
Vorlesungsskript

Theoretische Informatik III
Sommersemester 2008

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

14. Mai 2009

Inhaltsverzeichnis

1 Einleitung 1

2 Suchen und Sortieren 2
2.1 Suchen von Mustern in Texten 2

2.1.1 String-Matching mit endlichen Automaten . . 3
2.1.2 Der Knuth-Morris-Pratt-Algorithmus 4

2.2 Durchsuchen von Zahlenfolgen 6
2.3 Sortieralgorithmen 7

2.3.1 Sortieren durch Einfügen 7
2.3.2 Sortieren durch Mischen 8
2.3.3 Lösen von Rekursionsgleichungen 10
2.3.4 Eine untere Schranke für das Sortierproblem . 10
2.3.5 QuickSort . 11
2.3.6 HeapSort . 14
2.3.7 BucketSort 16
2.3.8 CountingSort 16
2.3.9 RadixSort . 17
2.3.10 Vergleich der Sortierverfahren 17

ii

1 Einleitung

In den Vorlesungen ThI 1 und ThI 2 standen folgende Themen im
Vordergrund:

• Mathematische Grundlagen der Informatik, Beweise führen, Mo-
dellierung Aussagenlogik,
Prädikatenlogik
• Welche Probleme sind lösbar? (Berechenbarkeitstheorie)
• Welche Rechenmodelle sind adäquat? (Automatentheorie)
• Welcher Aufwand ist nötig? (Komplexitätstheorie)

Dagegen geht es in der VL ThI 3 in erster Linie um folgende Frage:

• Wie lassen sich eine Reihe von praktisch relevanten Problem-
stellungen möglichst effizient lösen?
• Wie lässt sich die Korrektheit von Algorithmen beweisen und
wie lässt sich ihre Laufzeit abschätzen?

Die Untersuchung dieser Fragen lässt sich unter dem Themengebiet
Algorithmik zusammenfassen.
Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zurück. Der älteste bekannte nicht-triviale
Algorithmus ist der nach Euklid benannte Algorithmus zur Berechnung
des größten gemeinsamen Teilers zweier natürlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten löst (etwa durch Produktion
einer Ausgabe). Ein Algorithmus ist ein „Verfahren“ zur Lösung eines
Entscheidungs- oder Berechnungsproblems, das sich prinzipiell auf
einer Turingmaschine implementieren lässt (Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die
Registermaschine (engl. random access machine; RAM). Dieses Modell
ist etwas flexibler als die Turingmaschine, da es den unmittelbaren
Lese- und Schreibzugriff (random access) auf eine beliebige Speiche-
reinheit (Register) erlaubt. Als Speicher stehen beliebig viele Register
zur Verfügung, die jeweils eine beliebig große natürliche Zahl speichern
können. Auf den Registerinhalten sind folgende arithmetische Ope-
rationen in einem Rechenschritt ausführbar: Addition, Subtraktion,
abgerundetes Halbieren und Verdoppeln. Unabhängig davon geben
wir die Algorithmen in Pseudocode an. Das RAM-Modell benutzen
wir nur zur Komplexitätsabschätzung.
Die Laufzeit von RAM-Programmen wird wie bei TMs in der Länge
der Eingabe gemessen. Man beachte, dass bei arithmetischen Pro-
blemen (wie etwa Multiplikation, Division, Primzahltests, etc.) die
Länge einer Zahleingabe n durch die Anzahl dlog ne der für die Binär-
kodierung von n benötigten Bits gemessen wird. Dagegen bestimmt
bei nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder
Sortierproblemen) die Anzahl der gegebenen Zahlen die Länge der
Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1. Seien f und g Funktionen von N nach R+. Wir schrei-
ben f(n) = O(g(n)), falls es Zahlen n0 und c gibt mit

∀n ≥ n0 : f(n) ≤ c · g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f „nicht
wesentlich schneller“ als g wächst. Formal bezeichnet der Term
O(g(n)) die Klasse aller Funktionen f , die obige Bedingung erfül-
len. Die Gleichung f(n) = O(g(n)) drückt also in Wahrheit eine
Element-Beziehung f ∈ O(g(n)) aus. O-Terme können auch auf

1

der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbe-
ziehung ausgedrückt. So steht n2 +O(n) = O(n2) für die Aussage
{n2 + f | f ∈ O(n)} ⊆ O(n2).

Beispiel 2.
• 7 log(n) + n3 = O(n3) ist richtig.
• 7 log(n)n3 = O(n3) ist falsch.
• 2n+O(1) = O(2n) ist richtig.
• 2O(n) = O(2n) ist falsch (siehe Übungen).

/

Es gibt noch eine Reihe weiterer nützlicher Größenvergleiche von
Funktionen.

Definition 3. Wir schreiben f(n) = o(g(n)), falls es für jedes c > 0
eine Zahl n0 gibt mit

∀n ≥ n0 : f(n) ≤ c · g(n).

Damit wird ausgedrückt, dass f „wesentlich langsamer“ als g wächst.
Außerdem schreiben wir
• f(n) = Ω(g(n)) für g(n) = O(f(n)), d.h. f wächst mindestens
so schnell wie g)
• f(n) = ω(g(n)) für g(n) = o(f(n)), d.h. f wächst wesentlich
schneller als g, und
• f(n) = Θ(g(n)) für f(n) = O(g(n)) ∧ f(n) = Ω(g(n)), d.h. f
und g wachsen ungefähr gleich schnell.

2 Suchen und Sortieren

2.1 Suchen von Mustern in Texten

In diesem Abschnitt betrachten wir folgende algorithmische Problem-
stellung.

String-Matching (StringMatching):
Gegeben: Ein Text x = x1 · · ·xn und ein Muster y = y1 · · · ym

über einem Alphabet Σ.
Gesucht: Alle Vorkommen von y in x.

Wir sagen y kommt in x an Stelle i vor, falls xi+1 · · ·xi+m = y ist.
Typische Anwendungen finden sich in Textverarbeitungssystemen
(emacs, grep, etc.), sowie bei der DNS- bzw. DNA-Sequenzanalyse.

Beispiel 4. Sei Σ = {A,C,G,U}.

Text x = AUGACGAUGAUGUAGGUAGCGUAGAUGAUGUAG,
Muster y = AUGAUGUAG.

