonderful abstraction 
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Coloring Problem 

• How many colors do one need to color a map such that 
never two colors meet at a border? 
 
 
 
 
 
 

• Chromatic number: Number of colors sufficient to color a 
graph such that no adjacent nodes have the same color 

• Every planar graph has chromatic number of at most 4 

[http://www.wikipedia.de] 
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History [Wikipedia.de] 

 
• This is not simple to proof 
• It is easy to see that one sometimes 

needs at least four colors 
• It is easy to show that one may need 

arbitrary many colors for general graphs 
• First conjecture which until today was 

proven only by computers 
– Falls into many, many subcases – try all of 

them with a program 
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Königsberger Brückenproblem 

 
 

• Given a city with rivers and 
bridges: Is there a cycle-free 
path crossing every bridge 
exactly once? 
– Euler-Path 

Source: Wikipedia.de 
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Königsberger Brückenproblem 

 
 

• Given a city with rivers and 
bridges: Is there a cycle-free 
path crossing every bridge 
exactly once? 
– A graph has an Euler-Path iff at 

contains 0 or 2 edges with odd 
degree 

• Hamiltonian path 
– … visits each vertex exactly once 
– NP complete 
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Recall? 
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Content of this Lecture 

 
 
 

• Graphs 
• Definitions 
• Representing Graphs 
• Traversing Graphs 
• Connected Components 
• Shortest Paths 
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Recall from Trees 

• Definition 
A graph G=(V, E) consists of a set of vertices (nodes) V 
and a set of edges (E⊆VxV).  
– A sequence of edges e1, e2, .., en is called a path iff ∀1≤i<n: 

ei=(v‘, v) and ei+1=(v, v``); the length of this path is n 
– A path (v1,v2), (v2,v3), …, (vn-1,vn) is acyclic iff all vi are different 
– G is acyclic, if no path in G contains a cycle; otherwise it is cyclic 
– A graph is connected if every pair of vertices is connected by at 

least one path 

• Definition 
A graph (tree) is called undirected, if ∀(v,v’)∈E ⇒(v’,v)∈E. 
Otherwise it is called directed. 
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More Definitions 

 
• Definition 

Let G=(V, E) be a directed graph. Let v∈V 
– The outdegree out(v) is the number of edges with v as start point 
– The indegree in(v) is the number of edges with v as end point 
– G is edge-labeled, if there is a function w:E→L that assigns an 

element of a set of labels L to every edge 
– A labeled graph with L=ℕ is called weighted 

• Remarks 
– Weights can as well be reals; often we only allow positive weights 
– Labels / weights max be assigned to edges or nodes (or both) 
– Indegree and outdegree are identical for undirected graphs 
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Some More Definitions 

• Definition. Let G=(V, E) be a directed graph. 
– Any G’=(V’, E’) is called a subgraph of G, if V’⊆V and E’⊆E and for 

all (v1,v2)∈E’: v1,v2∈V’ 
– For any V’⊆V, the graph (V’, E∩(V’×V’)) is called the induced 

subgraph of G (induced by V’) 
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Some More Definitions 

• Definition. Let G=(V, E) be a directed graph. 
– Any G’=(V’, E’) is called a subgraph of G, if V’⊆V and E’⊆E and for 

all (v1,v2)∈E’: v1,v2∈V’ 
– For any V’⊆V, the graph (V’, E∩(V’×V’)) is called the induced 

subgraph of G (induced by V’) 
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Some More Definitions 

• Definition. Let G=(V, E) be a directed graph. 
– Any G’=(V’, E’) is called a subgraph of G, if V’⊆V and E’⊆E and for 

all (v1,v2)∈E’: v1,v2∈V’ 
– For any V’⊆V, the graph (V’, E∩(V’×V’)) is called the induced 

subgraph of G (induced by V’) 
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Famous Problem 

• Subgraph isomorphism problem: Given a graph G1=(V1,E1) 
and a graph G2=(V2,E2): Is there an isomorphism f:V1→V2 
such that f(G1) is a subgraph of G2? 

