
Classification of Contradiction Patterns

Heiko Müller, Ulf Leser, and Johann-Christoph Freytag

Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany,
{hmueller, leser, freytag}@informatik.hu-berlin.de

Abstract. Solving conflicts between overlapping databases requires an understand-
ing of the reasons that lead to the inconsistencies. Provided that conflicts do not
occur randomly but follow certain regularities, patterns in the form of ”If con-
dition Then conflict” provide a valuable means to facilitate their understanding.
In previous work, we adopt existing association rule mining algorithms to iden-
tify such patterns. Within this paper we discuss extensions to our initial approach
aimed at identifying possible update operations that caused the conflicts between the
databases. This is done by restricting the items used for pattern mining. We further
propose a classification of patterns based on mappings between the contradicting
values to represent special cases of conflict generating updates.

1 Conflicts in Overlapping Databases

Many databases exist with overlaps in their sets of represented real-world
entities. There are different reasons for these overlaps, like:

• replication of data sources at different sites to improve the performance of
web-services and the availability of the data,

• independent production of data representing a common set of entities or
individuals by different groups or institutions, and

• data integration where data is copied from sources, possibly transformed
and manipulated for data cleansing, and stored in an integrated data ware-
house.

Whenever overlapping data is administered at different sites, there is a
high probability of the occurrence of differences. Many of these inconsisten-
cies are systematic, caused by the usage of different controlled vocabularies,
different measurement units, different data modifications for data cleansing,
or by consistent bias in experimental data analysis. When producing a con-
sistent view of the data knowledge about such systematic deviations can be
used to assess the individual quality of database copies for conflict resolution.

2 Heiko Müller, Ulf Leser, and Johann-Christoph Freytag

Assuming that conflicts do not occur randomly but follow specific (but
unknown) regularities, patterns of the form ”If condition Then conflict”
provide a valuable means to facilitate the identification and understanding of
systematic deviations. In Müller et al. (2004) we proposed the adaptation of
existing data mining algorithms to find such contradiction patterns. Evaluated
by a domain expert, these patterns can be utilized to assess the correctness
of conflicting values and therefore for conflict resolution.

Within this paper we present a modified approach for mining contradictory
data aimed at enhancing the expressiveness of the identified patterns. This
approach is based on the assumption that conflicts result from modification
of databases that initially where equal (see Figure 1). Conflicting values are
introduced by applying different sequences of update operations, representing
for example different data cleansing activities, to a common ancestor database.
Given a pair of contradicting databases, each resulting from a different update
sequence, we reproduce conflict generation to assist a domain expert in conflict
resolution. We present an algorithm for identifying update operations that
describe in retrospective the emergence of conflicts between the databases.
These conflict generators are a special class of contradiction patterns. We
further classify the patterns based on the mapping between contradicting
values that they define. Each such class corresponds to a special type of conflict
generating update operation. The classification further enhances the ability
for pruning irrelevant patterns in the algorithm.

The reminder of this paper is structured as follows: In Section 2 we define
conflict generators for databases pairs. Section 3 presents an algorithm for
finding such conflict generators. We discuss related work in Section 4 and
conclude in Section 5.

2 Reproducing Conflict Generation

Databases r1 and r2 from Figure 1 contain fictitious results of different re-
search groups investigating a common set of individual owls. Identification
of tuples representing the same individual is accomplished by the unique ob-
ject identifier ID. The problem of assigning these object identifiers is not
considered within this paper, i.e., we assume a preceding duplicate detection
step (see for example Hernandez and Stolfo (1995)). Note that we are only
interested in finding update operations that introduce conflicts between the
overlapping parts of databases. Therefore, we also assume that all databases
have equal sets of object identifiers.

Conflicting values are highlighted in Figure 1 and conflicts are systematic.
The conflicts in attribute Species are caused by the different usage of English
and Latin vocabularies to denote species names, conflicts in attribute Color

are due to a finer grained color description for male and female snowy owls
(Nyctea Scandica) in database r2, and the conflicts within attribute Size are
caused by rounding or truncation errors for different species in database r1.

Classification of Contradiction Patterns 3

Fig. 1. A model for conflict emergence in overlapping databases

Reproducing conflict generation requires the identification of possible pre-
decessors of the given databases. We consider exactly one predecessor for each
of the databases r1 and r2 and each non-key attribute A. A predecessor is used
to describe conflict generation within attribute A by identifying update op-
erations that modify the predecessor resulting in conflicts between r1 and r2.
Figure 1 shows the predecessor rp for database r1 and attribute Color. Also
shown is an update operation that describes the generation of conflicts by
replacing the finer grained original color specifications in rp with the more
generic term ’white’ in r1. Currently, we only consider update operations that
modify the values within one attribute. We start by defining the considered
predecessors and then define a representation for conflict generators.

