Modellbasierte Softwareentwicklung (MODSOFT)

Part Il
Domain Specific Languages

Introduction

Prof. Joachim Fischer /
Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk} @informatik.hu-berlin.de
LFE Systemanalyse, I11.310



Model-based Software Engineering — Two Ways



Model-based Software Engineering — Two Ways

Use existing, standardized languages,
like the Unified Modeling Language
(UML)

B often subsumed under the term
Model Driven Architecture (MDA)

B based on expensive CASE-Tools

B tailored for different domains via
profiles and specialized tools

B often requires elaboration of
generated code

m waterfally, document heavy, linear
processes



Model-based Software Engineering — Two Ways

Use existing, standardized languages, Write and use Domain Specific
Languages (DSL)

like the Unified Modeling Language
(UML)

B often subsumed under the term
Model Driven Architecture (MDA)

B based on expensive CASE-Tools

B tailored for different domains via
profiles and specialized tools

B often requires elaboration of
generated code

m waterfally, document heavy, linear
processes

requires you to develop your own
modeling languages first

B often requires to adopt the

languages while using them

rather light weight and flexible,
incremental development
processes, agile



Model-based Software Engineering — Two Ways

Use existing, standardized languages, Write and use Domain Specific

like the Unified Modeling Language

(UML) ]

B often subsumed under the term
Model Driven Architecture (MDA)

B based on expensive CASE-Tools

B tailored for different domains via
profiles and specialized tools

B often requires elaboration of
generated code

m waterfally, document heavy, linear
processes

Languages (DSL)

requires you to develop your own
modeling languages first

often requires to adopt the
languages while using them

case-study.movisa

case-study.movisa#2

case-study.movisa#5 &3

.2 Palette
[;\+\\—| -
Rl WY r

™ Alarm Control

10.
Y : 10.0 PIXEL

ion Fuellevel_Bar_1_Position
X : ® PIXEL ( Fuellevel_Bar_1_Position_X
3 ( Fuellevel_Bar_1_Position_Y
Z : 1.9 NONE ( Fuellevel_Bar_1_Position_Z )

Button
[ ] Check Box Array

{ & Check Box

s

Drop Down
) Gauge
Image

Input

( ) Radio Button Group
e Radio Button
W Simple Container
Slider
Text Label

t-. Trend




Model-based Software Engineering — Two Ways

Use existing, standardized languages, Write and use Domain Specific
like the Unified Modeling Language Languages (DSL)

(UML) .
B requires you to develop your own

B often subsumed under the term modeling languages first

Model Driven Architecture (MDA) m often requires to adopt the

1 1 - P — 1 | h . | . h
interaction di agram frame a n g u a g e S W I e u S I n g t e
"‘\ lifelines participating in interaction
X N
interaction Submit Comments lifelines :Window, :Comments?’:Proxy. :DWRServlet, :PluckRequestBatch, :PIuckService)
(inline) interaction
(activity) _
initial node Y ) ) =7
sd Post Comments case-study.movisa case-study.movisa#2 case-study.movisa#5 &3
ref /) Validate and Approve = % pal tt D
Comment . . «javascript» . o ralette
‘Window e‘qavascnpl» :PluckRequest i «servicen
A :Comments Batch :PluckService [ P
) NeQAD-
interaction use «callback» I | | )
P> post_comments() | ] 7] E ] ™= Alarm Control
(activity) ) P BeginRequest()
decwswon\node}/< [no validation errors] L «createn «ajax» | ~ 1 TextLabelRepresentation { Button
— - L — = o .
:Proxy , 2 Text Label Specifics {
[validation errors] ) l | " ’/’ 3 TextCanWrap : false [ J Check Box Array
‘/ﬁ ) «ajax» | "‘f Multiline : false
_— tComments() - }
[ E— e = — pos \
mr“wwl‘\_' e - Position Fuellevel_Bar_1_Position { 4 Check Box
d(e‘c.rSwo/n/quard I | \ X : 10.9 PIXEL ( Fuellevel_Bar_1_Position_X )
: {1s..4s} = s Y : 10.8 PIXEL ( Fuellevel_Bar_1_Position_Y ) Drop Down
U< { pr T i | ) Z : 1.0 NONE ( Fuellevel_Bar_1_Position_Z )
10 } ) Gauge
| ' )
11
L2 Size Fuellevel_Bar_1_Size { Image
(activity) decision node {errors] 3 Height : 140.0 PIXEL ( Fuellevel_Bar_1_Size_Height )
— W Width : 15.0 PIXEL ( Fuellevel_Bar_1_Size_Width ) Input
(activity) [nO efrors]
(activity) :
merge node ref / Handle errors from Pluck ( ) Radio Button Group
\ .
N ) *,—\ e Radio Button
\/(’ \
\ interaction use W Simple Container
| .
ref J Request all comments {10..100ms} (activity) merge node Slider
A
\ Text Label
(activity) _ (interaction) duration constraint _ .
final node 3 © uml-diagrams.org .~ Trend
=
T L ——— S—