F 

F 

D 

D B 

E 

A 

B B 

D 

A 

F 

B 
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Content of this Lecture 

 
 

• Graphs 
• Definitions  
• Representing Graphs 
• Traversing Graphs 
• Connected Components 
• Shortest Paths 
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Data Structures 

• From an abstract point of view, a graph is a list of nodes 
and a list of (weighted, directed) edges 

• Two fundamental implementations 
– Adjacency matrix 
– Adjacency lists 

• As usual, the representation determines which primitive 
operations take how long 

• Suitability depends on the specific problem under study 
and the nature of the graphs 
– Shortest paths, transitive hull, cliques, spanning trees, … 
– Random, sparse/dense, scale-free, planar, … 
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Example [OW93] 

Graph Adjacency Matrix Adjacency List 
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Adjacency Matrix 

• Definition 
Let G=(V, E) be a simple graph. The adjacency matrix MG 
for G is a two-dimensional matrix of size |V|*|V|, where 
M[i,j]=1 iff (vi,vj)∈E 

• Remarks 
– Allows to test existence of a given edge in O(1)  
– Requires O(|V|) to obtain all incoming (outgoing) edges of a node 
– For large graphs, M is too large to be of practical use 
– If G is sparse (much less edges than |V|2), M wastes a lot of space 
– If G is dense, M is a very compact representation (1 bit / edge) 
– In weighted graphs, M[i,j] contains the weight 
– Since M must be initialized with zero’s, without further tricks all 

algorithms working on adjacency matrices are in Ω(|V|2) 
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Adjacency List 

• Definition 
Let G=(V, E). The adjacency list LG for G is a list of all 
nodes vi of G. The entry representing vi∈V is a list of all 
edges outgoing (or incoming or both) from vi.  

• Remarks (assume a fixed node v) 
– Let k be the maximal outdegree of G. Then, accessing an edge 

outgoing from v is O(log(k)) (if list is sorted; or use hashing) 
– Obtaining a list of all outgoing edges from v is in O(k) 

• If only outgoing edges are stored, obtaining a list of all incoming edges 
is O(|V|*log(|E|)) – we need to search all lists 

• Therefore, usually outgoing and incoming edges are stored, which 
doubles space consumption 

– If G is sparse, L is a compact representation 
– If G is dense, L is wasteful (many pointers, many IDs) 

 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      31 

Comparison 

Matrix Lists 
Test if a given edge exists O(1) O(log(k)) 
Find all outgoing edges of 
a given v 

O(n) O(k) 

Space of G  O(n2) O(n+m) 

• With n=|V|, m=|E| 
• We assume a node-indexed array 

• L is an array and nodes are unique numbered 
• We find the list for node v in O(1) 
• Otherwise, L has additional costs for finding v 
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Transitive Closure 

• Definition 
Let G=(V,E) be a digraph and vi,vj∈V. The transitive 
closure of G is a graph G’=(V, E’) where (vi,vj)∈E’ iff G 
contains a path from vi to vj. 

• TC usually is dense and represented as adjacency matrix 
• Compact encoding of reachability information 

X 

D 

B 

F E 

A 

G 

C 

Y 

X 

D 

B 

F E 

A 

G 

C 

Y 

and many more 
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Content of this Lecture 

 
 
 

• Graphs 
• Definitions  
• Representing Graphs 
• Traversing Graphs 
• Connected Components 
• Shortest Paths 
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Graph Traversal 

 
• One thing we often do with graphs is traversal 
• “Traversal” means: Visit every node exactly once in a 

sequence determined by the graph’s topology 
– Not necessarily on one consecutive path (Hamiltonian path) 

• Two popular orders 
– Depth-first: Using a stack 
– Breadth-first: Using a queue 
– The scheme is identical to that in tree traversal 

• Difference 
– We have to take care of cycles 
– No root – where should we start? 
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Breaking Cycles 