2.1 Preceding Databases

The databases within this paper are relational databases consisting of a single
relation r, following the same schema R(A1, . . . , An). The domain of each
attribute A ∈ R is denoted by dom(A). Database tuples are denoted by t and
attribute values of a tuple are denoted by t[A]. There exists a primary key
PK ∈ R for object identification. The primary key attribute is excluded from
any modification.

Given a pair of databases r1 and r2, the set of potential predecessors is
infinite. We restrict this set by allowing the values in the common ancestor to

4 Heiko Müller, Ulf Leser, and Johann-Christoph Freytag

be modified at most once by any conflict generator. This restriction enables
the definition of exactly one predecessor for each of the databases and each
non-key attribute.

In the reminder of this paper we consider only conflicts within a fixed
attribute B ∈ R/{PK}. Let rp be the predecessor for database r1. Database
rp equals r1 in all attributes that are different from B. These values will not
be affected by an update operation modifying attribute B. The values for
rp in attribute B are equal to the corresponding values in the contradict-
ing database r2. These are the values that are changed to generate conflicts
between r1 and r2:

rp = {t | t ∈ dom(A1) × · · · × dom(An) ∧

∃ t1 ∈ r1, t2 ∈ r2 : ∀ A ∈ R : t[A] =

{

t1[A], if A 6= B
t2[A], else

}

2.2 Conflict Generators

A conflict generator is a (condition, action)-pair, where the condition defines
the tuples that are modified and the action describes the modification itself.
Conditions are represented by closed patterns as defined in the following.
The action is reflected by the mapping of values between predecessor and
resulting database in the modified attribute. For example, the action of the
update operation shown in Figure 1 results in a mapping of values white &

grey and snow-white to value white. We classify conflict generators based on
the properties of the mapping they define.

Tuples are represented using terms τ : (A, x) that are (attribute, value)-
pairs, with A ∈ R and x ∈ dom(A). Let terms(t) denote the set of terms for a
tuple t. For each attribute A ∈ R there exists a term (A, t[A]) ∈ terms(t). A
pattern ρ is a set of terms, i.e., ρ ⊆

⋃

t∈r terms(t). A tuple t satisfies a pattern
ρ if ρ ⊆ terms(t). The empty pattern is satisfied by any pattern. The set of
tuples from r that satisfy ρ is denoted by ρ(r). We call |ρ(r)| the support of
the pattern.

A pattern ρ is called a closed pattern if there does not exists a superset
ρ′ ⊂ ρ with ρ′(r) = ρ(r). We focus solely on closed patterns as conditions for
conflict generators. The set of closed patterns is smaller in size than the set
of patterns. Still, closed patterns are lossless in the sense that they uniquely
determine the set of all patterns and their set of satisfied tuples (Zaki (2002)).

The Boolean function conflictB(t) indicates for each tuple tp ∈ rp whether
contradicting values exist for attribute B in the corresponding tuples t1 ∈ r1

and t2 ∈ r2 with t1[PK] = t2[PK] = tp[PK]:

conflictB(t) =

{

true, if t1[B] 6= t2[B]
false, else

We utilize the interestingness measures conflict potential and conflict rel-

evance for contradiction patterns to enforce a close relationship between the

Classification of Contradiction Patterns 5

tuples affected by a conflict generator and the occurrence of actual conflicts
as defined in Müller et al. (2004). The conflict potential of a pattern ρ is the
probability that a tuple t ∈ rp satisfying ρ has a conflict in attribute B, i.e.,

pot(ρ) =
|{t | t ∈ ρ(rp) ∧ conflictB(t)}|

|ρ(rp)|

The conflict relevance of a pattern ρ is the probability that a tuple t ∈ rp

with conflict in attribute B also satisfies ρ, i.e.,

rel(ρ) =
|{t | t ∈ ρ(rp) ∧ conflictB(t)}|

|{t | t ∈ rp ∧ conflictB(t)}|

A pattern ρ is called a conflict generator for attribute B if it has conflict
potential and conflict relevance above given thresholds minpot and minrel.

A pair of tuples from rp and r1 with identical primary key define a map-
ping that reflects the modification of values in attribute B as it occurred in
the transition from the predecessor to the actual database. We denote this
mapping by t[M] for each t ∈ rp. It follows:

t[M] = (x, y) ⇔ ∃ t1 ∈ r1 : t[PK] = t1[PK] ∧ t[B] = x ∧ t1[B] = y

Each conflict generator ρ defines a mapping of values for the tuples that
satisfy it, denoted by map(ρ(rp)) =

⋃

t∈ρ(rp) t[M]. We call a conflict generator

functional if map(ρ(rp)) defines a function where each x relates exactly to one
y. A functional conflict generator is called injective if different x values are
always mapped to different y value. We call a functional conflict generator
constant if all x values are mapped to the same y value. This results in four
classes of conflict generators, denoted by F for functional, I for injective, C
for constant, and I&C for injective and constant, with F ⊇ I, F ⊇ C, and
I&C = I ∩ C.