Das Muster y kommt im Text x an den Stellen 6 und 24 vor. /

Bei naiver Herangehensweise kommt man sofort auf folgenden Algo-
rithmus.

Algorithmus naive-String-Matcher(x, y)
1 Input: Text x = x1 · · · xn und Muster y = y1 · · · ym
2 V := ∅
3 for i := 0 to n−m do

2

2 Suchen und Sortieren 2.1 Suchen von Mustern in Texten

4 if xi+1 · · ·xi+m = y1 · · · ym then
5 V := V ∪ {i}
6 Output: V

Die Korrektheit von naive-String-Matcher ergibt sich wie folgt:

• In der for-Schleife testet der Algorithmus alle potentiellen Stel-
len, an denen y in x vorkommen kann, und
• fügt in Zeile 4 genau die Stellen i zu V hinzu, für die
xi+1 · · ·xi+m = y ist.

Die Laufzeit von naive-String-Matcher lässt sich nun durch fol-
gende Überlegungen abschätzen:

• Die for-Schleife wird (n−m+ 1)-mal durchlaufen.
• Der Test in Zeile 4 benötigt maximal m Vergleiche.

Dies führt auf eine Laufzeit von O(nm) = O(n2). Für Eingaben der
Form x = an und y = abn/2c ist die Laufzeit tatsächlich Θ(n2).

2.1.1 String-Matching mit endlichen Automaten

Durch die Verwendung eines endlichen Automaten lässt sich eine
erhebliche Effizienzsteigerung erreichen. Hierzu konstruieren wir einen
DFAMy, der jedes Vorkommen von y in der Eingabe x durch Erreichen
eines Endzustands anzeigt. My erkennt also die Sprache

L = {x ∈ Σ∗ | y ist Suffix von x}.

Konkret konstruieren wir My = (Z,Σ, δ, 0,m) wie folgt:

• My hat m + 1 Zustände, die den m + 1 Präfixen y1 · · · yk,
k = 0, . . . ,m, von y entsprechen, d.h. Z = {0, . . . ,m}.
• Liest My im Zustand k das Zeichen yk+1, so wechselt My in den

Zustand k + 1, d.h. δ(k, yk+1) = k + 1 für k = 0, . . . ,m− 1:

0 1 2 3 . . . m

y1 y2 y3 y4 ym

• Falls das nächste Zeichen a nicht mit yk+1 übereinstimmt
(engl. mismatch), wechselt My in den Zustand

δ(k, a) = max{j ≤ m | y1 · · · yj ist Suffix von y1 · · · yka}.

Der DFA My speichert also in seinem Zustand die maximale Länge
k eines Präfixes y1 · · · yk von y, das zugleich ein Suffix der gelesenen
Eingabe ist:

δ̂(0, x) = max{k ≤ m | y1 · · · yk ist Suffix von x}.

Die Korrektheit vonMy folgt aus der Beobachtung, dassMy isomorph
zum Äquivalenzklassenautomaten MRL für L ist. MRL hat die Zustän-
de [y1 · · · yk], k = 0, . . . ,m, von denen nur [y1 · · · ym] ein Endzustand
ist. Die Überführungsfunktion ist definiert durch

δ([y1 · · · yk], a) = [y1 · · · yj],

wobei y1 · · · yj das längste Präfix von y = y1 · · · ym ist, welches Suffix
von y1 · · · yja ist (siehe Übungen).

Beispiel 5. Für das Muster y = laola hat My folgende Gestalt:

0 1 2 3 4 5
l a o l a

a, o l

o

a

l

a, o
l

o
a

l

o

δ 0 1 2 3 4 5
a 0 2 0 0 5 0
l 1 1 1 4 1 1
o 0 0 3 0 0 3

3

2 Suchen und Sortieren 2.1 Suchen von Mustern in Texten

My macht bei der Suche nach dem Muster y = laola im Text x = olalaolala
folgende Übergänge:

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
o l a l a o l a l a

/

Insgesamt erhalten wir somit folgenden Algorithmus.

Algorithmus DFA-String-Matcher(x, y)
1 Input: Text x = x1 · · ·xn und Muster y = y1 · · · ym
2 konstruiere den DFA My = (Z,Σ, δ, 0,m)
3 V := ∅
4 k := 0
5 for i := 1 to n do
6 k := δ(k, xi)
7 if k = m then V := V ∪ {i−m}
8 Output: V

Die Korrektheit von DFA-String-Matcher ergibt sich unmittelbar
aus der Tatsache, dass My die Sprache

L(My) = {x ∈ Σ∗ | y ist Suffix von x}

erkennt. Folglich fügt der Algorithmus genau die Stellen j = i−m zu
V hinzu, für die y ein Suffix von x1 · · ·xi (also xj+1 · · ·xj+m = y) ist.

Die Laufzeit von DFA-String-Matcher ist die Summe der Laufzei-
ten für die Konstruktion von My und für die Simulation von My bei
Eingabe x, wobei letztere durch O(n) beschränkt ist. Für δ ist eine
Tabelle mit (m+ 1)‖Σ‖ Einträgen

δ(k, a) = max{j ≤ k + 1 | y1 · · · yj ist Suffix von y1 · · · yka}

zu berechnen. Jeder Eintrag δ(k, a) ist in Zeit O(k2) = O(m2) bere-
chenbar. Dies führt auf eine Laufzeit von O(‖Σ‖m3) für die Konstruk-
tion von My und somit auf eine Gesamtlaufzeit von O(‖Σ‖m3 + n).
Tatsächlich lässt sich My sogar in Zeit O(‖Σ‖m) konstruieren.