 
• Any naïve traversal will visit nodes more than once 

– If there is at least one node with more than one incoming edge 

• Any naïve traversal will run into infinite loops 
– If the graphs contains at least one cycle (is cyclic) 

• Breaking cycles / avoiding multiple visits 
– Assume we started the traversal at a node r  
– During traversal, we keep a list S of already visited nodes  
– Assume we are in v and aim to proceed to v’ using e=(v, v’)∈E 
– If v’∈S, v’ was visited before and we are about to run into a cycle 

or visit v’ twice 
– In this case, e is ignored 
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Example 

• Started at r and went S={r, y, z, v} 
• Testing (v,y): y∈S, drop 
• Testing (v, r): r∈S, drop 
• Testing (v, x): x∉S, proceed 

 

r 

y 

x 
z 

v 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      37 

Where do we Start?  
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Where do we Start?  

 
• Definition 

Let G=(V, E). Let V’⊆V and G’ be the subgraph of G 
induced by V’ 
– G’ is called connected if it contains a path between any pair v,v’∈V’  
– G’ is called maximally connected, if no subgraph induced by a 

superset of V’ is connected 
– If G is undirected, any maximal connected subgraph of G is called a 

connected component of G 
– If G is directed, any maximal connected subgraph of G is called a 

strongly connected component of G 
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Example 
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Where do we Start? 

 
 

• If a undirected graph falls into several connected 
components, we cannot reach all nodes by a single 
traversal, no matter which node we use as start point 

• If a digraph falls into several strongly connected 
components, we might not reach all nodes by a single 
traversal 

• Remedy: If the traversal gets stuck, we restart at unseen 
nodes until all nodes have been traversed 
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Depth-First Traversal on Directed Graphs 

func void DFS ((V,E) graph) { 
  U := V;     # Unseen nodes 
  S := ∅; # Seen nodes 
  while U≠∅ do 
    v := any_node_from( U); 
    traverse( v, S, U); 
  end while; 
} 

func void traverse (v node,  
                    S,U list) 
{ 
  t := new Stack(); 
  t.put( v); 
  while not t.isEmpty() do 
    n := t.getNext(); 
    print n; # Do something 
    U := U \ {n}; 
    S := S ∪ {n}; 
    c := n.outgoingNodes(); 
    foreach x in c do 
      if x∈U then 
        t.put( x); 
      end if; 
    end for; 
  end while; 
} 

Called once for 
every connected 

component 
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Analysis 

• We put every node exactly once 
on the stack 
– Once visited, never visited again 

• We look at every edge exactly 
once 
– Outgoing edges of a visited node 

are never considered again 

• S and U can be implemented as 
bit-array of size |V|, allowing 
O(1) operations 
– Setting, removing, testing nodes 

• Altogether: O(n+m) 
 
 

func void traverse (v node,  
                    S,U list) { 
  t := new Stack(); 
  t.put( v); 
  while not t.isEmpty() do 
    n := t.getNext(); 
    print n; 
    U := U \ {n}; 
    S := S ∪ {n}; 
    c := n.outgoingNodes(); 
    foreach x in c do 
      if x∈U then 
        t.put( x); 
      end if; 
    end for; 
  end while; 
} 
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Content of this Lecture 

 
 
 

• Graphs 
• Definitions  
• Representing Graphs 
• Traversing Graphs 
• Connected Components 
• Shortest Paths 
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In Undirected Graphs 

 
 

• In an undirected graph, whenever there is a path from r to 
v and from v to v’, then there is also a path from v’ to r  
– Simply go the path r → v → v’ backwards 

• Thus, DFS (and BFS) traversal can be used to find all 
connected components of a undirected graph G 
– Whenever you call traverse(v), create a new component 
– All nodes visited during traverse(v) are added to this component 

• Obviously in O(n+m) 
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In Digraphs 

 
 
 

• The problem is considerably more complicated for digraphs 
– Previous conjecture does not hold 