L ——




= prolog
(1 VL)

O.
(2 VL)
(2 VL)
(3 VL)
(4 VL)

epilog

(2 VL)

Agenda

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI|

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

3



Languages



Languages Involved in Model-based Software Engineering

» Natural Languages

» Non-Computer comprehensible languages
B e.g. ad-hoc sketches
B informally defined

» Computer Languages

B formally defined
B written by humans or machines
B understandable by machines (and sometimes by humans)

B modeling languages, programming languages (and others)

5



Modeling = Programming

Propose
B abstract description with various purposes vs. concrete instructions
Level-of-abstraction

B models only contain the information necessary to fulfill a specific purpose

B its quite common to have different models of the same thing to cover different purposes
(validate specific properties, test, implementation, design, deployment, etc.)

B some techniques (especially formal verification) only work on abstractions
Complete vs. Incomplete

B programs have to be complete to be useful

B  models can be incomplete and still fulfill their purpose

Domain model vs. system model

B a model can be the model of a problem or problem domain

B amodel can be a model of a (software) system that solves a problem
Syntax-based differences

B graphical vs. textual



Modeling 2 Programming

» Programs are models

B of a software system
B on alow level of abstraction
B that are complete

B with the purpose to fully describe a run-able system

» This view on modeling and programming is not shared by
all people



General Purpose vs. Domain Specific Languages (DSL)

» This can be said about both, modeling and programming languages

> Types of expressiveness (and levels of abstraction)

B expressiveness means that you can express something or not with the
given language constructs (e.g. to be Turing-machine equivalent)

B expressiveness means that you can express more with fewer uses of the
given language constructs (i.e. can say the same with fewer words)

> General purpose languages have only few constructs that can be
used to describe a large class of things, but generally require larger
artifacts

» DSLs have a set of very specific constructs that can only be used to
describe a small class of things (in a specific domain), and
therefore usually require smaller artifacts

8



General Purpose v

» This can be said abou

> Types of expressivenes:

B expressiveness means
given language const

B expressiveness means
given language const

» General purpose lang
used to describe a lar
artifacts

» DSLs have a set of ve|
describe a small class
therefore usually requ

assembler
registers
push
pPop
cmp
jump
logic/arith. operators

|

number of constructs

—_

UML
object-orientation
statecharts, activities
collaboration, interactions
distribution, concurrency
signals, events

/ level of abstraction
transistors C
and data types, type safety
or variables, parameters
not functions, calls, recursion
if, for, while
logic/arith. operators
assignment

memory management

number of constructs ® multi-purpose
- modelling language
‘ (UML)
possible multi-purpose
different  Programming language (C)

applications ‘

® domain-specific

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

level of abstraction




v

Deutsch

lots of constructs (syntax
rules + words)

can express everything, but
not very precise

depends on interpretation

natural language
high expressiveness
high expressiveness

Examples

Java

only a few constructs
Turing-machine equivalent

general purpose
programming language
high expressiveness
low expressiveness

UML

many constructs

Turing-machine equivalent
(with the right semantics)

general purpose modeling
language

high expressiveness

high expressiveness

v

HTML

only a few constructs

can only do web-page
markup

domain specific language
low expressiveness
high expressiveness



Types and Examples of DSLs

> API/vocabulary

B |ibraries in general purpose (programming) languages provide functionality
in a reusable form

B functions are vocabulary from a language perspective
> internal DSL

B some general purpose languages have a very flexible set of language
constructs that allows to emulate a specific domain specific syntax

B a library that exploits syntactic flexibility of the host language can be seen as
an internal DSL

B you can use the host language tooling
> external DSL

B languages with an own syntax, semantics, and vocabulary

B require to build there own set of language tools

10



Syntax vs. Vocabulary

> Different things in natural languages, melt in many
computer languages

» Defined functions and APIs can be seen as vocabulary
> Language constructs have to be seen as syntax