2.1.2 Der Knuth-Morris-Pratt-Algorithmus

Durch eine Modifikation des Rücksprungmechanismus’ lässt sich die
Laufzeit von DFA-String-Matcher auf O(n+m) verbessern. Hierzu
vergegenwärtigen wir uns folgende Punkte:

• Tritt im Zustand k ein Mismatch a 6= yk+1 auf, so ermittelt
My das längste Präfix p von y1 · · · yk, das zugleich Suffix von
y1 · · · yka ist, und springt in den Zustand j = δ(k, a) = |p|.
• Im Fall j > 0 hat p also die Form p = p′a, wobei p′ = y1 · · · yj−1

sowohl echtes Präfix als auch echtes Suffix von y1 · · · yk ist. Zu-
dem gilt yj = a.
• Die Idee beim KMP-Algorithmus ist nun, bei einem Mismatch
unabhängig von a auf das nächst kleinere Präfix p̃ = y1 · · · yi
von y1 · · · yk zu springen, das auch Suffix von y1 · · · yk ist.
• Stimmt nach diesem Rücksprung das nächste Eingabezeichen
a mit yi+1 überein, so wird dieses gelesen und der KMP-
Algorithmus erreicht (nach einem kleinen Umweg über den
Zustand i) den Zustand i+ 1 = j, in den auch My wechselt.
• Andernfalls springt der KMP-Algorithmus nach derselben Me-

thode solange weiter zurück, bis das nächste Eingabezeichen a

4

2 Suchen und Sortieren 2.1 Suchen von Mustern in Texten

„passt“ (also yi+1 = a und somit p̃a ein Präfix von y ist) oder
der Zustand 0 erreicht wird.
• In beiden Fällen wird a gelesen und der Zustand δ(k, a) ange-

nommen.

Der KMP-Algorithmus besucht also alle Zustände, die auch My
besucht, führt aber die Rücksprünge in mehreren Etappen aus.
Die Sprungadressen werden durch die so genannte Präfixfunktion
π : {1, . . . ,m} → {0, . . . ,m− 1} ermittelt:

π(k) = max{0 ≤ j ≤ k − 1 | y1 · · · yj ist Suffix von y1 · · · yk}.

Beispiel 6. Für das Muster y = laola ergibt sich folgende Präfixfunk-
tion π:

0 1 2 3 4 5
l a o l a

k 1 2 3 4 5
π(k) 0 0 0 1 2

Wir können uns die Arbeitsweise dieses Automaten wie folgt vorstellen:

1. Erlaubt das nächste Eingabezeichen einen Übergang vom aktuel-
len Zustand k nach k + 1, so führe diesen aus.

2. Ist ein Übergang nach k+ 1 nicht möglich und k ≥ 1, so springe
in den Zustand π(k) ohne das nächste Zeichen zu lesen.

3. Andernfalls (d.h. k = 0 und ein Übergang nach 1 ist nicht
möglich) lies das nächste Zeichen und bleibe im Zustand 0.

Der KMP-Algorithmus macht bei der Suche nach dem Muster y =
laola im Text x = olalaolala folgende Übergänge:

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
o l a l a o l a l a

/

Auf die Frage, wie sich die Präfixfunktion π möglichst effizient berech-
nen lässt, werden wir später zu sprechen kommen. Wir betrachten
zunächst das Kernstück des KMP-Algorithmus, das sich durch eine
leichte Modifikation von DFA-String-Matcher ergibt.

DFA-String-Matcher(x, y)
1 Input: Text x1 · · ·xn

und Muster y1 · · · ym
2 konstruiere My
3 V := ∅
4 k := 0
5 for i := 1 to n do
6 k := δ(k, xi)

7 if k = m then
8 V := V ∪ {i−m}
9 Output: V

KMP-String-Matcher(x, y)
1 Input: Text x1 · · ·xn und

Muster y1 · · · ym
2 π := KMP-Prefix(y)
3 V := ∅
4 k := 0
5 for i := 1 to n do
6 while (k > 0 ∧ xi 6= yk+1) do
7 k := π(k)
8 if xi = yk+1 then k := k + 1
9 if k = m then

10 V := V ∪ {i−m}, k := π(k)
11 Output: V

Die Korrektheit des Algorithmus KMP-String-Matcher ergibt sich
einfach daraus, dass er den Zustand m an genau den gleichen Text-
stellen besucht wie DFA-String-Matcher, und somit wie dieser alle
Vorkommen von y im Text x findet.

5

2 Suchen und Sortieren 2.2 Durchsuchen von Zahlenfolgen

Für die Laufzeitanalyse von KMP-String-Matcher (ohne die Berech-
nung von KMP-Prefix) stellen wir folgende Überlegungen an.
• Die Laufzeit ist proportional zur Anzahl der Zustandsübergänge.
• Bei jedem Schritt wird der Zustand um maximal Eins erhöht.
• Daher kann der Zustand nicht öfter verkleinert werden als er

erhöht wird (Amortisationsanalyse).
• Es gibt genau n Zustandsübergänge, bei denen der Zustand

erhöht wird bzw. unverändert bleibt.
• Insgesamt finden also höchstens 2n = O(n) Zustandsübergänge

statt.
Nun kommen wir auf die Frage zurück, wie sich die Präfixfunktion π
effizient berechnen lässt. Die Aufgabe besteht darin, für jedes Präfix
y1 · · · yi, i ≥ 1, das längste echte Präfix zu berechnen, das zugleich
Suffix von y1 · · · yi ist.
Die Idee besteht nun darin, mit dem KMP-Algorithmus das Muster
y im Text y2 · · · ym zu suchen. Dann liefert der beim Lesen von yi
erreichte Zustand k gerade das längste Präfix y1 · · · yk, das zugleich
Suffix von y2 · · · yi ist (d.h. es gilt π(i) = k). Zudem werden bis zum
Lesen von yi nur Zustände kleiner als i erreicht. Daher sind die π-
Werte für alle bis dahin auszuführenden Rücksprünge bereits bekannt
und π kann in Zeit O(m) berechnet werden.

Prozedur KMP-Prefix(y)
1 π(1) := 0
2 k := 0
3 for i := 2 to m do
4 while (k > 0 ∧ yi 6= yk+1) do k := π(k)
5 if yi = yk+1 then k := k + 1
6 π(i) := k
7 return(π)

Beispiel 7. Die Verarbeitung des Musters y = laola durch

KMP-Prefix ergibt folgendes Ablaufprotokoll:

a o l a
0

1

2

1 2 3 4 5
a o l a

k 1 2 3 4 5
π(k) 0 0 0 1 2

/

Wir fassen die Laufzeiten der in diesem Abschnitt betrachteten String-
Matching Algorithmen in einer Tabelle zusammen:

Algorithmus Vorverarbeitung Suche Gesamtlaufzeit

naiv 0 O(nm) O(nm)
DFA (einfach) O(‖Σ‖m3) O(n) O(‖Σ‖m3 + n)
DFA (verbessert) O(‖Σ‖m) O(n) O(‖Σ‖m+ n)
Knuth-Morris-Pratt O(m) O(n) O(n)

2.2 Durchsuchen von Zahlenfolgen

Als nächstes betrachten wir folgendes Suchproblem.

