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1 Einleitung

In den Vorlesungen Thl 1 und ThI 2 standen folgende Themen im
Vordergrund:

e Mathematische Grundlagen der Informatik, Beweise fithren, Mo-
dellierung Aussagenlogik,
Pradikatenlogik

e Welche Probleme sind losbar?

e Welche Rechenmodelle sind adédquat?

e Welcher Aufwand ist notig?

(Berechenbarkeitstheorie)
(Automatentheorie)

(Komplexitatstheorie)
Dagegen geht es in der VL Thl 3 in erster Linie um folgende Frage:

e Wie lassen sich eine Reihe von praktisch relevanten Problem-
stellungen moglichst effizient 16sen?

o Wie lasst sich die Korrektheit von Algorithmen beweisen und
wie lasst sich ihre Laufzeit abschatzen?

Die Untersuchung dieser Fragen lasst sich unter dem Themengebiet
Algorithmik zusammenfassen.

Der Begrift Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zurtick. Der alteste bekannte nicht-triviale
Algorithmus ist der nach Euklid benannte Algorithmus zur Berechnung
des groBiten gemeinsamen Teilers zweier natiirlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten 16st (etwa durch Produktion
einer Ausgabe). Ein Algorithmus ist ein ,Verfahren“ zur Losung eines
Entscheidungs- oder Berechnungsproblems, das sich prinzipiell auf
einer Turingmaschine implementieren lasst (Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die
Registermaschine (engl. random access machine; RAM). Dieses Modell
ist etwas flexibler als die Turingmaschine, da es den unmittelbaren
Lese- und Schreibzugriff (random access) auf eine beliebige Speiche-
reinheit (Register) erlaubt. Als Speicher stehen beliebig viele Register
zur Verfiigung, die jeweils eine beliebig grofe natiirliche Zahl speichern
konnen. Auf den Registerinhalten sind folgende arithmetische Ope-
rationen in einem Rechenschritt ausfithrbar: Addition, Subtraktion,
abgerundetes Halbieren und Verdoppeln. Unabhéngig davon geben
wir die Algorithmen in Pseudocode an. Das RAM-Modell benutzen
wir nur zur Komplexitatsabschatzung.

Die Laufzeit von RAM-Programmen wird wie bei TMs in der Lange
der Eingabe gemessen. Man beachte, dass bei arithmetischen Pro-
blemen (wie etwa Multiplikation, Division, Primzahltests, etc.) die
Léange einer Zahleingabe n durch die Anzahl [logn| der fiir die Binér-
kodierung von n benétigten Bits gemessen wird. Dagegen bestimmt
bei nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder
Sortierproblemen) die Anzahl der gegebenen Zahlen die Lange der
Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1. Seien [ und g Funktionen von N nach R*. Wir schrei-
ben f(n) = O(g(n)), falls es Zahlen ng und ¢ gibt mit

Vn >mng: f(n) <c-g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f ,nicht
wesentlich schneller” als g wéachst. Formal bezeichnet der Term
O(g(n)) die Klasse aller Funktionen f, die obige Bedingung erfiil-
len. Die Gleichung f(n) = O(g(n)) driickt also in Wahrheit eine
Element-Beziehung f € O(g(n)) aus. O-Terme koénnen auch auf



der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbe-
ziechung ausgedriickt. So steht n? + O(n) = O(n?) fiir die Aussage
{n*+[]f€0Mm)}COMm).
Beispiel 2.

e Tlog(n) +n® = O(n?) ist richtig.

e Tlog(n)n® = O(n?) ist falsch.

o 27O = O(2") ist richtig.

e 20" = O(2") ist falsch (siehe Ubungen). q

Es gibt noch eine Reihe weiterer niitzlicher Groflenvergleiche von
Funktionen.

Definition 3. Wir schreiben f(n) = o(g(n)), falls es fir jedes ¢ > 0
eine Zahl ng gibt mit

Vn >mng: f(n) <c-g(n).

Damit wird ausgedrickt, dass f ,wesentlich langsamer® als g wdchst.
Auferdem schreiben wir

o f(n)=2Q(g(n)) fir gln) = O(f(n)), d.-h. f wichst mindestens
so schnell wie g)

e f(n) =w(g(n)) fir g(n) = o(f(n)), d.-h. f wichst wesentlich
schneller als g, und

o [(n) =O(g(n)) fir f(n) = O(g(n)) A f(n) = Qg(n)), d-h. f

und g wachsen ungefihr gleich schnell.

2 Suchen und Sortieren

2.1 Suchen von Mustern in Texten

In diesem Abschnitt betrachten wir folgende algorithmische Problem-
stellung.

String-Matching (STRINGMATCHING):

Gegeben: Ein Text x = z1---x, und ein Muster y = y1 - Ym
iiber einem Alphabet X.

Gesucht: Alle Vorkommen von y in z.

Wir sagen y kommt in x an Stelle i vor, falls x;\q - x;1, = y ist.
Typische Anwendungen finden sich in Textverarbeitungssystemen
(emacs, grep, etc.), sowie bei der DNS- bzw. DNA-Sequenzanalyse.

Beispiel 4. Sei ¥ = {A4,C,G,U}.

Text = AUGACGAUGAUGUAGGUAGCGUAGAUGAUGUAG,
Muster y = AUGAUGUAG.

Das Muster y kommt im Text x an den Stellen 6 und 24 vor. N

Bei naiver Herangehensweise kommt man sofort auf folgenden Algo-
rithmus.

Algorithmus naive-String-Matcher(z,y)

I Input: Text x=x---x, und Muster y=9y;---ypn
2 V=0
3 for 1 :=0 to n—m do
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A if 201 Tiym =1+ ym then
5 V.=V u{i}
¢ Output: V

Die Korrektheit von naive-String-Matcher ergibt sich wie folgt:
e In der for-Schleife testet der Algorithmus alle potentiellen Stel-
len, an denen y in  vorkommen kann, und
o fiigt in Zeile 4 genau die Stellen ¢ zu V hinzu, fir die
Tig1 - Tigm = Y ist.
Die Laufzeit von naive-String-Matcher lasst sich nun durch fol-
gende Uberlegungen abschétzen:
e Die for-Schleife wird (n — m + 1)-mal durchlaufen.
e Der Test in Zeile 4 benotigt maximal m Vergleiche.

Dies fiihrt auf eine Laufzeit von O(nm) = O(n?). Fiir Eingaben der
Form z = a™ und y = al™/?) ist die Laufzeit tatsichlich ©(n?).

2.1.1 String-Matching mit endlichen Automaten

Durch die Verwendung eines endlichen Automaten lasst sich eine
erhebliche Effizienzsteigerung erreichen. Hierzu konstruieren wir einen
DFA M,, der jedes Vorkommen von y in der Eingabe = durch Erreichen
eines Endzustands anzeigt. M, erkennt also die Sprache

L ={z € X" |y ist Suffix von z}.

Konkret konstruieren wir M, = (Z,%, 6,0, m) wie folgt:
e M, hat m + 1 Zustande, die den m + 1 Prafixen y;---ys,
k=0,...,m, von y entsprechen, d.h. Z ={0,...,m}.

e Liest M, im Zustand k das Zeichen yj1, so wechselt M, in den
Zustand k + 1, d.h. §(k,yp1) =k + 1 fir k=0,...,m — 1L

2.1 Suchen von Mustern in Texten

Y4 Ym

i Yo Y3
OROROROERO

e Falls das néachste Zeichen a nicht mit y;,; ibereinstimmt
(engl. mismatch), wechselt M, in den Zustand

d(k,a) = max{j < m |y ---y; ist Suffix von y; - - - yxa}.