• Still: Tarjan‘s or Kosaraju’s algorithm find all strongly 
connected components in O(n + m) 
– See next lecture 
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Content of this Lecture 

 
 

• Graphs 
• Definitions  
• Representing Graphs 
• Traversing Graphs 
• Connected Components 
• Shortest Paths 

– Single-Source-Shortest-Paths: Dijkstra’s Algorithm 
– Shortest Path between two given nodes 
– Other 
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Distance in Graphs 

 
• Definition 

Let G=(V, E) be a graph. The distance d(u,v) between any 
two nodes u,v∈V for u≠v is defined as 
– G un-weighted: The length of the shortest path from u to v, or ∞ if 

no path from u to v exists 
– G weighted: The minimal aggregated edge weight of all non-cyclic 

paths from u to v, or ∞ if no path from u to v exists 
– If u=v, d(u,v)=0 

• Remark 
– Distance in un-weighted graphs is the same as distance in 

weighted graphs with unit costs 
– Beware of negative cycles in directed graphs 
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Single-Source Shortest Paths in a Graph 

 
• Task: Find the distance between X and all other nodes 
• Only positive edge weights allowed  

– Bellman-Ford algorithm solves the general case 

X 

1 

1 

2 

5 3 

2 

1 4 

3 

2 

6 
3 

3 
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Algorithmic Idea 

• Enumerate paths by iteratively extending already found 
shortest paths by all possible extensions 
– All edges outgoing from the end node of a short path 

• These extensions  
– … either lead to a node which we didn’t reach before – then we 

found a path, but cannot yet be sure it is the shortest 
– … or lead to a node which we already reached but we are not yet 

sure of we found the shortest path to it – update current best 
distance 

– … or lead to a node which we already reached and for which we 
also surely found a shortest path already – these can be ignored 

• Eventually, we enumerate nodes by their distance 
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Algorithm 

 
• We enumerate nodes by length 

of their shortest paths 
– In the first loop, we pick x and update 

distances (A) to all adjacent nodes 
– When we pick a node k, we already 

have computed its distance to x in A 
– We adapt the current best distances 

to all neighbors of k we haven’t 
picked yet 

• Once we picked all nodes, we 
are done 

1. G = (V, E); 
2. x : start_node;    # x∈V 
3. A : array_of_distances_from_x; 
4. ∀i: A[i]:= ∞; 
5. L := V;      # organized as PQ 
6. A[x] := 0; 
7. while L≠∅   
8.   k := L.get_closest_node(); 
9.   L := L \ k; 
10.  forall (k,f,w)∈E do 
11.    if f∈L then  
12.      new_dist := A[k]+w; 
13.      if new_dist < A[f] then 
14.        A[f] := new_dist; 
15.        update( L); 
16.      end if; 
17.    end if; 
18.  end for; 
19.end while; 
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Dijkstra’s Algorithm – Single Operations 

• Assume a heap-based PQ L 
– L holds at most all nodes (n) 
– L4: O(n) 
– L5: O(n) (build PQ) 
– L8: O(1) (getMin) 
– L9: O(log(n)) (deleteMin) 
– L10: O(m) (with adjacency list) 
– L11: O(1) 

• Requires additional array LA of 
size |V| storing membership of 
nodes in L 

– L15: O(log(n)) (updatePQ) 
• Store in LA pointers to nodes in L; 

then remove/insert node  

1. G = (V, E); 
2. x : start_node;    # x∈V 
3. A : array_of_distances_from_x; 
4. ∀i: A[i]:= ∞; 
5. L := V;      # organized as PQ 
6. A[x] := 0; 
7. while L≠∅   
8.   k := L.get_closest_node(); 
9.   L := L \ k; 
10.  forall (k,f,w)∈E do 
11.    if f∈L then  
12.      new_dist := A[k]+w; 
13.      if new_dist < A[f] then 
14.        A[f] := new_dist; 
15.        update( L); 
16.      end if; 
17.    end if; 
18.  end for; 
19.end while; 
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Dijkstra’s Algorithm - Loops 