Element-Suche
Gegeben: Eine Folge a1, . . . , an von natürlichen Zahlen und eine

Zahl a.
Gesucht: Ein Index i mit ai = a (bzw. eine Fehlermeldung, falls

a 6∈ {a1, . . . , an} ist).

Typische Anwendungen finden sich bei der Verwaltung von Daten-
sätzen, wobei jeder Datensatz über einen eindeutigen Schlüssel (z.B.
Matrikelnummer) zugreifbar ist. Bei manchen Anwendungen können
die Zahlen in der Folge auch mehrfach vorkommen. Gesucht sind dann

6

2 Suchen und Sortieren 2.3 Sortieralgorithmen

evtl. alle Indizes i mit ai = a. Durch eine sequentielle Suche lässt sich
das Problem in Zeit O(n) lösen.

Algorithmus Sequential-Search

1 Input: Eine Zahlenfolge a1, . . . , an und eine Zahl a
2 i := 0
3 repeat
4 i := i+ 1
5 until (i = n ∨ a = ai)
6 Output: i, falls ai = a bzw. Fehlermeldung, falls

ai 6= a

Falls die Folge a1, . . . , an sortiert ist, d.h. es gilt ai ≤ aj für i ≤ j,
bietet sich eine Binärsuche an.

Algorithmus Binary-Search

1 Input: Eine Zahlenfolge a1, . . . , an und eine Zahl a
2 l := 1
3 r := n
4 while l < r do
5 m := b(l + r)/2c
6 if a ≤ am then r := m else l := m+ 1
7 Output: l, falls al = a bzw. Fehlermeldung, falls

al 6= a

Offensichtlich gibt der Algorithmus im Fall a 6∈ {a1, . . . , an} eine Feh-
lermeldung aus. Im Fall a ∈ {a1, . . . , an} gilt die Schleifeninvariante
al ≤ a ≤ ar. Daher muss nach Abbruch der while-Schleife a = al
sein. Dies zeigt die Korrektheit von Binary-Search.
Da zudem die Länge l− r + 1 des Suchintervalls [l, r] in jedem Schlei-
fendurchlauf mindestens auf b(l − r)/2c+ 1 reduziert wird, werden
höchstens dlog ne Schleifendurchläufe ausgeführt. Folglich ist die Lauf-
zeit von Binary-Search höchstens O(log n).

2.3 Sortieralgorithmen

Wie wir im letzten Abschnitt gesehen haben, lassen sich Elemente in
einer sortierten Folge sehr schnell aufspüren. Falls wir diese Operation
öfters ausführen müssen, bietet es sich an, die Zahlenfolge zu sortieren.

Sortierproblem
Gegeben: Eine Folge a1, . . . , an von natürlichen Zahlen.
Gesucht: Eine Permutation ai1 , . . . , ain dieser Folge mit aij ≤ aij+1

für j = 1, . . . , n− 1.

Man unterscheidet vergleichende Sortierverfahren von den übrigen Sor-
tierverfahren. Während erstere nur Ja-Nein-Fragen der Form „ai≤aj?“
oder „ai<aj?“ stellen dürfen, können letztere auch die konkreten Zah-
lenwerte ai der Folge abfragen. Vergleichsbasierte Verfahren benötigen
im schlechtesten Fall Ω(n log n) Vergleiche, während letztere unter
bestimmten Zusatzvoraussetzungen sogar in Linearzeit arbeiten.

2.3.1 Sortieren durch Einfügen

Ein einfacher Ansatz, eine Zahlenfolge zu sortieren, besteht darin,
sequentiell die Zahl ai (i = 2, . . . , n) in die bereits sortierte Teilfolge
a1, . . . , ai−1 einzufügen.

Algorithmus Insertion-Sort(a1, . . . , an)
1 for i := 2 to n do z := ai
2 j := i− 1
3 while (j ≥ 1 ∧ aj > z) do
4 aj+1 := aj
5 j := j − 1
6 aj+1 := z

Die Korrektheit von Insertion-Sort lässt sich induktiv durch den
Nachweis folgender Schleifeninvarianten beweisen:

7

2 Suchen und Sortieren 2.3 Sortieralgorithmen

• Nach jedem Durchlauf der for-Schleife sind a1, . . . , ai sortiert.
• Nach jedem Durchlauf der while-Schleife gilt z < ak für
k = j + 2, . . . , i.

Zusammen mit der Abbruchbedingung derwhile-Schleife folgt hieraus,
dass z in Zeile 5 an der jeweils richtigen Stelle eingefügt wird.
Da zudem die while-Schleife für jedes i = 2, . . . , n höchstens (i− 1)-
mal ausgeführt wird, ist die Laufzeit von Insertion-Sort durch∑n
i=2O(i− 1) = O(n2) begrenzt.

Bemerkung 8.

• Ist die Eingabefolge a1, . . . , an bereits sortiert, so wird die while-
Schleife niemals durchlaufen. Im besten Fall ist die Laufzeit
daher ∑ni=2 Θ(1) = Θ(n).
• Ist die Eingabefolge a1, . . . , an dagegen absteigend sortiert, so
wandert z in i − 1 Durchläufen der while-Schleife vom Ende
an den Anfang der bereits sortierten Teilfolge a1, . . . , ai. Im
schlechtesten Fall ist die Laufzeit also ∑ni=2 Θ(i− 1) = Θ(n2).
• Bei einer zufälligen Eingabepermutation der Folge 1, . . . , n wird
z im Erwartungswert in der Mitte der Teilfolge a1, . . . , ai einge-
fügt. Folglich beträgt die (erwartete) Laufzeit im durchschnittli-
chen Fall ebenfalls ∑ni=2 Θ(i−1

2) = Θ(n2).

