
Algorithms and Data Structures

Ulf Leser

Graphs: Introduction and First Algorithms

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 2

This Course

• Introduction 2
• Abstract Data Types 1
• Complexity analysis 1
• Styles of algorithms 1
• Lists, stacks, queues 2
• Sorting (lists) 3
• Searching (in lists, PQs, SOL) 5
• Hashing (to manage lists) 2
• Trees (to manage lists) 4
• Graphs (no lists!) 5
• Sum 21/26

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 3

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 4

Graphs

• There are objects and there are relations between objects
• Directed trees can represent hierarchical relations

– Relations that are asymmetric, cycle-free, binary
– Examples: parent_of, subclass_of, smaller_than, …

• Undirected trees can represent cycle-free, binary relations
• This excludes many (cyclic) real-life relations

– friend_of, similar_to, reachable_by, html_linked_to, …

• (Classical) Graphs can represent all binary relationships
• N-ary relationships: Hypergraphs

– exam(student, professor, subject), borrow(student, book, library)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 5

Types of Graphs

• Most graphs you will see are binary
• Most graphs you will see are simple

– Simple graphs: At most one edge between any two nodes
– Contrary: multigraphs

• Some graphs you will see are undirected, some directed
• This lecture: Only binary, simple, finite graphs

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 6

Exemplary Graphs

• Classical theoretical model: Random Graphs
– Create every possible edge with a fixed probability p

– In a random graph, the degree of every node has expected value
p*n, and the degree distribution follows a Poisson distribution

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 7

Web Graph

• Graph layout is difficult
[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

Note the
strong local
clustering

This is not a
random
graph

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 8

Universities Linking to Universities

• Small-World Property
[http://internetlab.cindoc.csic.es/cv/11/world_map/map.html]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 9

Human Protein-Protein-Interaction Network

• Still terribly incomplete
• Proteins that are close in the graph likely share function
[http://www.estradalab.org/research/index.html]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 10

Word Co-Occurrence

• Words that are close have similar meaning
– Close: Appear in the same contexts

• Words cluster into topics
[http://www.michaelbommarito.com/blog/]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 11

Social Networks

• Six degrees of separation
[http://tugll.tugraz.at/94426/files/-1/2461/2007.01.nt.social.network.png]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 12

Road Network

• Specific property: Planar graphs
[Sanders, P. &Schultes, D. (2005).Highway Hierarchies Hasten Exact Shortest Path Queries. In 13th

European Symposium on Algorithms (ESA), 568-579.]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 13

More Examples

• Graphs are also a wonderful abstraction

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 14

Coloring Problem

• How many colors do one need to color a map such that
never two colors meet at a border?

• Chromatic number: Number of colors sufficient to color a
graph such that no adjacent nodes have the same color

• Every planar graph has chromatic number of at most 4

[http://www.wikipedia.de]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 15

History [Wikipedia.de]

• This is not simple to proof
• It is easy to see that one sometimes

needs at least four colors
• It is easy to show that one may need

arbitrary many colors for general graphs
• First conjecture which until today was

proven only by computers
– Falls into many, many subcases – try all of

them with a program

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 16

Königsberger Brückenproblem

• Given a city with rivers and
bridges: Is there a cycle-free
path crossing every bridge
exactly once?
– Euler-Path

Source: Wikipedia.de

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 17

Königsberger Brückenproblem

• Given a city with rivers and
bridges: Is there a cycle-free
path crossing every bridge
exactly once?
– A graph has an Euler-Path iff at

contains 0 or 2 edges with odd
degree

• Hamiltonian path
– … visits each vertex exactly once
– NP complete

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 18

Recall?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 19

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 20

Recall from Trees

• Definition
A graph G=(V, E) consists of a set of vertices (nodes) V
and a set of edges (E⊆VxV).
– A sequence of edges e1, e2, .., en is called a path iff ∀1≤i<n:

ei=(v‘, v) and ei+1=(v, v``); the length of this path is n
– A path (v1,v2), (v2,v3), …, (vn-1,vn) is acyclic iff all vi are different
– G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
– A graph is connected if every pair of vertices is connected by at

least one path

• Definition
A graph (tree) is called undirected, if ∀(v,v’)∈E ⇒(v’,v)∈E.
Otherwise it is called directed.