» In DSLs language constructs have a syntactic function and
oresent pieces of vocabulary

» For computer languages better use syntax and libraries, not
syntax and vocabulary

11



Summary

» Programing languages

» Modeling languages

> (Level of) abstraction

> Expressiveness (x2)

» General purpose language
» Domain specific language
> External and internal DSL

» Host language

Martin Fowler: Domain Specific Languages (Addison-Wesley 2010)
12



http://martinfowler.com/books/dsl.html
http://martinfowler.com/books/dsl.html

Meta-Languages



Languages

> A computer language (or simply language) is the set of all the
language instances generated by a language description.

> A language instance is a well defined representation for a
piece of information.

> A language description is a finite system of rules that de-
scribes what constitutes the valid instances of the described
language. Therefore, a language description is a means to
generate all the valid instances of the described language by
accepting valid instances.

14



Language Aspects

notation Structure semantics

15



Types of Language Aspects

notation Structure semantics

> textual » constructs and their operational

interrelations

» graphical translational

» constraints

» intentional denotational

16



Language Aspects Additional Nomenclature

notation Structure semantics

Instance representation semantics

notation structure/construct semantics description

17



Language Tools

notation STructure semantics

» editors » repositories compilers
> parsers » constraint checkers interpreters
simulators

model checkers

vV V. v Vv V

18



Nomenclature for Traditional Languages

syntax semantics

concrete  abstract static dynamic

19



Nomenclature for Traditional Languages

syntax semantics

....................................................................................................................................................................

i concrete abstract statlc dynamic

énotation Structure semantlcs:

19



Summary

> Notation

> Structure

» Semantics

> Static, dynamic semantics
> Abstract, concrete syntax

» Representation

» Tool

20



Languages are Software too

> Editors are pieces of software
> Repositories and constraint checkers are pieces of software

» Compilers, interpreters, simulators are pieces of software

= | anguages are pieces of software

21



Meta-Languages

Instance representation
(program, model, description)

@ editor/

= parser

o)

)

w .

L repository/

S constraint checker

(@)

C °

= compiler/
simulator/
intepreter

Instance semantics
(running software, results)

22



Meta-Languages

Instance representation
(program, model, description)

@ editor/ < . meta tools <:|notation

parser

rep05|t<?ry/ ﬁ | meta tools <::|structure
constraint checker

compiler/ .
. meta tools <::| semantics
simulator/ < |

intepreter

language tools

—

—— > human input
——— > generated output

Instance semantics
(running software, results)

22



Concrete Meta-Languages

textual DSL programm/model

Java code

23

xText <: xText grammar
EMF <}: Ecore meta-model
xTend <}: xTend program

—— > human input
——— > generated output




Other Meta-Languages/Tools

notation Structure semantics
grammars » meta-models » transformations
graph » constraint definitions  » code generators
grammars

xText, TEF » EMF, MOF » QVT, ATL

GMT » OCL » xTend, Jet

24



Summary

» Meta-Languages
> Meta-Tools

25



Meta-Modeling

» The 4-layer model

26



Meta-Modeling — Semiotic Triangle (I)

Concept(s)

contains

I

Internal

represent Reality o
or model | |dc_em!fy
within hounded within
internal within internal

reality L reaity

External
_4 Reality
contains

1

conains

identify
within .
external Slgn(s)

T Yojo

Ogdenand Richards: The Meaning of Meaning (1923)
Bernard Bolzano: Beitrdge zu einer begriindeteren Darstellung der Mathematik (1810)
Aristotle: Peri Hermeneias, 2nd book of hisOrganon (4th century BC)

27


http://en.wikipedia.org/wiki/Charles_Kay_Ogden
http://en.wikipedia.org/wiki/Charles_Kay_Ogden
http://en.wikipedia.org/wiki/I._A._Richards
http://en.wikipedia.org/wiki/I._A._Richards
http://en.wikipedia.org/wiki/The_Meaning_of_Meaning
http://en.wikipedia.org/wiki/The_Meaning_of_Meaning
http://en.wikipedia.org/wiki/Bernard_Bolzano
http://en.wikipedia.org/wiki/Bernard_Bolzano
http://en.wikipedia.org/wiki/Aristotle
http://en.wikipedia.org/wiki/Aristotle
http://en.wikipedia.org/wiki/Organon
http://en.wikipedia.org/wiki/Organon