2.3.2 Sortieren durch Mischen

Wir können eine Zahlenfolge auch sortieren, indem wir sie in zwei
Teilfolgen zerlegen, diese durch rekursive Aufrufe sortieren und die
sortierten Teilfolgen wieder zu einer Liste zusammenfügen.
Diese Vorgehensweise ist unter dem Schlagwort “Divide and Conquer”
(auch “divide et impera”, also “teile und herrsche”) bekannt. Dabei
wird ein Problem gelöst, indem man es

• in mehrere Teilprobleme aufteilt,

• die Teilprobleme rekursiv löst, und
• die Lösungen der Teilprobleme zu einer Gesamtlösung des ur-

sprünglichen Problems zusammenfügt.
Die Prozedur Mergesort(A, l, r) sortiert ein Feld A[l . . . r], indem sie
• es in die Felder A[l . . .m] und A[m+ 1 . . . r] zerlegt,
• diese durch jeweils einen rekursiven Aufruf sortiert, und
• die sortierten Teilfolgen durch einen Aufruf der Prozedur
Merge(A, l,m, r) zu einer sortierten Folge zusammenfügt.

Algorithmus Mergesort(A, l, r)
1 if l < r then
2 m := b(l + r)/2c
3 Mergesort(A, l,m)
4 Mergesort(A,m+ 1, r)
5 Merge(A, l,m, r)

Die Prozedur Merge(A, l,m, r) mischt die beiden sortierten Felder
A[l . . .m] und A[m+ 1 . . . r] zu einem sortierten Feld A[l . . . r].

Prozedur Merge(A, l,m, r)
1 allokiere Speicher fuer ein neues Feld B[l . . . r]
2 j := l
3 k := m+ 1
4 for i := l to r do
5 if j > m then
6 B[i] := A[k]
7 k := k + 1
8 else if k > r then
9 B[i] := A[j]

10 j := j + 1
11 else if A[j] ≤ A[k] then
12 B[i] := A[j]

8

2 Suchen und Sortieren 2.3 Sortieralgorithmen

13 j := j + 1
14 else
15 B[i] := A[k]
16 k := k + 1
17 kopiere das Feld B[l . . . r] in das Feld A[l . . . r]
18 gib den Speicher fuer B wieder frei

Man beachte, dass Merge für die Zwischenspeicherung der gemisch-
ten Folge zusätzlichen Speicher benötigt. Mergesort ist daher kein
“in place”-Sortierverfahren, welches neben dem Speicherplatz für die
Eingabefolge nur konstant viel zusätzlichen Speicher belegen darf.
Zum Beispiel ist Insertion-Sort ein “in place”-Verfahren. Auch
Mergesort kann als ein “in place”-Sortierverfahren implementiert
werden, falls die zu sortierende Zahlenfolge nicht als Array, sondern
als mit Zeigern verkettete Liste vorliegt (hierzu muss allerdings auch
noch die Rekursion durch eine Schleife ersetzt werden).
Unter der Voraussetzung, dass Merge korrekt arbeitet, können wir
per Induktion über die Länge n = r− l+ 1 des zu sortierenden Arrays
die Korrektheit von Mergesort wie folgt beweisen:
n = 1: In diesem Fall tut Mergesort nichts, was offensichtlich korrekt

ist.
n ; n+ 1: Um eine Folge der Länge n+ 1 ≥ 2 zu sortieren, zerlegt

sie Mergesort in zwei Folgen der Länge höchstens n. Diese
werden durch die rekursiven Aufrufe nach IV korrekt sortiert
und von Merge nach Voraussetzung korrekt zusammengefügt.

Die Korrektheit von Merge lässt sich leicht induktiv durch den Nach-
weis folgender Invariante für die for-Schleife beweisen:
• Nach jedem Durchlauf enthält B[l · · · i] die i− l + 1 kleinsten

Elemente aus A[l · · ·m] und A[m+ 1 · · · r] in sortierter Reihen-
folge.
• Hierzu wurden die ersten j − 1 Elemente von A[l · · ·m] und die

ersten k − 1 Elemente von A[m+ 1 · · · r] nach B kopiert.

Nach dem letzten Durchlauf (d.h. i = r) enthält daher B[l · · · r] al-
le r − l + 1 Elemente aus A[l · · ·m] und A[m + 1 · · · r] in sortierter
Reihenfolge, womit die Korrektheit von Merge bewiesen ist.
Um eine Schranke für die Laufzeit von Mergesort zu erhalten, schät-
zen wir zunächst die Anzahl V (n) der Vergleiche ab, die Mergesort im
schlechtesten Fall benötigt, um ein Feld A[l · · · r] der Länge n = r−l+1
zu sortieren. Offensichtlich erfüllt V (n) die Rekursionsgleichung

V (n) =

0, falls n = 1,
V (bn/2c) + V (dn/2e) +M(n), n ≥ 2.

Dabei ist M(n) = n− 1 die Anzahl der Vergleiche, die Merge benö-
tigt, um die beiden sortierten Felder A[l . . .m] und A[m+ 1 . . . r] zu
mischen. Falls n eine Zweierpotenz ist, erhalten wir also die Rekursion

V (1) = 0 und V (n) = 2V (n/2) + n− 1, n ≥ 2.

Für die Funktion f(k) = V (2k) gilt dann

f(0) = 0 und f(k) = 2f(k − 1) + 2k − 1, k ≥ 1.

Aus den ersten Folgengliedern

f(0) = 0,
f(1) = 1,
f(2) = 2 + 22 − 1 = 1 · 22 + 1,
f(3) = 2 · 22 + 2 + 23 − 1 = 2 · 23 + 1,
f(4) = 2 · 2 · 23 + 2 + 24 − 1 = 3 · 24 + 1

lässt sich vermuten, dass f(k) = (k − 1) · 2k + 1 ist. Dies lässt
sich leicht durch Induktion über k verifizieren, so dass wir für
V die Lösungsfunktion V (n) = n log2 n − n + 1 erhalten. Ist n
keine Zweierpotenz, so können wir die Anzahl der Fragen durch
V (n) ≤ V (n′) ≤ V (2n) = O(V (n)) abschätzen, wobei n′ < 2n die
kleinste Zweierpotenz größer als n ist.

9

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Da die Laufzeit T (n) von MergeSort asymptotisch durch die Anzahl
V (n) der Vergleiche beschränkt ist, folgt T (n) = O(V (n)).
Satz 9. MergeSort ist ein vergleichendes Sortierverfahren mit einer
Laufzeit von O(n log n).

2.3.3 Lösen von Rekursionsgleichungen

Im Allgemeinen liefert der “Divide and Conquer”-Ansatz einfach zu
implementierende Algorithmen mit einfachen Korrektheitsbeweisen.
Die Laufzeit T (n) erfüllt dann eine Rekursionsgleichung der Form

T (n) =

Θ(1), falls n „klein“ ist,
D(n) +∑`

i=1 T (ni) + C(n), sonst.

