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Model-based Software Engineering — Two Ways

Use existing, standardized languages, Write and use Domain Specific
like the Unified Modeling Language Languages (DSL)

(UML) .
B requires you to develop your own

B often subsumed under the term modeling languages first

Model Driven Architecture (MDA) m often requires to adopt the
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Agenda

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI|

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)
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Languages Involved in Model-based Software Engineering

» Natural Languages

» Non-Computer comprehensible languages
B e.g. ad-hoc sketches
B informally defined

» Computer Languages

B formally defined
B written by humans or machines
B understandable by machines (and sometimes by humans)

B modeling languages, programming languages (and others)
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Modeling = Programming

Propose
B abstract description with various purposes vs. concrete instructions
Level-of-abstraction

B models only contain the information necessary to fulfill a specific purpose

B its quite common to have different models of the same thing to cover different purposes
(validate specific properties, test, implementation, design, deployment, etc.)

B some techniques (especially formal verification) only work on abstractions
Complete vs. Incomplete

B programs have to be complete to be useful

B  models can be incomplete and still fulfill their purpose

Domain model vs. system model

B a model can be the model of a problem or problem domain

B amodel can be a model of a (software) system that solves a problem
Syntax-based differences

B graphical vs. textual



Modeling 2 Programming

» Programs are models

B of a software system
B on alow level of abstraction
B that are complete

B with the purpose to fully describe a run-able system

» This view on modeling and programming is not shared by
all people



General Purpose vs. Domain Specific Languages (DSL)

» This can be said about both, modeling and programming languages

> Types of expressiveness (and levels of abstraction)

B expressiveness means that you can express something or not with the
given language constructs (e.g. to be Turing-machine equivalent)

B expressiveness means that you can express more with fewer uses of the
given language constructs (i.e. can say the same with fewer words)

> General purpose languages have only few constructs that can be
used to describe a large class of things, but generally require larger
artifacts

» DSLs have a set of very specific constructs that can only be used to
describe a small class of things (in a specific domain), and
therefore usually require smaller artifacts
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Deutsch

lots of constructs (syntax
rules + words)

can express everything, but
not very precise

depends on interpretation

natural language
high expressiveness
high expressiveness

Examples

Java

only a few constructs
Turing-machine equivalent

general purpose
programming language
high expressiveness
low expressiveness

UML

many constructs

Turing-machine equivalent
(with the right semantics)

general purpose modeling
language

high expressiveness

high expressiveness

v

HTML

only a few constructs

can only do web-page
markup

domain specific language
low expressiveness
high expressiveness



Types and Examples of DSLs

> API/vocabulary

B |ibraries in general purpose (programming) languages provide functionality
in a reusable form

B functions are vocabulary from a language perspective
> internal DSL

B some general purpose languages have a very flexible set of language
constructs that allows to emulate a specific domain specific syntax

B a library that exploits syntactic flexibility of the host language can be seen as
an internal DSL

B you can use the host language tooling
> external DSL

B languages with an own syntax, semantics, and vocabulary

B require to build there own set of language tools
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Syntax vs. Vocabulary

> Different things in natural languages, melt in many
computer languages

» Defined functions and APIs can be seen as vocabulary
> Language constructs have to be seen as syntax

» In DSLs language constructs have a syntactic function and
oresent pieces of vocabulary

» For computer languages better use syntax and libraries, not
syntax and vocabulary

11



Summary

» Programing languages

» Modeling languages

> (Level of) abstraction

> Expressiveness (x2)

» General purpose language
» Domain specific language
> External and internal DSL

» Host language

Martin Fowler: Domain Specific Languages (Addison-Wesley 2010)
12
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Languages

> A computer language (or simply language) is the set of all the
language instances generated by a language description.

> A language instance is a well defined representation for a
piece of information.

> A language description is a finite system of rules that de-
scribes what constitutes the valid instances of the described
language. Therefore, a language description is a means to
generate all the valid instances of the described language by
accepting valid instances.

