
Modellbasierte Softwareentwicklung (MODSOFT)

Part II

Domain Specific Languages

Introduction

Prof. Joachim Fischer /
Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk}@informatik.hu-berlin.de
LFE Systemanalyse, III.310

1

Model-based Software Engineering – Two Ways

2

Model-based Software Engineering – Two Ways

2

Use existing, standardized languages,
like the Unified Modeling Language
(UML)

■ often subsumed under the term
Model Driven Architecture (MDA)

■ based on expensive CASE-Tools

■ tailored for different domains via
profiles and specialized tools

■ often requires elaboration of
generated code

■ waterfally, document heavy, linear
processes

Write and use Domain Specific
Languages (DSL)

■ requires you to develop your own
modeling languages first

■ often requires to adopt the
languages while using them

■ rather light weight and flexible,
incremental development
processes, agile

Model-based Software Engineering – Two Ways

2

Use existing, standardized languages,
like the Unified Modeling Language
(UML)

■ often subsumed under the term
Model Driven Architecture (MDA)

■ based on expensive CASE-Tools

■ tailored for different domains via
profiles and specialized tools

■ often requires elaboration of
generated code

■ waterfally, document heavy, linear
processes

Write and use Domain Specific
Languages (DSL)

■ requires you to develop your own
modeling languages first

■ often requires to adopt the
languages while using them

■ rather light weight and flexible,
incremental development
processes, agile

Model-based Software Engineering – Two Ways

2

Use existing, standardized languages,
like the Unified Modeling Language
(UML)

■ often subsumed under the term
Model Driven Architecture (MDA)

■ based on expensive CASE-Tools

■ tailored for different domains via
profiles and specialized tools

■ often requires elaboration of
generated code

■ waterfally, document heavy, linear
processes

Write and use Domain Specific
Languages (DSL)

■ requires you to develop your own
modeling languages first

■ often requires to adopt the
languages while using them

■ rather light weight and flexible,
incremental development
processes, agile

Model-based Software Engineering – Two Ways

2

Use existing, standardized languages,
like the Unified Modeling Language
(UML)

■ often subsumed under the term
Model Driven Architecture (MDA)

■ based on expensive CASE-Tools

■ tailored for different domains via
profiles and specialized tools

■ often requires elaboration of
generated code

■ waterfally, document heavy, linear
processes

Write and use Domain Specific
Languages (DSL)

■ requires you to develop your own
modeling languages first

■ often requires to adopt the
languages while using them

■ rather light weight and flexible,
incremental development
processes, agile

prolog
(1 VL)

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

Agenda

3

➡

Languages

4

Languages Involved in Model-based Software Engineering

▶ Natural Languages

▶ Non-Computer comprehensible languages

■ e.g. ad-hoc sketches

■ informally defined

▶ Computer Languages

■ formally defined

■ written by humans or machines

■ understandable by machines (and sometimes by humans)

■ modeling languages, programming languages (and others)

5

Modeling != Programming

▶ Propose

■ abstract description with various purposes vs. concrete instructions

▶ Level-of-abstraction

■ models only contain the information necessary to fulfill a specific purpose

■ its quite common to have different models of the same thing to cover different purposes
(validate specific properties, test, implementation, design, deployment, etc.)

■ some techniques (especially formal verification) only work on abstractions

▶ Complete vs. Incomplete

■ programs have to be complete to be useful

■ models can be incomplete and still fulfill their purpose

▶ Domain model vs. system model

■ a model can be the model of a problem or problem domain

■ a model can be a model of a (software) system that solves a problem

▶ Syntax-based differences

■ graphical vs. textual

6

Modeling ⊇ Programming

▶ Programs are models

■ of a software system

■ on a low level of abstraction

■ that are complete

■ with the purpose to fully describe a run-able system

▶ This view on modeling and programming is not shared by
all people

7

General Purpose vs. Domain Specific Languages (DSL)

▶ This can be said about both, modeling and programming languages

▶ Types of expressiveness (and levels of abstraction)

■ expressiveness means that you can express something or not with the
given language constructs (e.g. to be Turing-machine equivalent)

■ expressiveness means that you can express more with fewer uses of the
given language constructs (i.e. can say the same with fewer words)

▶ General purpose languages have only few constructs that can be
used to describe a large class of things, but generally require larger
artifacts

▶ DSLs have a set of very specific constructs that can only be used to
describe a small class of things (in a specific domain), and
therefore usually require smaller artifacts