Dabei ist D(n) der Aufwand für das Aufteilen der Probleminstanz
und C(n) der Aufwand für das Verbinden der Teillösungen. Um solche
Rekursionsgleichungen zu lösen, kann man oft eine Lösung „raten“
und per Induktion beweisen. Mit Hilfe von Rekursionsbäumen lassen
sich Lösungen auch „gezielt raten“. Eine asymptotische Abschätzung
liefert folgender Hauptsatz der Laufzeitfunktionen (Satz von Akra &
Bazzi).
Satz 10 (Mastertheorem). Sei T : N→ N eine Funktion der Form

T (n) =
∑̀
i=1

T (ni) + f(n) mit ni ∈ {bαinc, dαine},

wobei 0 < αi < 1, i = 1, . . . , `, fest gewählte reelle Zahlen sind. Dann
gilt im Fall f(n) = Θ(nk) für ein k ≥ 0:

T (n) =


Θ(nk), falls ∑`i=1 α

k
i < 1,

Θ(nk log n), falls ∑`i=1 α
k
i = 1,

Θ(nc), falls ∑`i=1 α
k
i > 1,

wobei c Lösung der Gleichung ∑`i=1 α
c
i = 1 ist.

Beispiel 11. Die Anzahl V (n) der Vergleiche von MergeSort erfüllt
die Rekursion

V (n) = V (bn/2c) + V (dn/2e) + n− 1,

d.h. l = 2, α1 = α2 = 1/2 und f(n) = n − 1 = Θ(nk) für k = 1.
Wegen ∑`i=1 α

k
i = 1/2 + 1/2 = 1 folgt daher V (n) = Θ(n log n).

2.3.4 Eine untere Schranke für das Sortierproblem

Frage. Wie viele Vergleichsfragen benötigt ein vergleichender Sor-
tieralgorithmus A mindestens, um eine Folge (a1, . . . , an) von n Zahlen
zu sortieren?

Zur Beantwortung dieser Frage betrachten wir alle n! Eingabefolgen
(a1, . . . , an) der Form (π(1), . . . , π(n)), wobei π ∈ Sn eine beliebige
Permutation auf der Menge {1, . . . , n} ist. Um diese Folgen korrekt zu
sortieren, muss A solange Fragen der Form ai < aj (bzw. π(i) < π(j))
stellen, bis höchstens noch eine Permutation π ∈ Sn mit den er-
haltenen Antworten konsistent ist. Damit A möglichst viele Fragen
stellen muss, beantworten wir diese so, dass mindestens die Hälfte
der verbliebenen Permutationen mit unserer Antwort konsistent ist
(Mehrheitsvotum). Diese Antwortstrategie stellt sicher, dass nach i Fra-
gen noch mindestens n!/2i konsistente Permutationen übrig bleiben.
Daher muss A mindestens

dlog2(n!)e = n log2 n− n log2 e+ 1/2 log n+ Θ(1) = n log2 n−Θ(n)

Fragen stellen, um die Anzahl der konsistenten Permutationen auf
Eins zu reduzieren.

Satz 12. Ein vergleichendes Sortierverfahren benötigt mindestens
dlog2(n!)e Fragen, um eine Folge (a1, . . . , an) von n Zahlen zu sortie-
ren.

10

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Wir können das Verhalten von A auch durch einen Fragebaum B
veranschaulichen, dessen Wurzel mit der ersten Frage von A markiert
ist. Jeder mit einer Frage markierte Knoten hat zwei Kinder, die
die Antworten ja und nein auf diese Frage repräsentieren. Stellt A
nach Erhalt der Antwort eine weitere Frage, so markieren wir den
entsprechenden Antwortknoten mit dieser Frage. Andernfalls gibt A
eine Permutation π der Eingabefolge aus und der zugehörige Antwort-
knoten ist ein Blatt, das wir mit π markieren. Nun ist leicht zu sehen,
dass die Tiefe von B mit der Anzahl V (n) der von A benötigten
Fragen im schlechtesten Fall übereinstimmt. Da jede Eingabefolge
zu einem anderen Blatt führt, hat B mindestens n! Blätter. Folglich
können wir in B einen Pfad der Länge dlog2(n!)e finden, indem wir
jeweils in den Unterbaum mit der größeren Blätterzahl verzweigen.
Da also jedes vergleichende Sortierverfahren mindestens Ω(n log n)
Fragen benötigt, ist Mergesort asymptotisch optimal.

Korollar 13. MergeSort ist ein vergleichendes Sortierverfahren
mit einer im schlechtesten Fall asymptotisch optimalen Laufzeit von
O(n log n).

2.3.5 QuickSort

Ein weiteres Sortierverfahren, das den “Divide and Conquer”-Ansatz
benutzt, ist QuickSort. Im Unterschied zu MergeSort wird hier
das Feld vor den rekursiven Aufrufen umsortiert. Als Folge hiervon
bereitet die Zerlegung in Teilprobleme die Hauptarbeit, während das
Zusammenfügen der Teillösungen trivial ist. Bei MergeSort ist es
gerade umgekehrt.

Algorithmus QuickSort(A, l, r)
1 if l < r then m := Partition(A, l, r)
2 QuickSort(A, l,m− 1)
3 QuickSort(A,m+ 1, r)

Die Prozedur QuickSort(A, l, r) sortiert ein Feld A[l . . . r] wie folgt:
• Zuerst wird die Funktion Partition(A, l, r) aufgerufen.
• Diese wählt ein Pivotelement, welches sich nach dem Aufruf in
A[m] befindet, und sortiert das Feld so um, dass gilt:
A[i] ≤ A[m] ≤ A[j] für alle i, j mit l ≤ i < m < j ≤ r. (∗)

• Danach werden die beiden Teilfolgen A[l . . .m− 1] und A[m+
1 . . . r] durch jeweils einen rekursiven Aufruf sortiert.

Die Funktion Partition(A, l, r) pivotisiert das Feld A[l . . . r], indem
sie
• x = A[r] als Pivotelement wählt,
• die übrigen Elemente mit x vergleicht und dabei umsortiert und
• den neuen Index i+ 1 von x zurückgibt.

