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Abstract The ordinary variable inspection plans are sensitive to deviations from
the normality assumption. A new variable inspection plan is constructed that can
be used for arbitrary continuous populations with short tail distributions. The peaks
over threshold method is used, the tails are approximated by a generalized Pareto
distribution, their parameters and the fraction defective are estimated by a moment
method proposed in a similar form by Smith and Weissman (1985). The estimates
of the fraction defective are asymptotically normal. It turns out that their asymptotic
variances do not differ very much for the various distributions. Therefore we may
fix the variance and use the known asymptotic distribution for the construction of
the inspection plans. The sample sizes needed to satisfy the two-point conditions are
much less than that for attribute plans.

1 Introduction

We consider a lot of units having a quality characteristic X with a (unknown) contin-
uous cumulative distribution function (cdf) F . Given a sample X1, ...,Xn a decision
is to be made whether the lot is to be accepted or not. For simplicity we assume only
lower specification limits L, but the procedure can be extended to the two-sided case
of lower and upper specification limits. The fraction defective pL of the lot is defined
by

pL = P(X < L) = F(L).

We intend to construct reasonable estimates p̂ of p based on the sample. Our variable
inspection plan is then defined by: If p̂ ≤ c the lot will be accepted else it will be
rejected. Denote by

Wolfgang Kössler
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Ln,c(p) := Pp(p̂≤ c), 0 < p < 0.5

the operating characteristic (OC). Variable inspection plans (n,c) are computed by
minimizing the sample size n while meeting the so called two-point conditions (0 <
p1 < p2 < 1, 0 < β < 1−α)

Ln,c(p1) ≥ 1−α and Ln,c(p2)≤ β , (1)

where p1 and p2 are the accepted and rejected quality level, respectively. The ordi-
nary variable inspection plan (ML plan, cf. e.g. Uhlmann, 1992, for the two-sided
case see Bruhn-Suhr and Krumbholz, 1990) is very sensitive with respect to devia-
tions from the normal distribution assumption (cf. Kössler and Lenz, 1995,1997).

In this paper we construct variable inspection plans which do not rely on the nor-
mality assumption and which require less sample sizes than the attribute plan. The
main idea is that nonconforming items Xi occur in the lower tail of the underlying
cdf, namely Xi < L = F−1(pL) with the (unknown) fraction defective p = pL. Addi-
tionally, items Xi with Xi ≈ L,Xi > L can be considered suspicious. They also should
be considered in inspection plans. Whereas in Kössler (1999) we assumed that the
underlying density has not too short tails to obtain Maximum Likelihood estimates
we consider the short tail case here and use a (moment) estimate proposed by Smith
(1987) and Smith and Weissman (1985).

In section 2 we apply the peak over threshold method, approximate the tails of
the density by a generalized Pareto distribution (GPD) and estimate their parame-
ters and the fraction defective in section 3. Using the asymptotic normality of all
these estimators we compute inspection plans meeting the conditions (1) at least
approximately in section 4. Comparisons of the various sampling plans in section 5
show that the necessary sample sizes for the new plan are much less than that for
the attribute sampling plan. Simulation studies performed in section 6 show that this
method works quite well even for relatively small sample sizes.

2 Approximation of the tails by a GPD

We assume that we have a short tail density with a lower endpoint x0 which may
be set to zero without restriction to the generality, more precisely, we assume that
the underlying density is in the domain of attraction of the Weibull (cdf. Gγ(x) =
1− exp(−xγ), tail index γ > 0, x > 0). Let t = tL be a lower threshold value and
0 < y < t. The conditional cdf Ft(y) of t−X conditioned under X < t,

Ft(y) =
F(t)−F(t− y)

F(t)
, (2)

can be approximated by a generalized Pareto cdf,
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GPD(y;σ ,k) := 1−
(
1− ky

σ

) 1
k k,σ > 0, 0 < y <

σ

k

as was shown by Pickands (1975, Theorem 7). The parameters k = 1
γ
> 0 and σ(t) =

k(t−x0) = kt are given by the extreme value distribution theory, cf. eg. Falk (1987).
To approximate the fraction defective pL let t = tL be fixed, t > L = F−1(pL) and

y = yL = t−L. We obtain from (2):

pL = F(L) = F(t)−Ft(y) ·F(t)≈ F(t)
(
1− ky

σ

) 1
k .