Regarding the description of conflicts, the action of a functional conflict
generator is represented by a function f(B), e.g., the rounding of values. An
injective conflict generator for example represents the translation of values
between different vocabularies and a constant conflict generator may represent
a generalization as in the example shown in Figure 1.

3 Mining Functional Conflict Generators

Mining conflict generators is accomplishable using closed pattern mining algo-
rithms like CHARM (Zaki (2002)) or CARPENTER (Feng Pan et al. (2003)).
If we are interested in finding functional conflict generators term enumera-
tion approaches like CHARM have the drawback that there is no ability for
pruning based on a given mapping class during pattern mining. Therefore, we

6 Heiko Müller, Ulf Leser, and Johann-Christoph Freytag

use tuple enumeration in our algorithm for REtrospective functional COnflict
GeNeratIon (RECOGNIze) that is outlined in Figure 2.

Mining conflict generators using tuple enumeration is based on the follow-
ing property: Each set of tuples s ⊆ r defines a pattern, denoted by ρs, that
is the set of terms common to all tuples in s, i.e., ρs =

⋂

t∈s terms(t). If ρs

is not empty it represents a closed pattern as we cannot add any term to ρs

without changing the set of tuples that satisfy the pattern. Different tuple sets
may define the same closed pattern. Therefore, algorithms like CARPENTER
efficiently enumerate those tuple sets that define the complete set of closed
patterns satisfying a given support threshold.

RECOGNIze takes as parameters database rp, conflict potential and rele-
vance thresholds, and the requested class of the returned conflict generators
(classMapping), i.e., F , I, C, or I&C. The algorithm adopts the CARPEN-
TER algorithm and extends the pruning in subroutine minePattern to avoid
enumeration of tuple sets that do not represent conflict generators of the re-
quested class. Let sB denote the subset of rp containing those tuples that have
a conflict in attribute B. The algorithm enumerates all subsets sb ⊆ sB that (i)
have sufficient size to satisfy the relevance threshold, i.e., |sb| ≥ minrel ∗ |sB|,
(ii) whose resulting pattern ρsb

satisfies the conflict potential threshold, and
(iii) where map(ρsb

) represents a valid mapping based on the specified map-
ping class. The enumeration is done using subroutine minePattern. The pa-

RECOGNIze(rp, minpot, minrel, classMapping)

1. Initialize CG := {} and sB := {t | t ∈ rp ∧ conflict B(t)}
2. Minimal support of conflict generators tupsup := minrel ∗ |sB|
3. Call minePattern ({}, sB)

4. return CG

minePattern (sb, s′B)

1. Determine candidate tuples for extension of sb

su := {t | t ∈ s′B ∧ t[PK] > max(sb) ∧ terms(t) ∩ ρsb
6= {} ∧ compatible(t, sb)}

if |su| + |sb| < tupsup then return

2. Determine additional tuples that satisfy ρsb

sy := {t | t ∈ su ∧ terms(t) ⊇ ρsb
}

if ¬ validMapping(sy) then return

3. if ρsb
∈ CG then return

4. Add ρsb
to the result if all constraints are satisfied

if |sb| + |sy| ≥ tupsup ∧ pot(ρsb
) ≥ minpot ∧ validMapping(ρsb

(rp)) then

GC := CG ∪ ρsb

5. Enumerate for the remaining candidates the tuple sets

for each t ∈ (su − sy) do

minePattern (sb ∪ {t}, (su − sy) − {t})

Fig. 2. The RECOGNIze Algorithm

Classification of Contradiction Patterns 7

rameters of minePattern are the current tuple set sb, and the set of tuples s′B
that are considered as possible extensions for sb (other variables are global).

We assume that the elements in sB are sorted in ascending order of their
primary key. Tuple sets are enumerated in depth first order based on the pri-
mary key to avoid the enumeration of duplicate tuple sets. In the first step
of subroutine minePattern the candidate tuples from s′B for extending sb are
determined. These are the tuples that contain at least one of the terms in ρsb

.
They also have to have a primary key that is greater than the maximum pri-
mary key (returned by max) of tuples in sb to ensure depth first enumeration.
In addition to CARPENTER we request that the mapping t[M] is compatible
with the mapping defined by ρsb

regarding the requested class (details below).
If the sum of candidates and tuples in sb is below the minimal tuple support
we return, because this tuple set does not define a relevant conflict generator.