Der DFA M, speichert also in seinem Zustand die maximale Léange
k eines Prafixes y; - - - yx von y, das zugleich ein Suffix der gelesenen
Eingabe ist:

A

0(0,2) = max{k < m | y; - - -y, ist Suffix von z}.

Die Korrektheit von M, folgt aus der Beobachtung, dass M, isomorph
zum Aquivalenzklassenautomaten Mg, fiir L ist. Mg, hat die Zustéin-
de [y1---yk], K =0,...,m, von denen nur [y - - - Y| €in Endzustand
ist. Die Uberfiihrungsfunktion ist definiert durch

O(fyr - yxl,a) = [y1 -+ -5,

wobei y; - - -y; das langste Prafix von y = y; - - - Y, ist, welches Suffix
von y; - - - y;ja ist (siche Ubungen).

Beispiel 5. Fiir das Muster y = laola hat M, folgende Gestalt:

(6o 1 23 45
alfo 2 00 5 0
111411
00 0300 3
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M, macht bei der Suche nach dem Muster y = laola im Text x = olalaolala
folgende Uberginge:

e
» 0,0, dind \%

Il a o 1l a 1
3 4 5 6 7 8 9 10

2 Q—
a
2

Insgesamt erhalten wir somit folgenden Algorithmus.

Algorithmus DFA-String-Matcher(z,y)

1 Input: Text z =2y ---2, und Muster y =y, ym
2 konstruiere den DFA M, = (Z,%,0,0,m)

3 V=10

4 k:=0

5 for i:=1 to n do

6 k:=0(k,x;)

7 if k=m then V.=V U{i—m}
s QOutput: V

Die Korrektheit von DFA-String-Matcher ergibt sich unmittelbar
aus der Tatsache, dass M, die Sprache

L(M,) = {z € ¥* | y ist Suffix von z}

erkennt. Folglich fiigt der Algorithmus genau die Stellen j = ¢ —m zu

V' hinzu, fir die y ein Suffix von xy - - - 2; (also xj1q - - xj4m = y) ist.

2.1 Suchen von Mustern in Texten

Die Laufzeit von DFA-String-Matcher ist die Summe der Laufzei-
ten fiir die Konstruktion von M, und fiir die Simulation von M, bei
Eingabe z, wobei letztere durch O(n) beschrankt ist. Fir 0 ist eine
Tabelle mit (m + 1)||2|| Eintragen

O(k,a) =max{j < k+ 1|y ---y; ist Suffix von y; - - - yra}

zu berechnen. Jeder Eintrag 6(k, a) ist in Zeit O(k?) = O(m?) bere-
chenbar. Dies fithrt auf eine Laufzeit von O(||%]|m?) fir die Konstruk-
tion von M, und somit auf eine Gesamtlaufzeit von O(||Z||m? + n).
Tatséchlich lasst sich M, sogar in Zeit O(]|X||m) konstruieren.

2.1.2 Der Knuth-Morris-Pratt-Algorithmus

Durch eine Modifikation des Riicksprungmechanismus’ lasst sich die
Laufzeit von DFA-String-Matcher auf O(n+ m) verbessern. Hierzu
vergegenwartigen wir uns folgende Punkte:

e Tritt im Zustand k ein Mismatch a # yiy1 auf, so ermittelt
M, das langste Prafix p von y; - - -y, das zugleich Suffix von
Y1 - - - yra ist, und springt in den Zustand j = d(k,a) = |p|.

e Im Fall j > 0 hat p also die Form p = p'a, wobei p’ = y; - - - y,;_1
sowohl echtes Préfix als auch echtes Suffix von y; - - -y, ist. Zu-
dem gilt y; = a.

e Die Idee beim KMP-Algorithmus ist nun, bei einem Mismatch
unabhéngig von a auf das néchst kleinere Préifix p = y; - - - y;
von vy - - - Yx zu springen, das auch Suffix von g - - -y ist.

e Stimmt nach diesem Riicksprung das néchste Eingabezeichen
a mit y;4q tberein, so wird dieses gelesen und der KMP-
Algorithmus erreicht (nach einem kleinen Umweg tiber den
Zustand 7) den Zustand ¢ + 1 = j, in den auch M, wechselt.

e Andernfalls springt der KMP-Algorithmus nach derselben Me-
thode solange weiter zurtick, bis das néchste Eingabezeichen a
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»passt (also y;+1 = a und somit pa ein Prafix von y ist) oder
der Zustand 0 erreicht wird.

e In beiden Fallen wird a gelesen und der Zustand d(k, a) ange-
nommen.

Der KMP-Algorithmus besucht also alle Zustande, die auch M,
besucht, fithrt aber die Riickspriinge in mehreren Etappen aus.
Die Sprungadressen werden durch die so genannte Prdfizfunktion
m:{L,...,m} — {0,...,m — 1} ermittelt:

(k) =max{0 < j <k—1]y -y, ist Suffix von y; - - - yx }

Beispiel 6. Fir das Muster y = laola ergibt sich folgende Prdfizfunk-
tion m:

\ [ [
DLOSOROR0H0
S IERE 4 5]
L(k) ][ 0 |

Wir kénnen uns die Arbeitsweise dieses Automaten wie folgt vorstellen:

1. Erlaubt das ndichste Eingabezeichen einen Ubergang vom aktuel-
len Zustand k nach k + 1, so fihre diesen aus.

2. Ist ein Ubergang nach k + 1 nicht méglich und k > 1, so springe
in den Zustand w(k) ohne das ndchste Zeichen zu lesen.

3. Andernfalls (d.h. k = 0 und ein Ubergang nach 1 ist nicht
maoglich) lies das néchste Zeichen und bleibe im Zustand 0.

Der KMP-Algorithmus macht bei der Suche nach dem Muster y =
laola im Text x = olalaolala folgende Uberginge:

2.1 Suchen von Mustern in Texten

3 C
/}\J
: o o o6 o
AT
o &

[ a
0o 1 2 3 4 5 6 7 8 9 10 4q

Auf die Frage, wie sich die Préfixfunktion m moglichst effizient berech-
nen lasst, werden wir spater zu sprechen kommen. Wir betrachten
zunéchst das Kernstiick des KMP-Algorithmus, das sich durch eine
leichte Modifikation von DFA-String-Matcher ergibt.