3 Estimation of the fraction defective

Define the threshold by tL = F−1(q) for given q, 0 < q < 0.5 and estimate it by
t̂L = X(m+1), where m := bnqc and X(i) is the ith order statistics of the sample. Let
ŷL = t̂L−L and (k̂L,σ̂L) be a consistent estimate of (kL,σL) in the GPD-model. Then

p̂L = q ·


(
1− k̂L ŷL

σ̂L

) 1
k̂L if k̂L 6= 0

e−
ŷL
σ̂L if k̂L = 0

(3)

is a consistent estimate of pL.
Note that ŷL is random, and the estimate (3) is well defined if ŷL ≥ 0 and if

k̂LŷL < σ̂L. (4)

In the few cases that ŷL < 0 we may reject the lot without further computations
because these cases indicate low quality.

For the estimation of the parameters we might use Maximum Likelihood esti-
mates. This procedure was pursued in Kössler (1999). However, if k > 0.5 the ML
estimates are not asymptotically normal (k≤ 1) or they do not exist (k > 1). For the
short tail densities here we use an estimate (SW estimate) proposed by Smith and
Weissman (1985), eq. (4.3) and Smith (1987), section 7,

k̂L =
1
m

m

∑
i=2

log
X(m+1)−X(1)

X(i)−X(1)
(5)

σ̂L = k̂L(X(m+1)−X(1)). (6)

The estimate for kL may be motivated by the moment equation E
(
− log(1− kY

σ
)
)
= k

if Y is a random variable, Y ∼ GPD(σ ,k), cf. Smith (1987). The estimate for σL is
motivated by σL = kL(tL− x0) if kL > 0, and the in praxis unknown lower endpoint
x0 is estimated by the smallest observation X(1).

If X(1) < L then condition (4) is satisfied and consistent estimates p̂L of the frac-
tion defective pL are obtained by inserting k̂L and σ̂L in (3). In the case of X(1) ≥ L
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we may set p̂L := 0 as it indicates good quality. However, a slight negative bias may
be introduced.

Note that we also investigated various other estimates of (k,σ), moment esti-
mates (MOM), probability weighted moment estimates (PWM) and elemental per-
centile moment estimates (EPM) (see e.g. Beirlant (2004) and references therein).
The asymptotic variances of the MOM and PWM estimates are much larger than
that of estimates (5) and (6), a result that is confirmed by finite sample simulation
studies. Simulations with the EPM method show that their bias is slightly less than
that for the SW estimate but the variances are much higher for the EPM estimates.

Under certain conditions on the convergence of t → xo, L→ xo if n→ ∞ the
SW-estimate p̂L is asymptotically normally distributed with expectation zero and
variance V (pL),

√
m

p̂L− pL

pL
→N

(
0,V (pL)

)
(7)

(cf. Smith, 1987, ch.8). To obtain a closed relation for the variance V (pL) dependent
on the cdf F we follow the arguments of Smith (1987, ch.8).

Let z, z > 0, be fixed and define the sequences pm, qm, pm→ 0, qm→ 0, 0 <
pm < qm in the same way as in Smith (1987) by

z = 1− kym

σm
= 1−

k(tL,m−Lm)

σm
= 1− k(F−1(qm)−F−1(pm))

σm
, (8)

where ym := tL,m−Lm =F−1(qm)−F−1(pm), and k and σm are the parameters given
by the GPD approximation of the conditional probability (2) which depend on the
sequence of the threshold values tL,m = F−1(qm).

The asymptotic variance V =VF for pm,qm→ 0 is then given by

VF = 1−qm + cT Sc, (9)

where

cT = (−1
k
(

1
z
−1),

logz
k2 +

1
k2 (

1
z
−1)) and S =

(
1 k
k k2

)
. (10)

The term cT Sc in (9) becomes cT Sc = 1
k2 log2 z, where z is defined by (8) with σm =

ktL,m. Interestingly, if the cdf F is GPD or Weibull the term cT Sc is independent of
k.