The second step determines the subset of candidates that satisfy ρsb
. It

follows that sb ∪ sy defines the set of tuples from sB that satisfy ρsb
. There is

an additional ability for pruning, if the tuples in sy do not define a mapping
that is valid for the desired class. The tuples in sy are not considered as further
extensions of sb as this would only generate identical closed patterns. Still, in
Step 3 we have to check whether ρsb

is already contained in CG. Otherwise
we add ρsb

to CG if all three constraints as listed above are satisfied. We then
extend the current tuple set using the remaining candidates in su−sy and call
minePattern recursively in order to build the complete tuple set enumeration
tree.

The subroutines compatible and validMapping check whether a mapping
map(s) is valid regarding classMapping. This check is trivial for either C or
I&C where we test for equality of the y values (and the x values in case of
I&C) of the elements in map(s). The case of classMapping being F or I is
described in the following: For each element in map(rp), referred to as map-

ping term in the following, we maintain a list of incompatible mapping terms,
denoted by incomp. A pair of mapping terms (x1, y1), (x2, y2) is considered
incompatible for conflict generators of class F if x1 = x2 and y1 6= y2. The
mapping terms are incompatible for class I if they are incompatible for class
F or x1 6= x2 and y1 = y2. In subroutine compatible we request incomp(t[M])
to be disjoint with

⋃

t∈sp
incomp(t[M]), i.e., the mapping term is not incom-

patible with any of the mapping terms currently in sb. For validMapping(s)
to be true we request that

⋂

t∈s incomp(t[M]) = {}, i.e., there exists not
incompatibilities between the mapping terms of the tuples in s.

For the example in Figure 1 there are three functional conflict generators
for a relevance threshold of 50% representing conflicts for femal snowy owls,
male snowy owls, and snowy owls in general. They all have conflict relevance
of 100%. The first two conflict generators belong to class I&C with the other
belonging to C. Experiments with data sets of protein structures as used in
Müller et al. (2004) show that an average of 63% of the patterns for each
attribute represent functional conflict generators, with C and I&C being the
most frequently subclasses.

8 Heiko Müller, Ulf Leser, and Johann-Christoph Freytag

4 Related Work

Weiguo Fan et al. (2001) present a method for finding patterns in contradic-
tory data to support conflict solution. Their focus is the identification of rules
that describe the conversion of contradicting values. They do not request these
rules to be associated with a descriptive condition as in our approach. We do
not consider the identification of complex data conversion rules. However, the
mappings defined by conflict generators could be used as input for the meth-
ods described in Weiguo Fan et al. (2001). There is also a large body of work
on statistical data editing, i.e., the automatic correction of conflicting values,
based on the Fellegi-Holt-Model (Fellegi and Holt (1976)). These approaches
rely on edits (rules) for conflict detection and determine the minimal number
of changes necessary for conflict elimination. In contrast, we use object iden-
tifiers for conflict identification and currently do not consider automatic value
modification.

5 Conclusion

The classification of conflict generators in this paper allows to restrict con-
tradiction pattern mining to those patterns that represent certain situations
of conflict generation, e.g., the usage of different vocabularies. The presented
algorithm has the advantage of being able to prune patterns not belonging
to the requested class at an earlier stage of pattern enumeration. As future
work we consider, based on the idea of statistical data edits, to determine the
minimal set of update operations that have to be undone in order to derive
the common ancestor of a given pair of databases.

References

H. MÜLLER, U. LESER and J.-C. FREYTAG (2004): Mining for Patterns in Con-
tradictory Data. Proc. SIGMOD Int. Workshop on Information Quality for
Information Systems (IQIS’04), Paris, France.

M.A. HERNANDEZ and S.J. STOLFO (1995): The merge/purge problem for large
databases. Proc. Int. Conf. Management of Data (SIGMOD), San Jose, Cali-
fornia.

M.J. ZAKI (2002): CHARM: An Efficient Algorithm for Closed Itemset Mining.
Proc. of the Second SIAM Int. Conf. on Data Mining, Arlington, VA.

WEIGUO FAN, HONGJUN LU, S.E. MADNICK and D. CHEUNG (2001): Discov-
ering and reconciling value conflicts for numerical data integration. Information
Systems, Vol. 26, pp. 635-656.

FENG PAN, GAO CONG, A.K.H. TUNG, JIONG YANG and M.J. ZAKI (2003):
CARPENTER: finding closed patterns in long biological datasets. Proc. Int.
Conf. on Knowledge Discovery and Data Mining (SIGKDD), Washington DC.

P. FELLEGI and D. HOLT (1976): A Systematic Approach to Automatic Edit and
Imputation. Journal of the American Statistical Association, 71, 17-35.