Prozedur Partition(A, l, r)
1 i := l − 1
2 for j := l to r − 1 do
3 if A[j] ≤ A[r] then
4 i := i+ 1
5 if i < j then
6 vertausche A[i] und A[j]
7 if i+ 1 < r then
8 vertausche A[i+ 1] und A[r]
9 return(i+1)

Unter der Voraussetzung, dass die Funktion Partition korrekt ar-
beitet, d.h. nach ihrem Aufruf gilt (∗), folgt die Korrektheit von
QuickSort durch einen einfachen Induktionsbeweis über die Länge
n = r − l + 1 des zu sortierenden Arrays.
Die Korrektheit von Partition wiederum folgt leicht aus folgender
Invariante für die for-Schleife:
A[k] ≤ A[r] für k = l, . . . , i und A[k] > A[r] für k = i+ 1, . . . , j. (∗∗)

11

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Da nämlich nach Ende der for-Schleife j = r − 1 ist, garantiert die
Vertauschung von A[i+ 1] und A[r] die Korrektheit von Partition.
Wir müssen also nur noch die Gültigkeit der Schleifeninvariante (∗∗)
nachweisen. Um eindeutig definierte Werte von j vor und nach je-
der Iteration der for-Schleife zu haben, ersetzen wir diese durch eine
semantisch äquivalente while-Schleife:

Prozedur Partition(A, l, r)
1 i := l − 1
2 j := l − 1
3 while j < r − 1 do
4 j := j + 1
5 if A[j] ≤ A[r] then
6 i := i+ 1
7 if i < j then
8 vertausche A[i] und A[j]
9 if i+ 1 < r then

10 vertausche A[i+ 1] und A[r]
11 return(i+1)

Nun lässt sich die Invariante (∗∗) leicht induktiv beweisen.

Induktionsanfang: Vor Beginn der while-Schleife gilt die Invariante,
da i und j den Wert l − 1 haben.

Induktionsschritt: Zunächst wird j hochgezählt und dann A[j] mit
A[r] verglichen.
Im Fall A[j] ≤ A[r] wird auch i hochgezählt (d.h. nach Zeile
6 gilt A[i] > A[r]). Daher gilt nach der Vertauschung in Zei-
le 8: A[i] ≤ A[r] und A[j] > A[r], weshalb die Gültigkeit der
Invariante erhalten bleibt.
Im Fall A[j] > A[r] behält die Invariante ebenfalls ihre Gültig-
keit, da nur j hochgezählt wird und i unverändert bleibt.

Als nächstes schätzen wir die Laufzeit von QuickSort im schlechtes-
ten Fall ab. Dieser Fall tritt ein, wenn sich das Pivotelement nach
jedem Aufruf von Partition am Rand von A (d.h. m = l oder
m = r) befindet. Dies führt nämlich dazu, dass Partition der Reihe
nach mit Feldern der Länge n, n − 1, n − 2, . . . , 1 aufgerufen wird.
Da Partition für die Umsortierung eines Feldes der Länge n genau
n− 1 Vergleiche benötigt, führt QuickSort insgesamt die maximal
mögliche Anzahl

V (n) =
n∑
i=1

(i− 1) =
(
n

2

)
= Θ(n2)

von Vergleichen aus. Dieser ungünstige Fall tritt insbesondere dann
ein, wenn das Eingabefeld A bereits (auf- oder absteigend) sortiert
ist.
Im besten Fall zerlegt das Pivotelement das Feld dagegen jeweils in
zwei gleich große Felder, d.h. V (n) erfüllt die Rekursion

V (n) =

0, n = 1,
V (b(n− 1)/2c) + V (d(n− 1)/2e) + n− 1, n ≥ 2.

Diese hat die Lösung V (n) = n log2 n − Θ(n) (vgl. die worst-case
Abschätzung bei MergeSort).
Es gibt auch Pivotauswahlstrategien, die in linearer Zeit z.B. den
Median bestimmen. Dies führt auf eine Variante von QuickSort mit
einer Laufzeit von Θ(n log n) bei allen Eingaben. Allerdings ist die
Bestimmung des Medians für praktische Zwecke meist zu aufwändig.
Bei der Analyse des Durchschnittsfalls gehen wir von einer zufälli-
gen Eingabepermutation A[1 . . . n] der Folge 1, . . . , n aus. Dann ist
die Anzahl V (n) der Vergleichsanfragen von QuickSort eine Zu-
fallsvariable. Wir können V (n) als Summe ∑1≤i<j≤nXij folgender
Indikatorvariablen darstellen:

Xij =

1, falls die Werte i und j verglichen werden,
0, sonst.

12

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Ob die Werte i und j verglichen werden, entscheidet sich beim ersten
Aufruf von Partition(A, l, r), bei dem das Pivotelement x = A[r]
im Intervall

Iij = {i, . . . , j}
liegt. Bis zu diesem Aufruf werden die Werte im Intervall Iij nur mit
Pivotelementen außerhalb von Iij verglichen und bleiben daher im
gleichen Teilfeld A[l . . . r] beisammen. Ist das erste Pivotelement x in
Iij nun nicht gleich i oder j, dann werden i und j nicht miteinander
verglichen. Das liegt daran dass im Fall i < x < j die Werte i und
j bei diesem Aufruf in zwei verschiedene Teilfelder getrennt werden
ohne miteinander verglichen zu werden.
Die Werte i und j werden also genau dann verglichen, wenn das erste
Pivotelement x im Intervall Iij den Wert i oder j hat. Da die Eingabe
eine Zufallsfolge ohne Mehrfachvorkommen ist, nimmt x jeden Wert
in Iij mit Wahrscheinlichkeit 1/(j− i+ 1) an. Daher findet mit Wahr-
scheinlichkeit pij = 2/(j − i+ 1) ein Vergleich zwischen den Werten i
und j statt.
Der Erwartungswert von V (n) = ∑

1≤i<j≤nXij berechnet sich nun zu

E[V (n)] =
∑

1≤i<j≤n
E[Xij]︸ ︷︷ ︸
pij

=
n−1∑
i=1

n∑
j=i+1

2
j − i+ 1 =

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n−1∑
i=1

n∑
k=2

2
k
≤ 2

n−1∑
i=1

log n = O(n log n).

Damit ist die durchschnittliche Laufzeit von QuickSort O(n log n).
Dass dies für vergleichende Sortierverfahren asymptotisch optimal ist,
wird in den Übungen gezeigt.