For further investigation of the variance term we considered the following short
tail densities, the GPD, the Weibull, the Beta, the Gamma and the Burr, all with
various values of the parameter k. From the matrices S in the ML and SW cases (cf.
Smith, 1987) it may be seen that for k = 0.5 the asymptotic variances of the ML and
SW estimates are the same. Moreover, it turns out that the asymptotic variances of
the SW estimates of p̂L in the case of short tails are often similar to that of the ML
estimate in the (long tail) Pareto (k =−1) case where we had an upper specification
limit (Kössler, 1999, eq. (14), Table 3). Exceptions are the Gamma with k = 0.25,
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and the Burr with k = 0.25 or k = 0.5. An explanation of the latter facts may be that
the speed of convergence of qm → 0 must be faster in that cases, cf. convergence
conditions SR1 or SR2 of Smith (1987).

However, if the ratios of the fraction defective pL and the used tail fraction q are
not too small then the dissimilarities are not so large.

The similarities of the asymptotic variances will allow us to use the variance
V (p) obtained for the ML estimate in the (reverse) Pareto (k = −1) case for the
determination of the sampling plan later on. This variance is given by (9) but with

S = (1− k)
(

2 1
1 1− k

)
= 2

(
2 1
1 2

)
(cf. eg. Smith, 1987).

4 The new sampling plan

Since we have established asymptotic normality with similar variances for the vari-
ous underlying cdfs we may proceed in the same way as in Kössler (1999) to deter-
mine a new sampling plan. Given q > 0 define m = bnqc, i.e. for the estimation of
the fraction defective only the m+1 smallest observations are used.

For a discussion of the choice of the threshold values tL we refer to Kössler
(1999). Here we apply a slightly modified version

q = q(n0) = p2 +
1
√

n0
,

where n0 is an initial estimate of the sample size, n0 = nV+nA
2 , nV and nA are the

sample sizes for the ordinary variable sampling and for the attribute sampling plan,
respectively. This definition reflects the conditions q→ 0, q > p and also the fact
that the resulting sample size is expected to lie between nV and nA.

Since the number m is essential, the sampling plan is denoted by (n,m,c). An
approximate OC of this sampling plan is given by the asymptotic distribution of p̂.

To determine the numbers m and c meeting the two-point conditions (1) approx-
imately we solve the system of equations

Ln,c(p1) ≈ Φ
(√

m
c− p1

p1
√

V (p1)

)
= 1−α, Ln,c(p2)≈Φ

(√
m

c− p2

p2
√

V (p2)

)
= β .

An to integer values for m adjusted solution (m,c) of this system of equations is
given by

m =

⌈
1

(p1− p2)2

(
p2
√

V (p2)Φ
−1(β )− p1

√
V (p1)Φ

−1(1−α)
)2
⌉

(11)

c = p1 +Φ
−1(1−α)

p1
√

V (p1)√
m

. (12)
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Given the numbers m and q the sample size n is determined by m = bnqc. In such a
way a new sampling plan (n,m,c) is obtained. It is given by

n =

⌈
m
q

⌉
, where q = p2 +

1
√

n0

and m and c are given by (11) and (12).
Note that V (p) is also dependent on q, and since the definition of q is slightly

modified, these variances and also the sample sizes are slightly different from that
in Kössler (1999).

First simulations show that the OC estimates are slightly shifted to the right.
Therefore, the acceptance number is empirically modified to cSW := c · (1−1/n).

5 Comparison with other sampling plans

In Table 1 the sampling plans (n,m,cSW ) for twelve different two-point conditions
are presented. For comparison the corresponding sample sizes nV and nA of the ML-
variable sampling plan and the attribute sampling plan, respectively, are given in the
last two columns of Table 1. The sample sizes for the ordinary ML variable sampling
plan are computed by the R program ExLiebeRes of Krumbholz and Steuer (2014).
Since our new sampling plan can be used also in the case of two-sided specification
limits the sample size nV is computed for that case.