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 21

More Definitions

• Definition

Let G=(V, E) be a directed graph. Let v∈V
– The outdegree out(v) is the number of edges with v as start point
– The indegree in(v) is the number of edges with v as end point
– G is edge-labeled, if there is a function w:E→L that assigns an

element of a set of labels L to every edge
– A labeled graph with L=ℕ is called weighted

• Remarks
– Weights can as well be reals; often we only allow positive weights
– Labels / weights max be assigned to edges or nodes (or both)
– Indegree and outdegree are identical for undirected graphs

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 22

Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’⊆V and E’⊆E and for

all (v1,v2)∈E’: v1,v2∈V’
– For any V’⊆V, the graph (V’, E∩(V’×V’)) is called the induced

subgraph of G (induced by V’)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 23

Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’⊆V and E’⊆E and for

all (v1,v2)∈E’: v1,v2∈V’
– For any V’⊆V, the graph (V’, E∩(V’×V’)) is called the induced

subgraph of G (induced by V’)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 24

Some More Definitions

• Definition. Let G=(V, E) be a directed graph.
– Any G’=(V’, E’) is called a subgraph of G, if V’⊆V and E’⊆E and for

all (v1,v2)∈E’: v1,v2∈V’
– For any V’⊆V, the graph (V’, E∩(V’×V’)) is called the induced

subgraph of G (induced by V’)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 25

Famous Problem

• Subgraph isomorphism problem: Given a graph G1=(V1,E1)
and a graph G2=(V2,E2): Is there an isomorphism f:V1→V2
such that f(G1) is a subgraph of G2?

F

F

D

D B

E

A

B B

D

A

F

B

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 26

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 27

Data Structures

• From an abstract point of view, a graph is a list of nodes
and a list of (weighted, directed) edges

• Two fundamental implementations
– Adjacency matrix
– Adjacency lists

• As usual, the representation determines which primitive
operations take how long

• Suitability depends on the specific problem under study
and the nature of the graphs
– Shortest paths, transitive hull, cliques, spanning trees, …
– Random, sparse/dense, scale-free, planar, …

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 28

Example [OW93]

Graph Adjacency Matrix Adjacency List

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 29

Adjacency Matrix

• Definition
Let G=(V, E) be a simple graph. The adjacency matrix MG
for G is a two-dimensional matrix of size |V|*|V|, where
M[i,j]=1 iff (vi,vj)∈E

• Remarks
– Allows to test existence of a given edge in O(1)
– Requires O(|V|) to obtain all incoming (outgoing) edges of a node
– For large graphs, M is too large to be of practical use
– If G is sparse (much less edges than |V|2), M wastes a lot of space
– If G is dense, M is a very compact representation (1 bit / edge)
– In weighted graphs, M[i,j] contains the weight
– Since M must be initialized with zero’s, without further tricks all

algorithms working on adjacency matrices are in Ω(|V|2)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 30

Adjacency List

• Definition
Let G=(V, E). The adjacency list LG for G is a list of all
nodes vi of G. The entry representing vi∈V is a list of all
edges outgoing (or incoming or both) from vi.

• Remarks (assume a fixed node v)
– Let k be the maximal outdegree of G. Then, accessing an edge

outgoing from v is O(log(k)) (if list is sorted; or use hashing)
– Obtaining a list of all outgoing edges from v is in O(k)

• If only outgoing edges are stored, obtaining a list of all incoming edges
is O(|V|*log(|E|)) – we need to search all lists

• Therefore, usually outgoing and incoming edges are stored, which
doubles space consumption

– If G is sparse, L is a compact representation
– If G is dense, L is wasteful (many pointers, many IDs)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 31

Comparison

Matrix Lists
Test if a given edge exists O(1) O(log(k))
Find all outgoing edges of
a given v

O(n) O(k)

Space of G O(n2) O(n+m)

• With n=|V|, m=|E|
• We assume a node-indexed array

• L is an array and nodes are unique numbered
• We find the list for node v in O(1)
• Otherwise, L has additional costs for finding v

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 32

Transitive Closure

• Definition
Let G=(V,E) be a digraph and vi,vj∈V. The transitive
closure of G is a graph G’=(V, E’) where (vi,vj)∈E’ iff G
contains a path from vi to vj.