DFA-String-Matcher(x,y) KMP-String-Matcher(z,y)

1 Imput: Text x¢---z, und
Muster y;---ym

1 Input: Text z,-- -2,
und Muster y;---ym

2 konstruiere M, 2
5 V=0 35 V=10
1 k=0 1 k:=0
5 for i:=1 to n do 5 for 1:=1 to n do
6 k:=0(k,z;) 6
8
7 if £k =m then 9 if k=m then
8 Vi=VU{i—m} 10 Vi=VU{i—m},
9 Output: V 11 Output: V

Die Korrektheit des Algorithmus KMP-String-Matcher ergibt sich
einfach daraus, dass er den Zustand m an genau den gleichen Text-
stellen besucht wie DFA-String-Matcher, und somit wie dieser alle
Vorkommen von y im Text x findet.
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Fiir die Laufzeitanalyse von KMP-String-Matcher (ohne die Berech-
nung von KMP-Prefix) stellen wir folgende Uberlegungen an.

e Die Laufzeit ist proportional zur Anzahl der Zustandsiibergénge.
e Bei jedem Schritt wird der Zustand um maximal Eins erhoht.

e Daher kann der Zustand nicht 6fter verkleinert werden als er
erhoht wird (Amortisationsanalyse).

e Es gibt genau n Zustandsiibergange, bei denen der Zustand
erhoht wird bzw. unveréndert bleibt.

e Insgesamt finden also hochstens 2n = O(n) Zustandsiibergénge
statt.

Nun kommen wir auf die Frage zurtick, wie sich die Prafixfunktion m
effizient berechnen lésst. Die Aufgabe besteht darin, fiir jedes Préfix
Y1 Y, © > 1, das ldngste echte Préafix zu berechnen, das zugleich
Suffix von y; - - - y; ist.

Die Idee besteht nun darin, mit dem KMP-Algorithmus das Muster
y im Text ys - - -y, zu suchen. Dann liefert der beim Lesen von y;
erreichte Zustand k gerade das langste Prafix y; - - - yi, das zugleich
Suffix von ys - - - y; ist (d.h. es gilt 7(i) = k). Zudem werden bis zum
Lesen von y; nur Zustande kleiner als ¢ erreicht. Daher sind die 7-
Werte fiir alle bis dahin auszufithrenden Riickspriinge bereits bekannt
und 7 kann in Zeit O(m) berechnet werden.

Prozedur KMP-Prefix(y)

1om(1):=0

2 k=0
3 for 1:=2 to m do

4 while (k> 0Ay; # ypr1) do k:=7w(k)
5 if y; =ypy1 then k:=k+1
6 (i) =k

7 return(m)

Beispiel 7. Die Verarbeitung des Musters y = laola durch

2.2 Durchsuchen von Zahlenfolgen

KMP-Prefix ergibt folgendes Ablaufprotokoll:

e |k 1 23 4 5]
|

mk)Jo 0 0 1 2]

N

Wir fassen die Laufzeiten der in diesem Abschnitt betrachteten String-
Matching Algorithmen in einer Tabelle zusammen:

Algorithmus Vorverarbeitung  Suche | Gesamtlaufzeit
naiv 0 O(nm) O(nm)
DFA (einfach) O([|2||m?) O(n) | O(||%||m? + n)
DFA (verbessert) O(]|1Z||m) O(n) | O(|X|lm+n)
Knuth-Morris-Pratt O(m) O(n) O(n)

2.2 Durchsuchen von Zahlenfolgen

Als néchstes betrachten wir folgendes Suchproblem.

Element-Suche

Gegeben: Eine Folge aq,...,a, von natiirlichen Zahlen und eine
Zahl a.

Gesucht: Ein Index ¢ mit a; = a (bzw. eine Fehlermeldung, falls

a & {ay,...,a,} ist).

Typische Anwendungen finden sich bei der Verwaltung von Daten-
satzen, wobei jeder Datensatz tiber einen eindeutigen Schlissel (z.B.
Matrikelnummer) zugreifbar ist. Bei manchen Anwendungen kénnen
die Zahlen in der Folge auch mehrfach vorkommen. Gesucht sind dann
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evtl. alle Indizes ¢ mit a; = a. Durch eine sequentielle Suche lésst sich
das Problem in Zeit O(n) 16sen.

Algorithmus Sequential-Search

I Input: Eine Zahlenfolge a4,...,a, und eine Zahl a

2 1:=0

3 repeat

4 t:=1+1

5 until (i =nVa=a)

¢ Output: i, falls a; =a bzw. Fehlermeldung, falls
a; # a

Falls die Folge a4, ...,a, sortiert ist, d.h. es gilt a; < a; fiir ¢ < j,
bietet sich eine Bindrsuche an.

Algorithmus Binary-Search

i Input: Eine Zahlenfolge ay,...,a, und eine Zahl «a
2 [:=1

3 r=n

1

while [ <r do
5 m:= |[(l+7r)/2]
6 if a <a,, then r:=m else [:=m+1
Output: [, falls a;, =a bzw. Fehlermeldung, falls

a; # a

-

Offensichtlich gibt der Algorithmus im Fall a & {ay,...,a,} eine Feh-
lermeldung aus. Im Fall a € {ay,...,a,} gilt die Schieifeninvariante
a; < a < a,. Daher muss nach Abbruch der while-Schleife a = ¢
sein. Dies zeigt die Korrektheit von Binary-Search.

Da zudem die Lénge [ — r + 1 des Suchintervalls [/, 7] in jedem Schlei-
fendurchlauf mindestens auf | (I —7)/2] + 1 reduziert wird, werden
hochstens [logn] Schleifendurchlaufe ausgefithrt. Folglich ist die Lauf-
zeit von Binary-Search hochstens O(logn).

2.3 Sortieralgorithmen

2.3 Sortieralgorithmen

Wie wir im letzten Abschnitt gesehen haben, lassen sich Elemente in
einer sortierten Folge sehr schnell aufspiiren. Falls wir diese Operation
ofters ausfithren miissen, bietet es sich an, die Zahlenfolge zu sortieren.

Sortierproblem
Gegeben: Eine Folge a4, ..., a, von natiirlichen Zahlen.
Gesucht: Eine Permutation a;,, ..., a;, dieser Folge mit a;, < a;,.,

firyj=1,...,n—1.

Man unterscheidet vergleichende Sortierverfahren von den tibrigen Sor-
tierverfahren. Wahrend erstere nur Ja-Nein-Fragen der Form ,,a,<a;?“
oder ,a;<a;?" stellen diirfen, konnen letztere auch die konkreten Zah-
lenwerte a; der Folge abfragen. Vergleichsbasierte Verfahren benétigen
im schlechtesten Fall Q(nlogn) Vergleiche, wihrend letztere unter
bestimmten Zusatzvoraussetzungen sogar in Linearzeit arbeiten.

2.3.1 Sortieren durch Einfiigen

Ein einfacher Ansatz, eine Zahlenfolge zu sortieren, besteht darin,

sequentiell die Zahl a; (i = 2,...,n) in die bereits sortierte Teilfolge
ai, ..., a;_1 eingufiigen.
Algorithmus Insertion-Sort(ay,...,a,)

1 for i:=2 ton do z:=aq;

2 ji=1—1

3 while (j > 1Aa; > z) do

| Aj41 = Qj

5 ji=7—-1

6 Aj41 ‘= 2

Die Korrektheit von Insertion-Sort lasst sich induktiv durch den
Nachweis folgender Schleifeninvarianten beweisen:
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e Nach jedem Durchlauf der for-Schleife sind a4, ..., a; sortiert.

e Nach jedem Durchlauf der while-Schleife gilt z < a; fir
k=j4+2,...,1.

Zusammen mit der Abbruchbedingung der while-Schleife folgt hieraus,
dass z in Zeile 5 an der jeweils richtigen Stelle eingefiigt wird.
Da zudem die while-Schleife fir jedes i = 2,...,n hochstens (i — 1)-

mal ausgefithrt wird, ist die Laufzeit von Insertion-Sort durch
", O(i — 1) = O(n?) begrenzt.