8

General Purpose vs. Domain Specific Languages (DSL)

▶ This can be said about both, modeling and programming languages

▶ Types of expressiveness (and levels of abstraction)

■ expressiveness means that you can express something or not with the
given language constructs (e.g. to be Turing-machine equivalent)

■ expressiveness means that you can express more with fewer uses of the
given language constructs (i.e. can say the same with fewer words)

▶ General purpose languages have only few constructs that can be
used to describe a large class of things, but generally require larger
artifacts

▶ DSLs have a set of very specific constructs that can only be used to
describe a small class of things (in a specific domain), and
therefore usually require smaller artifacts

8

transistors
and
or

not

assembler
registers

push
pop
cmp
jump

logic/arith. operators

C
data types, type safety
variables, parameters

functions, calls, recursion
if, for, while

logic/arith. operators
assignment

memory management

UML
object-orientation

statecharts, activities
collaboration, interactions
distribution, concurrency

signals, events

number of constructs

level of abstraction

number of constructs

possible
di!erent

 applications

level of abstraction

multi-purpose
programming language (C)

multi-purpose
modelling language

(UML)

domain-speci!c
language

Examples

9

Deutsch Java UML HTML

▶ lots of constructs (syntax
rules + words)

▶ can express everything, but
not very precise

▶ depends on interpretation

▶ only a few constructs
▶ Turing-machine equivalent

▶ many constructs
▶ Turing-machine equivalent

(with the right semantics)

▶ only a few constructs
▶ can only do web-page

markup

▶ natural language
▶ high expressiveness
▶ high expressiveness

▶ general purpose
programming language

▶ high expressiveness
▶ low expressiveness

▶ general purpose modeling
language

▶ high expressiveness
▶ high expressiveness

▶ domain specific language
▶ low expressiveness
▶ high expressiveness

Types and Examples of DSLs

▶ API/vocabulary

■ libraries in general purpose (programming) languages provide functionality
in a reusable form

■ functions are vocabulary from a language perspective

▶ internal DSL

■ some general purpose languages have a very flexible set of language
constructs that allows to emulate a specific domain specific syntax

■ a library that exploits syntactic flexibility of the host language can be seen as
an internal DSL

■ you can use the host language tooling

▶ external DSL

■ languages with an own syntax, semantics, and vocabulary

■ require to build there own set of language tools

10

Syntax vs. Vocabulary

▶ Different things in natural languages, melt in many
computer languages

▶ Defined functions and APIs can be seen as vocabulary

▶ Language constructs have to be seen as syntax

▶ In DSLs language constructs have a syntactic function and
present pieces of vocabulary

▶ For computer languages better use syntax and libraries, not
syntax and vocabulary

11

Summary

▶ Programing languages

▶ Modeling languages

▶ (Level of) abstraction

▶ Expressiveness (x2)

▶ General purpose language

▶ Domain specific language

▶ External and internal DSL

▶ Host language

12
Martin Fowler: Domain Specific Languages (Addison-Wesley 2010)

http://martinfowler.com/books/dsl.html
http://martinfowler.com/books/dsl.html

Meta-Languages

13

Languages

▶ A computer language (or simply language) is the set of all the
language instances generated by a language description.

▶ A language instance is a well defined representation for a
piece of information.

▶ A language description is a finite system of rules that de-
scribes what constitutes the valid instances of the described
language. Therefore, a language description is a means to
generate all the valid instances of the described language by
accepting valid instances.

14

Language Aspects

15

structurenotation semantics

Repository

Revision Diff

Compilation
Unit

* *

prevnext

«relation,
fragmentation»

* *

Types of Language Aspects

16

structurenotation semantics

▶ textual
▶ graphical
▶ intentional

▶ constructs and their
interrelations

▶ constraints

▶ operational
▶ translational
▶ denotational
▶ ...

Language Aspects Additional Nomenclature

17

structurenotation semantics

instance representation semantics

notation structure/construct semantics description

Language Tools

18

structurenotation semantics

▶ editors
▶ parsers

▶ repositories
▶ constraint checkers

▶ compilers
▶ interpreters
▶ simulators
▶ model checkers
▶ ...