• TC usually is dense and represented as adjacency matrix
• Compact encoding of reachability information

X

D

B

F E

A

G

C

Y

X

D

B

F E

A

G

C

Y

and many more

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 33

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 34

Graph Traversal

• One thing we often do with graphs is traversal
• “Traversal” means: Visit every node exactly once in a

sequence determined by the graph’s topology
– Not necessarily on one consecutive path (Hamiltonian path)

• Two popular orders
– Depth-first: Using a stack
– Breadth-first: Using a queue
– The scheme is identical to that in tree traversal

• Difference
– We have to take care of cycles
– No root – where should we start?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 35

Breaking Cycles

• Any naïve traversal will visit nodes more than once

– If there is at least one node with more than one incoming edge

• Any naïve traversal will run into infinite loops
– If the graphs contains at least one cycle (is cyclic)

• Breaking cycles / avoiding multiple visits
– Assume we started the traversal at a node r
– During traversal, we keep a list S of already visited nodes
– Assume we are in v and aim to proceed to v’ using e=(v, v’)∈E
– If v’∈S, v’ was visited before and we are about to run into a cycle

or visit v’ twice
– In this case, e is ignored

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 36

Example

• Started at r and went S={r, y, z, v}
• Testing (v,y): y∈S, drop
• Testing (v, r): r∈S, drop
• Testing (v, x): x∉S, proceed

r

y

x
z

v

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 37

Where do we Start?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 38

Where do we Start?

• Definition

Let G=(V, E). Let V’⊆V and G’ be the subgraph of G
induced by V’
– G’ is called connected if it contains a path between any pair v,v’∈V’
– G’ is called maximally connected, if no subgraph induced by a

superset of V’ is connected
– If G is undirected, any maximal connected subgraph of G is called a

connected component of G
– If G is directed, any maximal connected subgraph of G is called a

strongly connected component of G

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 39

Example

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 40

Where do we Start?

• If a undirected graph falls into several connected
components, we cannot reach all nodes by a single
traversal, no matter which node we use as start point

• If a digraph falls into several strongly connected
components, we might not reach all nodes by a single
traversal

• Remedy: If the traversal gets stuck, we restart at unseen
nodes until all nodes have been traversed

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 41

Depth-First Traversal on Directed Graphs

func void DFS ((V,E) graph) {
 U := V; # Unseen nodes
 S := ∅; # Seen nodes
 while U≠∅ do
 v := any_node_from(U);
 traverse(v, S, U);
 end while;
}

func void traverse (v node,
 S,U list)
{
 t := new Stack();
 t.put(v);
 while not t.isEmpty() do
 n := t.getNext();
 print n; # Do something
 U := U \ {n};
 S := S ∪ {n};
 c := n.outgoingNodes();
 foreach x in c do
 if x∈U then
 t.put(x);
 end if;
 end for;
 end while;
}

Called once for
every connected

component

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 42

Analysis

• We put every node exactly once
on the stack
– Once visited, never visited again

• We look at every edge exactly
once
– Outgoing edges of a visited node

are never considered again

• S and U can be implemented as
bit-array of size |V|, allowing
O(1) operations
– Setting, removing, testing nodes

• Altogether: O(n+m)

func void traverse (v node,
 S,U list) {
 t := new Stack();
 t.put(v);
 while not t.isEmpty() do
 n := t.getNext();
 print n;
 U := U \ {n};
 S := S ∪ {n};
 c := n.outgoingNodes();
 foreach x in c do
 if x∈U then
 t.put(x);
 end if;
 end for;
 end while;
}

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 43

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 44

In Undirected Graphs

• In an undirected graph, whenever there is a path from r to
v and from v to v’, then there is also a path from v’ to r
– Simply go the path r → v → v’ backwards