Table 1 The new sampling plan (n,m,cSW ) together with the sample sizes nV and nA of the ordi-
nary variable sampling plan and the attribute sampling plan, respectively.

two-point condition new sampling plan
No. p1 1−α p2 β n m cSW nV nA
1 0.0521 0.9500 0.1975 0.10 31 11 0.1053 27 45
2 0.0634 0.9000 0.1975 0.10 31 11 0.1072 27 45
3 0.0100 0.9000 0.0600 0.10 59 11 0.0237 36 88
4 0.0100 0.9743 0.0592 0.10 80 13 0.0280 54 133
5 0.0152 0.9000 0.0592 0.10 83 14 0.0292 54 111
6 0.0100 0.9900 0.0600 0.10 90 14 0.0303 64 153
7 0.0360 0.9500 0.0866 0.10 143 24 0.0576 106 189
8 0.0406 0.9000 0.0866 0.10 149 25 0.0581 107 189
9 0.0100 0.9900 0.0600 0.01 203 27 0.0237 111 263
10 0.0200 0.9500 0.0500 0.05 316 34 0.0309 186 410
11 0.0100 0.9900 0.0300 0.10 390 33 0.0198 217 590
12 0.0200 0.9900 0.0300 0.01 4609 213 0.0244 2241 5362

The examples 1,2,4,5,7 and 8 are from Resnikoff (1952), example 10 is from
Steland and Zähle (2009). From Table 1 it can be seen that the sample sizes for the
new plan are considerably less than that for the attribute sampling plan.
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6 Simulation study

The method described to obtain variable sampling plans is based on the asymptotic
normality of the estimates p̂ with the variance V (p). The reference c.d.f for com-
puting V (p) is the (reverse) Pareto with k =−1 (where ML estimates are used).

To investigate whether the sampling plans constructed can be applied for short
tail densities as well as for moderate sample sizes simulation studies are carried out.
The OC is estimated for the same examples as in the previous section. Note that
the examples 1-9, 11 are the same as in Kössler (1999) but the necessary sample
sizes may differ slightly since the definition of the used fraction of the sample is
altered. To see whether the asymptotic theory works in practice we have included
an example with very large sample sizes (Example 12).

The simulation size is M = 2000. The following c.d.fs are included in the simu-
lation study: GPD, Weibull, Gamma, and Burr, all with with k = 0.25,0.5,0.75,1.

We obtain that for k ≥ 0.5 and for most densities the OC is well estimated. To
give an impression on the goodness of the estimated OC values we present only
the worst cases. For β they are β̂ = 0.13 (instead of β = 0.10). For 1−α they are
1− α̂ = 0.97 (instead of 1−α = 0.99),1− α̂ = 0.93 (instead of 1−α = 0.95),
1− α̂ = 0.86 (instead of 1−α = 0.90). For k = 0.25 the estimates are only slightly
worse. Perhaps somewhat surprisingly, the latter happens also in example 12 where
we have very large sample sizes. Note that, for k = 0.25 a ML estimate is to be
preferred.

7 Adaptive procedure and summary

In the short tail case the estimates of the fraction defective are different from that
in the medium or long tail case. Since it is generally not known which case occurs,
we suggest to apply an adaptive procedure. First the sample size is determined in
the way described. Then, after the sample is drawn from the lot, the parameter kL is
estimated by the SW method. If k̂L = k̂L,SW ≤ 0.5 we assume that we have a medium
or long tail, estimate kL, σL and the fraction defective pL by the ML method and
use the modified acceptance number cML from the ML plan (cf. Kössler,1999). If
k̂L,SW > 0.5 we assume that we have a short tail, estimate kL, σL and the fraction
defective pL by the SW method and use the modified acceptance number cSW .

For normally distributed populations, of course, the ML-sampling plans are to
be preferred. But usually, there is no exact information about the distribution of the
underlying population in practice. Therefore, if the underlying c.d.f. is continuous
the new variable sampling plan instead of an attribute plan should be applied. If it is
known that we have short tails the sampling plan proposed here should be applied.
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