Bemerkung 8.

o [st die Fingabefolge ay, . .., a, bereits sortiert, so wird die while-
Schleife niemals durchlaufen. Im besten Fall ist die Laufzeit
daher 37, O(1) = O(n).

e [st die Fingabefolge ay,. .., a, dagegen absteigend sortiert, so
wandert z in v — 1 Durchliufen der while-Schleife vom Ende
an den Anfang der bereits sortierten Teilfolge aq,...,a;. Im
schlechtesten Fall ist die Laufzeit also Y1, O(i — 1) = O(n?).

e Bei einer zufdlligen Eingabepermutation der Folge 1, ... n wird
z im Erwartungswert in der Mitte der Teilfolge ay, ..., a; einge-

figt. Folglich betrigt die (erwartete) Laufzeit im durchschnittli-
chen Fall ebenfalls Y7, ©O(5) = O(n?).

2.3.2 Sortieren durch Mischen

Wir konnen eine Zahlenfolge auch sortieren, indem wir sie in zwei
Teilfolgen zerlegen, diese durch rekursive Aufrufe sortieren und die
sortierten Teilfolgen wieder zu einer Liste zusammenfiigen.

Diese Vorgehensweise ist unter dem Schlagwort “Divide and Conquer”
(auch “divide et impera”, also “teile und herrsche”) bekannt. Dabei
wird ein Problem gel6st, indem man es

e in mehrere Teilprobleme aufteilt,

2.3 Sortieralgorithmen

e die Teilprobleme rekursiv 16st, und
e die Losungen der Teilprobleme zu einer Gesamtlosung des ur-
spriinglichen Problems zusammenfiigt.

Die Prozedur Mergesort(A,l,r) sortiert ein Feld A[l...r|, indem sie

e ¢s in die Felder A[l...m] und A[m + 1...r] zerlegt,
e diese durch jeweils einen rekursiven Aufruf sortiert, und

e die sortierten Teilfolgen durch einen Aufruf der Prozedur
Merge(A,l,m,r) zu einer sortierten Folge zusammenfiigt.

Algorithmus Mergesort(A,l,r)

1 if [ <r then

2 m:= [(l+71)/2]

3 Mergesort(A,l,m)

4 Mergesort(A,m+ 1,r)
5 Merge(A,l,m,r)

Die Prozedur Merge(A, [, m,r) mischt die beiden sortierten Felder
All...m]und A[m + 1...7] zu einem sortierten Feld A[l...r].

Prozedur Merge(A,l,m,r)

1 allokiere Speicher fuer ein neues Feld BJl...7]
2 =1
3 k:=m+1
. for i:=1[ to r do
5 if j > m then
6 Bli] := Alk]
7 k=k+1
8 else if £k > r then
9 Bli] := A[j]
10 ji=7+1
11 else if A[j] < Alk] then
12 Bli] := A[j]
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13 ji=7+1
14 else

15 Bli] := Alk]
16 k=k+1

17 kopiere das Feld BJ[l...r| in das Feld A[l...r]
15 gib den Speicher fuer B wieder frei

Man beachte, dass Merge fiir die Zwischenspeicherung der gemisch-
ten Folge zusétzlichen Speicher benotigt. Mergesort ist daher kein
“in place”-Sortierverfahren, welches neben dem Speicherplatz fir die
Eingabefolge nur konstant viel zusatzlichen Speicher belegen darf.
Zum Beispiel ist Insertion-Sort ein “in place”-Verfahren. Auch
Mergesort kann als ein “in place”-Sortierverfahren implementiert
werden, falls die zu sortierende Zahlenfolge nicht als Array, sondern
als mit Zeigern verkettete Liste vorliegt (hierzu muss allerdings auch
noch die Rekursion durch eine Schleife ersetzt werden).

Unter der Voraussetzung, dass Merge korrekt arbeitet, konnen wir
per Induktion iiber die Lange n = r — [+ 1 des zu sortierenden Arrays
die Korrektheit von Mergesort wie folgt beweisen:

n = 1: In diesem Fall tut Mergesort nichts, was offensichtlich korrekt
ist.

n~ n -+ 1: Um eine Folge der Lange n + 1 > 2 zu sortieren, zerlegt
sie Mergesort in zwei Folgen der Lénge hochstens n. Diese
werden durch die rekursiven Aufrufe nach IV korrekt sortiert
und von Merge nach Voraussetzung korrekt zusammengefiigt.

Die Korrektheit von Merge lasst sich leicht induktiv durch den Nach-
weis folgender Invariante fiir die for-Schleife beweisen:

e Nach jedem Durchlauf enthélt BJl---i] die i — [ + 1 kleinsten
Elemente aus A[l---m] und A[m + 1---r] in sortierter Reihen-
folge.

e Hierzu wurden die ersten j — 1 Elemente von A[l---m] und die
ersten k — 1 Elemente von A[m + 1---7] nach B kopiert.

2.3 Sortieralgorithmen

Nach dem letzten Durchlauf (d.h. ¢ = r) enthélt daher B[l ---r| al-
le r — [+ 1 Elemente aus A[l---m] und A[m + 1---7] in sortierter
Reihenfolge, womit die Korrektheit von Merge bewiesen ist.

Um eine Schranke fiir die Laufzeit von Mergesort zu erhalten, schat-
zen wir zunéchst die Anzahl V'(n) der Vergleiche ab, die Mergesort im
schlechtesten Fall benotigt, um ein Feld A[l - - - r] der Lénge n = r—I+1
zu sortieren. Offensichtlich erfiillt V(n) die Rekursionsgleichung

Vin) = 0, falls n =1,
A\ V(In/2) + V([n/2]) + M(n), n>2.

Dabei ist M (n) =n — 1 die Anzahl der Vergleiche, die Merge beno-
tigt, um die beiden sortierten Felder A[l...m] und Ajm +1...7] zu
mischen. Falls n eine Zweierpotenz ist, erhalten wir also die Rekursion

V(1) =0und V(n) =2V (n/2) +n—1,n> 2.
Fiir die Funktion f(k) = V(2%) gilt dann
f(0)=0und f(k) =2f(k—1)+2F — 1,k > 1.

Aus den ersten Folgengliedern

f(0) =0,
f) =1
f(2) = 2+22-1 = 1-22+1,
f(3) = 2-2242+25-1 = 2.2541,
f(4) = 2.2-224242-1 = 3-2441

lisst sich vermuten, dass f(k) = (k — 1) - 2¥ + 1 ist. Dies lésst
sich leicht durch Induktion tiber k verifizieren, so dass wir fir
V' die Losungsfunktion V(n) = nlogy,n — n + 1 erhalten. Ist n
keine Zweierpotenz, so konnen wir die Anzahl der Fragen durch
V(n) < V(n') <V(2n) = O(V(n)) abschiatzen, wobei n’ < 2n die
kleinste Zweierpotenz grofler als n ist.
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Da die Laufzeit T'(n) von MergeSort asymptotisch durch die Anzahl
V(n) der Vergleiche beschréankt ist, folgt 7'(n) = O(V(n)).

Satz 9. MergeSort ist ein vergleichendes Sortierverfahren mit einer
Laufzeit von O(nlogn).