• Central costs 
– L9: O(log(n)) (deleteMin) 
– L15: O(log(n)) (del+ins) 

• Loops 
– Lines 7-18: O(n) 
– Line 10-17: All edges exactly once 
– Together: O(m+n) 

• Altogether: O((n+m)*log(n)) 
– With Fibonacci heaps: Amortized 

costs are O(n*log(n)+m)) 
– Also possible in O(n2); this is 

better in dense graphs (m~n2) 

1. G = (V, E); 
2. x : start_node;    # x∈V 
3. A : array_of_distances; 
4. ∀i: A[i]:= ∞; 
5. L := V;      # organized as PQ 
6. A[x] := 0; 
7. while L≠∅   
8.   k := L.get_closest_node(); 
9.   L := L \ k; 
10.  forall (k,f,w)∈E do 
11.    if f∈L then  
12.      new_dist := A[k]+w; 
13.      if new_dist < A[f] then 
14.        A[f] := new_dist; 
15.        update( L); 
16.      end if; 
17.    end if; 
18.  end for; 
19.end while; 
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Single-Source, Single-Target 

• Task: Find the distance between X and only Y 
– There is no way to be WC-faster than Dijkstra in general graphs 

• We can stop as soon as Y appears at the min position of the PQ 
• We can visit edges in order of increasing weight (might help) 
• Worst-case complexity unchanged 

• Things are different in planar graphs (navigators!) 

X 
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Faster SS-ST Algorithms 

• Trick 1: Pre-compute all distances 
– Transitive closure with distances 
– Requires O(|V|2) space: Prohibitive for large graphs 
– How? See next lecture 

 

X 

D 

B 

F E 

A 

G 

C 

Y 

1 

1 

2 

5 
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2 

1 4 

3 

2 

6 
3 

3 

→ A B C D E F G X Y 

A 0 - - - - - - - - 

B 3 0 2 - - - - - - 

C - - 0 - - - - - - 

D 4 1 3 0 3 4 6 7 3 

E 6 6 7 5 0 1 11 4 8 

F - - 6 - - 0 - - - 

G - - - - - - 0 - - 

X 2 2 4 1 4 5 7 0 4 

Y - - 2 - - - 3 - 0 
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Faster SS-ST Algorithms 

• Trick 2: Two-hop cover with distances 
– Find a (hopefully small) set S of nodes such that 

• For every pair of nodes v1,v2, at least one shortest path from v1 to v2 
goes through a node s∈S 

• Thus, the distance between v1,v2 is min{ d(v1,s)+d(s,v2) | s∈S) 
• S is called a 2-hop cover 

– Problem: Finding a minimal S is NP-complete  
• And S need not be small 
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G 

C 

Y 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      56 

More Distances 

 
• Graphs with negative edge weights 

– Shortest paths (in terms of weights) may be very long (edges) 
– Bellman-Ford algorithm is in O(n2*m) 

• All-pairs shortest paths 
– Only positive edge weights: Use Dijkstra n times 
– With negative edge weights: Floyd-Warshall in O(n3) 

• See next lecture 

• Reachability 
– Simple in undirected graphs: Compute all connected components 
– In digraphs: Use graph traversal or a special graph indexing 

method 
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Possible Examination Questions 

• Let G be an undirected graph and S,T be two connected 
components of G. Proof that S and T must be disjoined, 
i.e., cannot share a node. 

• Let G be an undirected graph with n vertices and m edges, 
m<=n2. What is the minimal and what is the maximal 
number of connected components G can have? 

• Let G be a positively edge-weighted digraph G. Design an 
algorithm which finds the longest acyclic path in G. Analyze 
the complexity of your algorithm. 

• An Euler path through an undirected graph G is a cycle-
free path from any start to any end node that hits every 
node of G (exactly once). Give an algorithm which tests for 
an input graph G whether it contains an Euler path. 
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