• Thus, DFS (and BFS) traversal can be used to find all
connected components of a undirected graph G
– Whenever you call traverse(v), create a new component
– All nodes visited during traverse(v) are added to this component

• Obviously in O(n+m)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 45

In Digraphs

• The problem is considerably more complicated for digraphs
– Previous conjecture does not hold

• Still: Tarjan‘s or Kosaraju’s algorithm find all strongly
connected components in O(n + m)
– See next lecture

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 46

Content of this Lecture

• Graphs
• Definitions
• Representing Graphs
• Traversing Graphs
• Connected Components
• Shortest Paths

– Single-Source-Shortest-Paths: Dijkstra’s Algorithm
– Shortest Path between two given nodes
– Other

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 47

Distance in Graphs

• Definition

Let G=(V, E) be a graph. The distance d(u,v) between any
two nodes u,v∈V for u≠v is defined as
– G un-weighted: The length of the shortest path from u to v, or ∞ if

no path from u to v exists
– G weighted: The minimal aggregated edge weight of all non-cyclic

paths from u to v, or ∞ if no path from u to v exists
– If u=v, d(u,v)=0

• Remark
– Distance in un-weighted graphs is the same as distance in

weighted graphs with unit costs
– Beware of negative cycles in directed graphs

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 48

Single-Source Shortest Paths in a Graph

• Task: Find the distance between X and all other nodes
• Only positive edge weights allowed

– Bellman-Ford algorithm solves the general case

X

1

1

2

5 3

2

1 4

3

2

6
3

3

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 49

Algorithmic Idea

• Enumerate paths by iteratively extending already found
shortest paths by all possible extensions
– All edges outgoing from the end node of a short path

• These extensions
– … either lead to a node which we didn’t reach before – then we

found a path, but cannot yet be sure it is the shortest
– … or lead to a node which we already reached but we are not yet

sure of we found the shortest path to it – update current best
distance

– … or lead to a node which we already reached and for which we
also surely found a shortest path already – these can be ignored

• Eventually, we enumerate nodes by their distance

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 50

Algorithm

• We enumerate nodes by length

of their shortest paths
– In the first loop, we pick x and update

distances (A) to all adjacent nodes
– When we pick a node k, we already

have computed its distance to x in A
– We adapt the current best distances

to all neighbors of k we haven’t
picked yet

• Once we picked all nodes, we
are done

1. G = (V, E);
2. x : start_node; # x∈V
3. A : array_of_distances_from_x;
4. ∀i: A[i]:= ∞;
5. L := V; # organized as PQ
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node();
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. update(L);
16. end if;
17. end if;
18. end for;
19.end while;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 51

Dijkstra’s Algorithm – Single Operations

• Assume a heap-based PQ L
– L holds at most all nodes (n)
– L4: O(n)
– L5: O(n) (build PQ)
– L8: O(1) (getMin)
– L9: O(log(n)) (deleteMin)
– L10: O(m) (with adjacency list)
– L11: O(1)

• Requires additional array LA of
size |V| storing membership of
nodes in L

– L15: O(log(n)) (updatePQ)
• Store in LA pointers to nodes in L;

then remove/insert node

1. G = (V, E);
2. x : start_node; # x∈V
3. A : array_of_distances_from_x;
4. ∀i: A[i]:= ∞;
5. L := V; # organized as PQ
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node();
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. update(L);
16. end if;
17. end if;
18. end for;
19.end while;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 52

Dijkstra’s Algorithm - Loops

• Central costs
– L9: O(log(n)) (deleteMin)
– L15: O(log(n)) (del+ins)

• Loops
– Lines 7-18: O(n)
– Line 10-17: All edges exactly once
– Together: O(m+n)

• Altogether: O((n+m)*log(n))
– With Fibonacci heaps: Amortized

costs are O(n*log(n)+m))
– Also possible in O(n2); this is

better in dense graphs (m~n2)

1. G = (V, E);
2. x : start_node; # x∈V
3. A : array_of_distances;
4. ∀i: A[i]:= ∞;
5. L := V; # organized as PQ
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node();
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. update(L);
16. end if;
17. end if;
18. end for;
19.end while;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 53

Single-Source, Single-Target

• Task: Find the distance between X and only Y
– There is no way to be WC-faster than Dijkstra in general graphs

• We can stop as soon as Y appears at the min position of the PQ
• We can visit edges in order of increasing weight (might help)
• Worst-case complexity unchanged

• Things are different in planar graphs (navigators!)