2.3.3 Losen von Rekursionsgleichungen

Im Allgemeinen liefert der “Divide and Conquer”-Ansatz einfach zu

implementierende Algorithmen mit einfachen Korrektheitsbeweisen.

Die Laufzeit T'(n) erfillt dann eine Rekursionsgleichung der Form

D(n) + X0, T(n) + C(n),

Dabei ist D(n) der Aufwand fir das Aufteilen der Probleminstanz
und C'(n) der Aufwand fiir das Verbinden der Teillosungen. Um solche
Rekursionsgleichungen zu 16sen, kann man oft eine Losung ,raten
und per Induktion beweisen. Mit Hilfe von Rekursionsbdumen lassen
sich Losungen auch , gezielt raten“. Eine asymptotische Abschatzung
liefert folgender Hauptsatz der Laufzeitfunktionen (Satz von Akra &
Bazzi).

Satz 10 (Mastertheorem). Sei T : N — N eine Funktion der Form
¢

T(n) = ZT(M) + f(n) mit n; € {|ayn], [aun]},

=1

falls n , klein“ ist,

sonst.

wobei 0 < oy < 1,1=1,..
gilt im Fall f(n) =

U, fest gewdhlte reelle Zahlen sind. Dann
O(nk fur ein k> 0:

falls 5, ok < 1,

falls 5, ok =1,

falls ¢, o > 1,

)
O(nk),
O(nklogn),
@<nc)7

T(n)=

wobei ¢ Lisung der Gleichung Y, af = 1 ist.
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Beispiel 11. Die Anzahl V(n) der Vergleiche von MergeSort erfillt
die Rekursion

Vin) =V([n/2]) +V([n/2]) + n— 1,
dh. 1l =2 0 =ay=1/2 und f(n) =n—1= O(n*) firk = 1.
Wegen ¢_ aFf =1/2+1/2 =1 folgt daher V(n) = ©(nlogn).

2.3.4 Eine untere Schranke fiir das Sortierproblem

Frage. Wie viele Vergleichsfragen bendtigt ein vergleichender Sor-
tieralgorithmus A mindestens, um eine Folge (a1, ..., a,) vonn Zahlen
zu sortieren?

Zur Beantwortung dieser Frage betrachten wir alle n! Eingabefolgen
(ay,...,a,) der Form (7(1),...,m(n)), wobei m € S,, eine beliebige
Permutation auf der Menge {1,...,n} ist. Um diese Folgen korrekt zu
sortieren, muss A solange Fragen der Form a; < a; (bzw. m(i) < 7(j))
stellen, bis hochstens noch eine Permutation 7 € S, mit den er-
haltenen Antworten konsistent ist. Damit A moglichst viele Fragen
stellen muss, beantworten wir diese so, dass mindestens die Halfte
der verbliebenen Permutationen mit unserer Antwort konsistent ist
(Mehrheitsvotum). Diese Antwortstrategie stellt sicher, dass nach ¢ Fra-
gen noch mindestens n!/2° konsistente Permutationen iibrig bleiben.
Daher muss A mindestens

[logy(n!)] = nlogyn —nlog, e + 15logn + O(1) = nlogy,n — O(n)

Fragen stellen, um die Anzahl der konsistenten Permutationen auf
Eins zu reduzieren.

Satz 12. Fin vergleichendes Sortierverfahren benotigt mindestens
[log,(n!)] Fragen, um eine Folge (ai,...,a,) von n Zahlen zu sortie-
ren.
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Wir kénnen das Verhalten von A auch durch einen Fragebaum B
veranschaulichen, dessen Wurzel mit der ersten Frage von A markiert
ist. Jeder mit einer Frage markierte Knoten hat zwei Kinder, die
die Antworten ja und nein auf diese Frage reprasentieren. Stellt A
nach Erhalt der Antwort eine weitere Frage, so markieren wir den
entsprechenden Antwortknoten mit dieser Frage. Andernfalls gibt A
eine Permutation 7 der Eingabefolge aus und der zugehorige Antwort-
knoten ist ein Blatt, das wir mit 7 markieren. Nun ist leicht zu sehen,
dass die Tiefe von B mit der Anzahl V(n) der von A benotigten
Fragen im schlechtesten Fall iibereinstimmt. Da jede Eingabefolge
zu einem anderen Blatt fithrt, hat B mindestens n! Blétter. Folglich
kénnen wir in B einen Pfad der Lange [log,(n!)] finden, indem wir
jeweils in den Unterbaum mit der grofSeren Blatterzahl verzweigen.

Da also jedes vergleichende Sortierverfahren mindestens 2(nlogn)
Fragen bendtigt, ist Mergesort asymptotisch optimal.

Korollar 13. MergeSort ist ein vergleichendes Sortierverfahren

mit einer im schlechtesten Fall asymptotisch optimalen Laufzeit von
O(nlogn).

2.3.5 QuickSort

Ein weiteres Sortierverfahren, das den “Divide and Conquer”-Ansatz
benutzt, ist QuickSort. Im Unterschied zu MergeSort wird hier
das Feld vor den rekursiven Aufrufen umsortiert. Als Folge hiervon
bereitet die Zerlegung in Teilprobleme die Hauptarbeit, wahrend das
Zusammenfiigen der Teillosungen trivial ist. Bei MergeSort ist es
gerade umgekehrt.

Algorithmus QuickSort(A4,1,r)

1 if [ <r then m:=Partition(A4,[,r)
2 QuickSort(A,l,m —1)
3 QuickSort(A,m+1,7)
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Die Prozedur QuickSort(A,!,r) sortiert ein Feld A[l...r] wie folgt:
e Zuerst wird die Funktion Partition(A, [, r) aufgerufen.
e Diese wahlt ein Pivotelement, welches sich nach dem Aufruf in
A[m| befindet, und sortiert das Feld so um, dass gilt:
Al <Alm] < AJj] firalled, jmit [ <i<m<j<r. (%)
e Danach werden die beiden Teilfolgen A[l...m — 1] und A[m +
1...7r] durch jeweils einen rekursiven Aufruf sortiert.

Die Funktion Partition(A,l, r) pivotisiert das Feld A[l...r], indem
sie

e 1 = A[r] als Pivotelement wahlt,
e die tibrigen Elemente mit x vergleicht und dabei umsortiert und

e den neuen Index 7 + 1 von x zuriickgibt.

Prozedur Partition(A,l,r)

1:=10—-1
for j: =1 tor—1 do

if A[j] < A[r] then

1i=1+1

5 if i <j then
6 vertausche A[i| und A[j]
7 if i+1<r then
8 vertausche A[i+ 1] und A[r]
9 return(i+1l)

= w [\ =

Unter der Voraussetzung, dass die Funktion Partition korrekt ar-
beitet, d.h. nach ihrem Aufruf gilt (x), folgt die Korrektheit von
QuickSort durch einen einfachen Induktionsbeweis iiber die Lange
n =r — [+ 1 des zu sortierenden Arrays.

Die Korrektheit von Partition wiederum folgt leicht aus folgender
Invariante fiir die for-Schleife:

Alk) < Afr]fir k=1,...,iund A[k] > A[r] fur k =i+ 1,..., 7. (x%)
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Da namlich nach Ende der for-Schleife 7 = r — 1 ist, garantiert die
Vertauschung von A[i + 1] und A[r] die Korrektheit von Partition.