14



Language Aspects

notation Structure semantics
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Types of Language Aspects

notation Structure semantics

> textual » constructs and their operational

interrelations

» graphical translational

» constraints

» intentional denotational

16



Language Aspects Additional Nomenclature

notation Structure semantics

Instance representation semantics

notation structure/construct semantics description
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Language Tools

notation STructure semantics

» editors » repositories compilers
> parsers » constraint checkers interpreters
simulators

model checkers

vV V. v Vv V
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Nomenclature for Traditional Languages

syntax semantics

concrete  abstract static dynamic
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Nomenclature for Traditional Languages

syntax semantics

....................................................................................................................................................................

i concrete abstract statlc dynamic

énotation Structure semantlcs:
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Summary

> Notation

> Structure

» Semantics

> Static, dynamic semantics
> Abstract, concrete syntax

» Representation

» Tool
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Languages are Software too

> Editors are pieces of software
> Repositories and constraint checkers are pieces of software

» Compilers, interpreters, simulators are pieces of software

= | anguages are pieces of software
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Meta-Languages

Instance representation
(program, model, description)

@ editor/

= parser
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C °
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intepreter

Instance semantics
(running software, results)
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Meta-Languages

Instance representation
(program, model, description)

@ editor/ < . meta tools <:|notation

parser

rep05|t<?ry/ ﬁ | meta tools <::|structure
constraint checker

compiler/ .
. meta tools <::| semantics
simulator/ < |

intepreter

language tools

—

—— > human input
——— > generated output

Instance semantics
(running software, results)
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Concrete Meta-Languages

textual DSL programm/model

Java code
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xText <: xText grammar
EMF <}: Ecore meta-model
xTend <}: xTend program

—— > human input
——— > generated output




Other Meta-Languages/Tools

notation Structure semantics
grammars » meta-models » transformations
graph » constraint definitions  » code generators
grammars

xText, TEF » EMF, MOF » QVT, ATL

GMT » OCL » xTend, Jet
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Summary

» Meta-Languages
> Meta-Tools

25



Meta-Modeling

» The 4-layer model
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Meta-Modeling — Semiotic Triangle (I)

Concept(s)

contains

I

Internal

represent Reality o
or model | |dc_em!fy
within hounded within
internal within internal

reality L reaity

External
_4 Reality
contains

1

conains

identify
within .
external Slgn(s)

T Yojo

Ogdenand Richards: The Meaning of Meaning (1923)
Bernard Bolzano: Beitrdge zu einer begriindeteren Darstellung der Mathematik (1810)
Aristotle: Peri Hermeneias, 2nd book of hisOrganon (4th century BC)
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Meta-Modeling — Semiotic Triangle (I1)
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Meta-Modeling — Meta-Modeling-Hierarchy

Real World Models
— Aot >
= Fido (20kg, Awful): Dog
, ™ ?3 Munchkin (8kg, FeedingOnly):Cat
b TR LapKitty (4kg, LapLover):Cat
Real Entities Instance Model
[]
Classify Classify
—
Pet
+ name
'h + weight
Distracting 1 1
Animals Cat
k +slobberFactor | | +standOffindex
Class Model
Classify
N 4
Class
I
Property
Category Theories Metamodel

Mellor, Scott, Uhl, Weise: MDA Distilled (Addison-Wesley, 2004)
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Meta-Modeling — M4 Model

e.g. Types, DataTypes,
Containers

e.g. definition of element
"Class™, "Property", ...

e.g. definition of element
"Creator”

Universal Metadata
Modeling Meta-Meta Model
Languages
instax;.cc-o:’
M2 |
Schema Metadata
Definition Meta-Model
Languages
instance-of
Ml Metadata
Metadata Model
Schemes
insta:icc-ot‘
MO :
Metadata Metadata
Instances

e.g. Creator=Leonarde DaVinc:

Object Management Group (OMG): Meta Object Facility (MOF)
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http://www.omg.org/mof/
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Meta-Modeling — M4 Model
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< . meta-metamodel «-oTuT ,....q:r
& - e | b N .
TO — l Buzensg
5{ UML ML I Custom I ' M2 Layer ""-2.3 — %_ Alag /
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<
l MO Layer % l A/
The Real World | rea'ity - =
—

Object Management Group (OMG): Meta Object Facility (MOF)
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Summary

> Real world things, objects
» Models

» Meta-Models

> Meta-Meta-Models

» Mo-M3, M4-Model

> Instance-of relationship
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Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI|

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)
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