X

Y

1

1

2

5 3

2

1 4

3

2

6
3

3

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 54

Faster SS-ST Algorithms

• Trick 1: Pre-compute all distances
– Transitive closure with distances
– Requires O(|V|2) space: Prohibitive for large graphs
– How? See next lecture

X

D

B

F E

A

G

C

Y

1

1

2

5
3

2

1 4

3

2

6
3

3

→ A B C D E F G X Y

A 0 - - - - - - - -

B 3 0 2 - - - - - -

C - - 0 - - - - - -

D 4 1 3 0 3 4 6 7 3

E 6 6 7 5 0 1 11 4 8

F - - 6 - - 0 - - -

G - - - - - - 0 - -

X 2 2 4 1 4 5 7 0 4

Y - - 2 - - - 3 - 0

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 55

Faster SS-ST Algorithms

• Trick 2: Two-hop cover with distances
– Find a (hopefully small) set S of nodes such that

• For every pair of nodes v1,v2, at least one shortest path from v1 to v2
goes through a node s∈S

• Thus, the distance between v1,v2 is min{ d(v1,s)+d(s,v2) | s∈S)
• S is called a 2-hop cover

– Problem: Finding a minimal S is NP-complete
• And S need not be small

X

D

B

F

E

A

G

C

Y

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 56

More Distances

• Graphs with negative edge weights

– Shortest paths (in terms of weights) may be very long (edges)
– Bellman-Ford algorithm is in O(n2*m)

• All-pairs shortest paths
– Only positive edge weights: Use Dijkstra n times
– With negative edge weights: Floyd-Warshall in O(n3)

• See next lecture

• Reachability
– Simple in undirected graphs: Compute all connected components
– In digraphs: Use graph traversal or a special graph indexing

method

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 57

Possible Examination Questions

• Let G be an undirected graph and S,T be two connected
components of G. Proof that S and T must be disjoined,
i.e., cannot share a node.

• Let G be an undirected graph with n vertices and m edges,
m<=n2. What is the minimal and what is the maximal
number of connected components G can have?

• Let G be a positively edge-weighted digraph G. Design an
algorithm which finds the longest acyclic path in G. Analyze
the complexity of your algorithm.

• An Euler path through an undirected graph G is a cycle-
free path from any start to any end node that hits every
node of G (exactly once). Give an algorithm which tests for
an input graph G whether it contains an Euler path.

	Foliennummer 1
	This Course
	Content of this Lecture
	Graphs
	Types of Graphs
	Exemplary Graphs
	Web Graph
	Universities Linking to Universities
	Human Protein-Protein-Interaction Network
	Word Co-Occurrence
	Social Networks
	Road Network
	More Examples
	Coloring Problem
	History [Wikipedia.de]
	Königsberger Brückenproblem
	Königsberger Brückenproblem
	Recall?
	Content of this Lecture
	Recall from Trees
	More Definitions
	Some More Definitions
	Some More Definitions
	Some More Definitions
	Famous Problem
	Content of this Lecture
	Data Structures
	Example [OW93]
	Adjacency Matrix
	Adjacency List
	Comparison
	Transitive Closure
	Content of this Lecture
	Graph Traversal
	Breaking Cycles
	Example
	Where do we Start?
	Where do we Start?
	Example
	Where do we Start?
	Depth-First Traversal on Directed Graphs
	Analysis
	Content of this Lecture
	In Undirected Graphs
	In Digraphs
	Content of this Lecture
	Distance in Graphs
	Single-Source Shortest Paths in a Graph
	Algorithmic Idea
	Algorithm
	Dijkstra’s Algorithm – Single Operations
	Dijkstra’s Algorithm - Loops
	Single-Source, Single-Target
	Faster SS-ST Algorithms
	Faster SS-ST Algorithms
	More Distances
	Possible Examination Questions