Wir miissen also nur noch die Giiltigkeit der Schleifeninvariante (s:)
nachweisen. Um eindeutig definierte Werte von j vor und nach je-
der Iteration der for-Schleife zu haben, ersetzen wir diese durch eine
semantisch aquivalente while-Schleife:

Prozedur Partition(A,l,r)
1:=10-1
ji=10-1
while j <r—1 do
Ji=7+1
5 if A[j] < A[r] then
6 ti=1+1
7 if < <j then
8 vertausche A[i] und Alj]
o if 141 <7 then
10 vertausche A[i+ 1] und A[r]
11 return(i+1)

IS w N —

Nun lasst sich die Invariante (xx) leicht induktiv beweisen.

Induktionsanfang: Vor Beginn der while-Schleife gilt die Invariante,
da ¢ und 57 den Wert [ — 1 haben.

Induktionsschritt: Zunéchst wird j hochgezahlt und dann A[j] mit
Alr] verglichen.
Im Fall A[j] < A[r] wird auch ¢ hochgezéhlt (d.h. nach Zeile
6 gilt A[i] > Alr]). Daher gilt nach der Vertauschung in Zei-
le 8: A[i] < Alr] und A[j] > Alr], weshalb die Giltigkeit der
Invariante erhalten bleibt.
Im Fall A[j] > A[r] behélt die Invariante ebenfalls ihre Giiltig-
keit, da nur 7 hochgezahlt wird und ¢ unverandert bleibt.
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Als néachstes schéitzen wir die Laufzeit von QuickSort im schlechtes-
ten Fall ab. Dieser Fall tritt ein, wenn sich das Pivotelement nach
jedem Aufruf von Partition am Rand von A (d.h. m = [ oder
m = r) befindet. Dies fithrt namlich dazu, dass Partition der Reihe
nach mit Feldern der Lange n,n — 1,n — 2,...,1 aufgerufen wird.
Da Partition fiir die Umsortierung eines Feldes der Lénge n genau
n — 1 Vergleiche benoétigt, fiihrt QuickSort insgesamt die maximal
mogliche Anzahl

Vim = 3= 1= () =6
i=1
von Vergleichen aus. Dieser ungiinstige Fall tritt insbesondere dann
ein, wenn das Eingabefeld A bereits (auf- oder absteigend) sortiert
ist.

Im besten Fuall zerlegt das Pivotelement das Feld dagegen jeweils in
zwei gleich groBe Felder, d.h. V(n) erfiillt die Rekursion

n=1,
n > 2.

0,
Vi(n) =

{V(L(n— D2+ V(I -1)/2])+n -1,
Diese hat die Losung V(n) = nlog,n — O(n) (vgl. die worst-case
Abschéatzung bei MergeSort).
Es gibt auch Pivotauswahlstrategien, die in linearer Zeit z.B. den
Median bestimmen. Dies fithrt auf eine Variante von QuickSort mit
einer Laufzeit von ©(nlogn) bei allen Eingaben. Allerdings ist die
Bestimmung des Medians fiir praktische Zwecke meist zu aufwandig.
Bei der Analyse des Durchschnittsfalls gehen wir von einer zufalli-
gen Eingabepermutation A[l...n] der Folge 1,...,n aus. Dann ist
die Anzahl V(n) der Vergleichsanfragen von QuickSort eine Zu-
fallsvariable. Wir konnen V'(n) als Summe 7, <, X;; folgender
Indikatorvariablen darstellen:

¥ {1, falls die Werte ¢ und j verglichen werden,
0,

sonst.
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Ob die Werte 7 und j verglichen werden, entscheidet sich beim ersten
Aufruf von Partition(A,l[,r), bei dem das Pivotelement z = Alr]
im Intervall

Li={i,...,5}

liegt. Bis zu diesem Aufruf werden die Werte im Intervall /;; nur mit
Pivotelementen auflerhalb von I;; verglichen und bleiben daher im
gleichen Teilfeld Al ...r] beisammen. Ist das erste Pivotelement z in
I;; nun nicht gleich ¢ oder j, dann werden ¢ und j nicht miteinander
verglichen. Das liegt daran dass im Fall i < x < j die Werte ¢ und
j bei diesem Aufruf in zwei verschiedene Teilfelder getrennt werden
ohne miteinander verglichen zu werden.

Die Werte 7 und j werden also genau dann verglichen, wenn das erste
Pivotelement z im Intervall I;; den Wert ¢ oder j hat. Da die Eingabe
eine Zufallsfolge ohne Mehrfachvorkommen ist, nimmt = jeden Wert
in I;; mit Wahrscheinlichkeit 1/(j — ¢+ 1) an. Daher findet mit Wahr-
scheinlichkeit p;; = 2/(j — i + 1) ein Vergleich zwischen den Werten ¢
und j statt.

Der Erwartungswert von V(n) = 71« j<, X;; berechnet sich nun zu

BVl = ¥ A=Y Y -5y
1<z<j<n o i=1 j=i ] ? i=1 k=2
n—1 n 2 ’ n—1
ZZ <2 logn = O(nlogn).
i=1 k= =1

Damit ist die durchschnittliche Laufzeit von QuickSort O(nlogn).
Dass dies fiir vergleichende Sortierverfahren asymptotisch optimal ist,
wird in den Ubungen gezeigt.

Satz 14. QuickSort ist ein vergleichendes Sortierverfahren mit einer
im Durchschnitt asymptotisch optimalen Laufzeit von O(nlogn).

Unabhéngig davon nach welcher (deterministischen) Strategie das Pi-
votelement gewahlt wird, wird es immer Eingabefolgen geben, fiir die

2.3 Sortieralgorithmen

QuickSort (%) Vergleiche bendtigt. Eine Moglichkeit, die Effizienz

von QuickSo rt im Durchschnittsfall auf den schlechtesten Fall zu
iibertragen, besteht darin, eine randomisierte Auswahlstrategie fir
das Pivotelement anzuwenden.

Die Prozedur RandomQuickSort(A,l,r) arbeitet &hnlich wie
QuickSort. Der einzige Unterschied besteht darin, dass als Pivotele-
ment ein zufalliges Element aus dem Feld A[l...r] gewéhlt wird.

Algorithmus RandomQuickSort(A,l,r)

1 if [ <r then

2 m := RandomPartition(A,l,r)

3 RandomQuickSort(A,l,m — 1)
] RandomQuickSort(A,m+ 1,r)

Prozedur RandomPartition(A,l,r)

I guess randomly j € {l,...,r}
> if j <r then

3 vertausche A[j] und Alr]
+ return(Partition(A4,l,r))

Es ist nicht schwer zu zeigen, dass sich RandomQuickSort bei jeder
Eingabefolge AJl,...,r| gleich verhélt wie QuickSort bei einer zu-
filligen Permutation dieser Eingabefolge (siehe Ubungen). Daher ist
die erwartete Laufzeit von RandomQuickSort auch im schlechtesten
Fall durch O(nlogn) beschrénkt, falls die Zahlenwerte paarweise
verschieden sind.

Satz 15. RandomQuickSort ist ein randomisiertes vergleichendes
Sortierverfahren mit einer im schlechtesten Fall asymptotisch optima-
len erwarteten Laufzeit von O(nlogn).
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2.3.6 HeapSort

HeapSort benutzt als Datenstruktur einen so genannten Heap, um
ein Feld zu sortieren.