Meta-Modeling — Semiotic Triangle (I1)

."..7
symbolizes

O k-J"
Concept | =

Yojo

Q/mbol

e T

|

classifies

describes

.,

Descriptor

28

symbolizes
* |Occurrence |

/

\( @l«“



Meta-Modeling — Meta-Modeling-Hierarchy

Real World Models
— Aot >
= Fido (20kg, Awful): Dog
, ™ ?3 Munchkin (8kg, FeedingOnly):Cat
b TR LapKitty (4kg, LapLover):Cat
Real Entities Instance Model
[]
Classify Classify
—
Pet
+ name
'h + weight
Distracting 1 1
Animals Cat
k +slobberFactor | | +standOffindex
Class Model
Classify
N 4
Class
I
Property
Category Theories Metamodel

Mellor, Scott, Uhl, Weise: MDA Distilled (Addison-Wesley, 2004)

29


http://books.google.de/books?id=LGzS1uiUa7AC&pg=PT62&lpg=PT62&dq=fido+lapkitty+munchkin&source=bl&ots=6yQViO_3Ap&sig=JNVj7o0iliyZB6LL5h3GEQH8YZI&hl=de&sa=X&ei=lwpGVJuANMHRygO9toCADA&redir_esc=y%23v=onepage&q=fido%2520lapkitty%2520munchkin&f=false
http://books.google.de/books?id=LGzS1uiUa7AC&pg=PT62&lpg=PT62&dq=fido+lapkitty+munchkin&source=bl&ots=6yQViO_3Ap&sig=JNVj7o0iliyZB6LL5h3GEQH8YZI&hl=de&sa=X&ei=lwpGVJuANMHRygO9toCADA&redir_esc=y%23v=onepage&q=fido%2520lapkitty%2520munchkin&f=false

Ve

Meta-Modeling — M4 Model

e.g. Types, DataTypes,
Containers

e.g. definition of element
"Class™, "Property", ...

e.g. definition of element
"Creator”

Universal Metadata
Modeling Meta-Meta Model
Languages
instax;.cc-o:’
M2 |
Schema Metadata
Definition Meta-Model
Languages
instance-of
Ml Metadata
Metadata Model
Schemes
insta:icc-ot‘
MO :
Metadata Metadata
Instances

e.g. Creator=Leonarde DaVinc:

Object Management Group (OMG): Meta Object Facility (MOF)

30

Pppowniay souoeyy Lobaw)
= @
[—_ ey |

< \,\ \" B Pl
tyssey e ||
]
PPOW S50 sepobajes Agul
-O} | ] 4 \I" ' ” Spuny
X ~E Al | oo
I m: t o i \ / L
(] /’- . -_— | |
& - £\
hpsse) | | s r ~7
J ]
|opon SuTEE ssagu3 mey
WD Lnede) S Loy Coa ”
) (AuOtupas ] Tg) unepounyy Q
80Q (rywy Syz) ooy : =
= -
vapom PLIOM 1Py
ssaqu3 woy
<o ”
.
-
fa *
M
—
PLIOM Pey



http://www.omg.org/mof/
http://www.omg.org/mof/

Meta-Modeling — M4 Model

Ppownay sopoey) LoBawe)
M3 Layer == o @
< . meta-metamodel «-oTuT ,....q:r
& - e | b N .
TO — l Buzensg
5{ UML ML I Custom I ' M2 Layer ""-2.3 — %_ Alag /
: metamodel Proﬁle metam .. metamodel - - mﬁ%
z 19O OuUTsY seaqu3l wey
x | | . - | ) WO UMoN0n B) gty - ”
- ' M1 Layel’ 10 AUOBUDS93 Og) UMY e gy g
UML models l 2L HEET | model S =] "<
custom metamodel | F— F——
<
l MO Layer % l A/
The Real World | rea'ity - =
—

Object Management Group (OMG): Meta Object Facility (MOF)
30



http://www.omg.org/mof/
http://www.omg.org/mof/

Summary

> Real world things, objects
» Models

» Meta-Models

> Meta-Meta-Models

» Mo-M3, M4-Model

> Instance-of relationship

31



= prolog
(1 VL)

O.
(2 VL)
(2 VL)
(3 VL)
(4 VL)

epilog

(2 VL)

Agenda

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI|

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

32