Nomenclature for Traditional Languages

19

syntax semantics

concrete abstract static dynamic

Nomenclature for Traditional Languages

19

syntax semantics

concrete abstract static dynamic

notation structure semantics

Summary

▶ Notation

▶ Structure

▶ Semantics

▶ Static, dynamic semantics

▶ Abstract, concrete syntax

▶ Representation

▶ Tool

20

Languages are Software too

▶ Editors are pieces of software

▶ Repositories and constraint checkers are pieces of software

▶ Compilers, interpreters, simulators are pieces of software

➡Languages are pieces of software

21

Meta-Languages

22

editor/
parser

repository/
constraint checker

compiler/
simulator/
intepreter

instance representation
(program, model, description)

instance semantics
(running software, results)

la
ng

ua
ge

 to
ol

s

Meta-Languages

22

editor/
parser

repository/
constraint checker

compiler/
simulator/
intepreter

instance representation
(program, model, description)

instance semantics
(running software, results)

la
ng

ua
ge

 to
ol

s notationmeta tools

structuremeta tools

semanticsmeta tools

human input

generated output

Concrete Meta-Languages

23

editor xText grammarxText

repository Ecore meta-modelEMF

code-generator xTend programxTend

textual DSL programm/model

Java code

la
ng

ua
ge

 to
ol

s

human input

generated output

structurenotation semantics

Other Meta-Languages/Tools

24

▶ grammars
▶ graph

grammars

▶ meta-models
▶ constraint de!nitions

▶ transformations
▶ code generators

▶ xText, TEF
▶ GMT

▶ EMF, MOF
▶ OCL

▶ QVT, ATL
▶ xTend, Jet

Summary

▶ Meta-Languages

▶ Meta-Tools

25

Meta-Modeling
▶ The 4-layer model

26

Meta-Modeling – Semiotic Triangle (I)

27

Ogdenand Richards: The Meaning of Meaning (1923)
Bernard Bolzano: Beiträge zu einer begründeteren Darstellung der Mathematik (1810)
Aristotle: Peri Hermeneias, 2nd book of hisOrganon (4th century BC)

http://en.wikipedia.org/wiki/Charles_Kay_Ogden
http://en.wikipedia.org/wiki/Charles_Kay_Ogden
http://en.wikipedia.org/wiki/I._A._Richards
http://en.wikipedia.org/wiki/I._A._Richards
http://en.wikipedia.org/wiki/The_Meaning_of_Meaning
http://en.wikipedia.org/wiki/The_Meaning_of_Meaning
http://en.wikipedia.org/wiki/Bernard_Bolzano
http://en.wikipedia.org/wiki/Bernard_Bolzano
http://en.wikipedia.org/wiki/Aristotle
http://en.wikipedia.org/wiki/Aristotle
http://en.wikipedia.org/wiki/Organon
http://en.wikipedia.org/wiki/Organon

Meta-Modeling – Semiotic Triangle (II)

28

Meta-Modeling – Meta-Modeling-Hierarchy

29

Mellor, Scott, Uhl, Weise: MDA Distilled (Addison-Wesley, 2004)

http://books.google.de/books?id=LGzS1uiUa7AC&pg=PT62&lpg=PT62&dq=fido+lapkitty+munchkin&source=bl&ots=6yQViO_3Ap&sig=JNVj7o0iliyZB6LL5h3GEQH8YZI&hl=de&sa=X&ei=lwpGVJuANMHRygO9toCADA&redir_esc=y%23v=onepage&q=fido%2520lapkitty%2520munchkin&f=false
http://books.google.de/books?id=LGzS1uiUa7AC&pg=PT62&lpg=PT62&dq=fido+lapkitty+munchkin&source=bl&ots=6yQViO_3Ap&sig=JNVj7o0iliyZB6LL5h3GEQH8YZI&hl=de&sa=X&ei=lwpGVJuANMHRygO9toCADA&redir_esc=y%23v=onepage&q=fido%2520lapkitty%2520munchkin&f=false

Meta-Modeling – M4 Model

30

Object Management Group (OMG): Meta Object Facility (MOF)

http://www.omg.org/mof/
http://www.omg.org/mof/

Meta-Modeling – M4 Model

30

Object Management Group (OMG): Meta Object Facility (MOF)

http://www.omg.org/mof/
http://www.omg.org/mof/

Summary

▶ Real world things, objects

▶ Models

▶ Meta-Models

▶ Meta-Meta-Models

▶ M0-M3, M4-Model

▶ Instance-of relationship

31

prolog
(1 VL)

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

Agenda

32

➡