H

AN

-+ [logyn| — 1 jeweils die mazximale

Definition 16. Ein Heap H mit n Knoten ist
ein geordneter Bindrbaum nebenstehender Form.
Das heifst,

e H hat in Tiefei =0,1,..
Anzahl von 2° Knoten und

e in Tiefe |logyn| sind alle Knoten linksbindig angeordnet.
Zudem ist jeder Knoten v mit einer Zahl H[v] beschriftet, deren Wert

mindestens so groff ist wie die Werte der Kinder von v (sofern vor-

handen).

Ein Heap H mit n Knoten lasst sich in einem Feld H[1, ..., n| spei-
chern. Dabei gilt:
e Das linke Kind von Knoten ¢ hat den Index left(:) = 2i.
e Das rechte Kind von Knoten ¢ hat den Index right(i) = 2i + 1.
e Der Elternknoten von Knoten ¢ hat den Index parent(i) =
[i/2].
Die Heap-Eigenschaft lasst sich nun wie folgt formulieren. Fir alle
Knoten i € {1,...,n} gilt

(20 <n = HJi| > H2i) A (2i +1 < n= HJi| > H2i +1).

Da die Knoten im Intervall {|n/2| +1,...,n} keine Kinder haben,
ist fiir sie die Heap-Eigenschaft automatisch erfiillt.

Ist H[1,...,n| ein Heap, dann représentiert auch jedes Anfangsstiick
H[1,...,r], 1 <r <n, einen Heap H, mit r Knoten. Zudem ist fiir
1 <@ <r <n der Teilbaum von H, mit Wurzel 7 ein Heap, den wir
mit H;, bezeichnen.
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Da die Wurzel H[1] eines Heaps den grofiten Wert haben muss, konnen
wir eine in einem Feld H[1, ..., n| gespeicherte Zahlenfolge sortieren,
indem wir H zuerst zu einem Heap umsortieren und dann sukzessive

e die Wurzel H[1] mit dem letzten Heap-Element vertauschen,

e den rechten Rand des Heaps um ein Feld nach links verschieben
(also die vormalige Wurzel des Heaps herausnehmen) und

e die durch die Ersetzung der Wurzel verletzte Heap-Eigenschaft
wieder herstellen.

Sei H[1,...,n| ein Feld, so dass der Teilbaum H,;, die Heap-
Eigenschaft in allen Knoten bis auf seine Wurzel ¢ erfiillt. Dann
stellt die Prozedur Heapify(H,i,r) die Heap-Eigenschaft im gesam-
ten Teilbaum H;, her.

Prozedur Heapify(H,i,r)

1 if (28 <r)A(H[2t¢] > H[i]) then

2 T =21

3 else

| Ti=1

5 if (264 1<r)A(H[2t+ 1] > H[z]) then
6 r:=21+1

7 if x > 1 then
8 vertausche H|z] und HJ[i|}
) Heapify(H, z,r)

Unter Verwendung der Prozedur Heapify ist es nun leicht, ein Feld
zu sortieren.

Algorithmus HeapSort(H,1,n)

1 for i:=|n/2| downto 1 do
2 Heapify(H,i,n)
|

for r :=n downto 2 do
vertausche H[l] und H|r]
5 Heaplfy(H7 Lr— 1)
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Wir setzen zunéchst voraus, dass die Prozedur Heapify korrekt ar-
beitet. D.h. Heapify(H,i,r) stellt die Heap-Eigenschaft im gesamten
Teilbaum H;, her, falls H;, die Heap-Eigenschaft hochstens in seiner
Wurzel ¢ nicht erfiillt. Unter dieser Voraussetzung folgt die Korrektheit
von HeapSort mittels folgender Schleifeninvarianten, die sich sehr
leicht verifizieren lassen.

Invariante fiir die erste for-Schleife (Zeilen 1 — 2):

Fir j =14,...,n ist der Teilbaum H;,, ein Heap.
Nach Beendigung dieser Schleife (d.h. i = 1) ist demnach H,,, ein
Heap.

Invariante fiir die zweite for-Schleife (Zeilen 3 — 5):
HIr],..., H[n] enthalten die n —r+ 1 groBten Feldelemen-
te in sortierter Reihenfolge und der Teilbaum H;,_; ist
ein Heap.

Am Ende der zweiten for-Schleife (d.h. r = 2) enthélt also H[2,...,n]
die n — 1 groBten Elemente in sortierter Reihenfolge, d.h. H[1,... n]
ist sortiert.

Als néchstes zeigen wir die Korrektheit von Heapify. Sei also
HI[1,...,n] ein Feld, so dass der Teilbaum H;, die Heap-Eigenschaft
in allen Knoten bis auf seine Wurzel ¢ erfiillt. Dann miissen wir zeigen,
dass Heapify(H,i,r) die Heap-Eigenschaft im gesamten Teilbaum
H; , herstellt.

Heapify(H,i,r) bestimmt den Knoten x € {i,2i,2i + 1} mit ma-
ximalem Wert H(z). Im Fall x = i erfilllt der Knoten i bereits die
Heap-Eigenschaft. Ist = dagegen eines der Kinder von 7, so vertauscht
Heapify die Werte von ¢ und x. Danach ist die Heap-Eigenschaft
hochstens noch im Knoten - verletzt. Daher folgt die Korrektheit von
Heapify durch einen einfachen Induktionsbeweis iiber die Rekursi-
onstiefe.

Es ist leicht zu sehen, dass Heapify(H,i,r) maximal 2h(i) Vergleiche
benétigt, wobei h(i) die Hohe des Knotens ¢ in Hy,. ist. Daher ist die
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O(log r) beschrankt.

Laufzeit von Heapify(H,,r) durch O(h(i)) =
= |logy, n| wird Heapify

Fiir den Aufbau eines Heaps H der Tiefe ¢
in der ersten for-Schleife fiir hochstens

e 29 =1 Knoten der Hohe h = ¢,

e 2! = 2 Knoten der Hohe h =t — 1,

e 2!71 Knoten der Hohe h =t — (t — 1) =1

aufgerufen. Fiir h = 1,...,t sind das also hochstens 27" Knoten
der Hohe h. Da Heapify fiir einen Knoten der Hohe h hochstens 2h
Vergleichsfragen stellt, benotigt der Aufbau des Heaps maximal

! _ ¢ n < h
Vi(n) §2hz_jlh2t hSQ;h?h <2n;?:4n

Vergleiche. Fiir den Abbau des Heaps in der zweiten for-Schleife wird
Heapify genau (n — 1)-mal aufgerufen. Daher benétigt der Abbau
des Heaps maximal

Va(n) < 2(n —1)[logy n) < 2nlogyn
Vergleiche.
Satz 17. HeapSort ist ein vergleichendes Sortierverfahren mit einer
im schlechtesten Fall asymptotisch optimalen Laufzeit von O(nlogn).
Die Floyd-Strategie

Die Floyd-Strategie benotigt beim Abbau des Heaps im Durchschnitt
nur halb so viele Vergleiche wie die bisher betrachtete Williams-
Strategie. Die Idee besteht darin, dass Heapify(H,1,r) beginnend
mit der Wurzel i = 1 sukzessive die Werte der beiden Kinder des
aktuellen Knotens ¢; vergleicht und jeweils zu dem Kind 7,4 mit dem
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groBeren Wert absteigt, bis nach ¢ < [log, | Schritten ein Blatt i,
erreicht wird.

Nun geht Heapify auf diesem Pfad bis zum ersten Knoten i;
mit H([i;] > H[l] zuriick und fithrt auf den Werten der Knoten
ij,%-1,--.,% einen Ringtausch aus, um die Heap-Eigenschaft herzu-
stellen. Dies erfordert

t+(t—j+1)=2t—j+1

Vergleiche (im Unterschied zu 2j Vergleichen bei der Williams-
Strategie). Da sich der Knoten i;, an dessen Stelle der Wurzelknoten
eingefiigt wird, im Mittel sehr weit unten im Baum befindet (d.h.
t—j=0(1)), spart man auf diese Art asymptotisch die Halfte der
Vergleiche.

2.3.7 BucketSort

Die Prozedur BucketSort sortiert n Zahlen aq,...,a, aus einem
Intervall [a, b) wie folgt (z.B. fiir n =10, a = 0 und b = 100):

1. Erstelle fiir j = 1,...,n eine Liste L; fiir das halb offene Intervall
Li=la+ (-5 a+552) = [10( - 1),105).

2. Bestimme zu jedem Element a; das Intervall I;, zu dem es gehort,
und flige es in die entsprechende Liste L; ein.

3. Sortiere jede Liste L;.

4. Fiuge die sortierten Listen L; wieder zu einer Liste zusammen.

Im schlechtesten Fall kommen alle Schliissel in die gleiche Liste. Dann
hat BucketSort dieselbe asymptotische Laufzeit wie das als Unter-
routine verwendete Sortierverfahren. Sind dagegen die zu sortierenden
Zahlenwerte im Intervall [a,b) (anndhernd) gleichverteilt, so ist die
durchschnittliche Laufzeit von BucketSort ©(n). Dies gilt sogar,
wenn als Unterroutine ein Sortierverfahren der Komplexitit O(n?)
verwendet wird.
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Wir schitzen nun die erwartete Laufzeit von BucketSort ab, wobei
wir annehmen, dass die Folgenglieder a; im Intervall [a, b) unabhéngig
gleichverteilt sind. Sei X; die Zufallsvariable, die die Lange der Liste
L; beschreibt. Dann ist X; binomialverteilt mit Parametern n und
p = 1/n. Also hat X; den Erwartungswert

E[X;]=np=1
und die Varianz
VIXi]=np(l—p)=1-1/n<1.

Wegen V[X;] = E[X?] — E[X;])? ist E[X?] = V[Xi] + E[X;]* < 2.
Daher folgt fiir die erwartete Laufzeit 7'(n) von BucketSort:

T(n)=0(n)+E rzl O(Xf)] =0 (n + niE[Xf]) = O(n).

=0 =0

2.3.8 CountingSort

Die Prozedur CountingSort sortiert eine Zahlenfolge, indem sie zu-
néchst die Anzahl der Vorkommen jedes Wertes in der Folge und
daraus die Rangzahlen C[i] = |{j | A[j] < i}|| der Zahlenwerte
1 =0,...,k bestimmt. Dies funktioniert nur unter der Einschrankung,
dass die Zahlenwerte natiirliche Zahlen sind und eine Obergrenze k
fiir ihre Grofle bekannt ist.

Algorithmus CountingSort(A4,1,n,k)

for i:=0 to k do C[i| =0
for j:=1 to n do C[A[j]] :=C[A[j]] +1
for i:=1 to k do C[i] :=CJ[i]+ C[i — 1]
for j:=1 to n do

BIC[A[]]] := A[J]
s ClAL) = ClA[f]] -1
7 for j:=1 to n do A[j] := Bl|j]

=W N =

ot
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Satz 18. CountingSort sortiert n natirliche Zahlen der Grifse
hochstens k in Zeit O(n + k) und Platz O(n + k).

Korollar 19. CountingSort sortiert n natirliche Zahlen der Grifle
O(n) in linearer Zeit und linearem Platz.

2.3.9 RadixSort

RadixSort sortiert d-stellige Zahlen a = a4 - - - a; eine Stelle nach der
anderen, wobei mit der niederwertigsten Stelle begonnen wird.
Algorithmus RadixSort(A,1,n)

1 for ¢1:=1 to d do
2 sortiere A[l,...,n] nach der i-ten Stelle

Hierzu sollten die Folgenglieder moglichst als Festkomma-Zahlen vor-
liegen. Zudem muss in Zeile 2 ,stabil® sortiert werden.

Definition 20. Ein Sortierverfahren heifst stabil, wenn es die relative
Reihenfolge von Elementen mit demselben Wert nicht verandert.

Es empfiehlt sich, eine stabile Variante von CountingSort als Unter-
routine zu verwenden. Damit CountingSort stabil sortiert, brauchen
wir lediglich die for-Schleife in Zeile 4 in der umgekehrten Reihenfolge
zu durchlaufen:

I for j:=1 to n do C[A[j]] :=C[A[j]] +1
2> for i:=1 to k do C[i] :=C[i]+ C[i —1]
3 for j:=n downto 1 do

. BICIAL]] = ALJ]

s CIAL) = ClAL]] - 1

¢ for j:=1 to n do Alj]:= B[j]

Satz 21. RadixSort sortiert n d-stellige Festkomma-Zahlen zur Ba-
sis b in Zeit ©(d(n + b)).

2.3 Sortieralgorithmen

RadixSort sortiert beispielsweise n O(log n)-stellige Bindrzahlen in
Zeit ©(nlogn). Wenn wir r benachbarte Ziffern zu einer , Ziffer®
z€40,...,0" — 1} zusammenfassen, erhalten wir folgende Variante
von RadixSort.

Korollar 22. Fiir jede Zahl 1 < r < d sortiert RadixSort n d-
stellige Festkomma- Zahlen zur Basis b in Zeit O(d/.(n 4+ b")).

Wiéhlen wir beispielsweise r = [log, n], so erhalten wir fir d =
O(log n)-stellige Binédrzahlen eine Komplexitét von

O (4/(n+27)) = O(n+2) = O(n).
2.3.10 Vergleich der Sortierverfahren

Folgende Tabelle zeigt die Komplexitaten der betrachteten verglei-
chenden Sortierverfahren.

Insertion-| MergeSort Quick- Heap-
Sort Sort Sort
worst-case O(n?) O(nlogn) O(n?) |O(nlogn)
average-case O(n?) O(nlogn) |O(nlogn)|O(nlogn)
Speicherplatz O(1) ©(n) bzw. (1) | O(logn) O(1)
stabil ja ja nein nein

Wir fassen auch die wichtigsten Eigenschaften der betrachteten
Linearzeit-Sortierverfahren zusammen.

e BucketSort: Im Durchschnitt linearer Zeitverbrauch, falls die
n Zahlen in einem Intervall [a, b) gleichverteilt sind.

e CountingSort: Sogar im schlechtesten Fall lineare Zeit, falls
die Werte natiirliche Zahlen sind und O(n) nicht tibersteigen.

e RadixSort: Bitweises Sortieren in linearer Zeit, falls die zu
sortierenden Zahlen nicht mehr als O(logn) Bit haben.
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