Satz 14. QuickSort ist ein vergleichendes Sortierverfahren mit einer
im Durchschnitt asymptotisch optimalen Laufzeit von O(n log n).

Unabhängig davon nach welcher (deterministischen) Strategie das Pi-
votelement gewählt wird, wird es immer Eingabefolgen geben, für die

QuickSort
(
n
2

)
Vergleiche benötigt. Eine Möglichkeit, die Effizienz

von QuickSort im Durchschnittsfall auf den schlechtesten Fall zu
übertragen, besteht darin, eine randomisierte Auswahlstrategie für
das Pivotelement anzuwenden.
Die Prozedur RandomQuickSort(A, l, r) arbeitet ähnlich wie
QuickSort. Der einzige Unterschied besteht darin, dass als Pivotele-
ment ein zufälliges Element aus dem Feld A[l . . . r] gewählt wird.

Algorithmus RandomQuickSort(A, l, r)
1 if l < r then
2 m := RandomPartition(A, l, r)
3 RandomQuickSort(A, l,m− 1)
4 RandomQuickSort(A,m+ 1, r)

Prozedur RandomPartition(A, l, r)
1 guess randomly j ∈ {l, . . . , r}
2 if j < r then
3 vertausche A[j] und A[r]
4 return(Partition(A, l, r))

Es ist nicht schwer zu zeigen, dass sich RandomQuickSort bei jeder
Eingabefolge A[l, . . . , r] gleich verhält wie QuickSort bei einer zu-
fälligen Permutation dieser Eingabefolge (siehe Übungen). Daher ist
die erwartete Laufzeit von RandomQuickSort auch im schlechtesten
Fall durch O(n log n) beschränkt, falls die Zahlenwerte paarweise
verschieden sind.

Satz 15. RandomQuickSort ist ein randomisiertes vergleichendes
Sortierverfahren mit einer im schlechtesten Fall asymptotisch optima-
len erwarteten Laufzeit von O(n log n).

13

2 Suchen und Sortieren 2.3 Sortieralgorithmen

2.3.6 HeapSort

HeapSort benutzt als Datenstruktur einen so genannten Heap, um
ein Feld zu sortieren.

Definition 16. Ein Heap H mit n Knoten ist
ein geordneter Binärbaum nebenstehender Form.
Das heißt,

H

• H hat in Tiefe i = 0, 1, . . . , blog2 nc − 1 jeweils die maximale
Anzahl von 2i Knoten und
• in Tiefe blog2 nc sind alle Knoten linksbündig angeordnet.

Zudem ist jeder Knoten v mit einer Zahl H[v] beschriftet, deren Wert
mindestens so groß ist wie die Werte der Kinder von v (sofern vor-
handen).

Ein Heap H mit n Knoten lässt sich in einem Feld H[1, . . . , n] spei-
chern. Dabei gilt:
• Das linke Kind von Knoten i hat den Index left(i) = 2i.
• Das rechte Kind von Knoten i hat den Index right(i) = 2i+ 1.
• Der Elternknoten von Knoten i hat den Index parent(i) =
bi/2c.

Die Heap-Eigenschaft lässt sich nun wie folgt formulieren. Für alle
Knoten i ∈ {1, . . . , n} gilt

(2i ≤ n⇒ H[i] ≥ H[2i]) ∧ (2i+ 1 ≤ n⇒ H[i] ≥ H[2i+ 1]).

Da die Knoten im Intervall {bn/2c+ 1, . . . , n} keine Kinder haben,
ist für sie die Heap-Eigenschaft automatisch erfüllt.
Ist H[1, . . . , n] ein Heap, dann repräsentiert auch jedes Anfangsstück
H[1, . . . , r], 1 ≤ r ≤ n, einen Heap Hr mit r Knoten. Zudem ist für
1 ≤ i ≤ r ≤ n der Teilbaum von Hr mit Wurzel i ein Heap, den wir
mit Hi,r bezeichnen.

Da die Wurzel H[1] eines Heaps den größten Wert haben muss, können
wir eine in einem Feld H[1, . . . , n] gespeicherte Zahlenfolge sortieren,
indem wir H zuerst zu einem Heap umsortieren und dann sukzessive
• die Wurzel H[1] mit dem letzten Heap-Element vertauschen,
• den rechten Rand des Heaps um ein Feld nach links verschieben
(also die vormalige Wurzel des Heaps herausnehmen) und
• die durch die Ersetzung der Wurzel verletzte Heap-Eigenschaft
wieder herstellen.

Sei H[1, . . . , n] ein Feld, so dass der Teilbaum Hi,r die Heap-
Eigenschaft in allen Knoten bis auf seine Wurzel i erfüllt. Dann
stellt die Prozedur Heapify(H, i, r) die Heap-Eigenschaft im gesam-
ten Teilbaum Hi,r her.
Prozedur Heapify(H, i, r)
1 if (2i ≤ r) ∧ (H[2i] > H[i]) then
2 x := 2i
3 else
4 x := i
5 if (2i+ 1 ≤ r) ∧ (H[2i+ 1] > H[x]) then
6 x := 2i+ 1
7 if x > i then
8 vertausche H[x] und H[i]}
9 Heapify(H, x, r)

Unter Verwendung der Prozedur Heapify ist es nun leicht, ein Feld
zu sortieren.
Algorithmus HeapSort(H, 1, n)
1 for i := bn/2c downto 1 do
2 Heapify(H, i, n)
3 for r := n downto 2 do
4 vertausche H[1] und H[r]
5 Heapify(H, 1, r − 1)

14

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Wir setzen zunächst voraus, dass die Prozedur Heapify korrekt ar-
beitet. D.h. Heapify(H, i, r) stellt die Heap-Eigenschaft im gesamten
Teilbaum Hi,r her, falls Hi,r die Heap-Eigenschaft höchstens in seiner
Wurzel i nicht erfüllt. Unter dieser Voraussetzung folgt die Korrektheit
von HeapSort mittels folgender Schleifeninvarianten, die sich sehr
leicht verifizieren lassen.
Invariante für die erste for-Schleife (Zeilen 1 – 2):

Für j = i, . . . , n ist der Teilbaum Hj,n ein Heap.
Nach Beendigung dieser Schleife (d.h. i = 1) ist demnach H1,n ein
Heap.
Invariante für die zweite for-Schleife (Zeilen 3 – 5):

H[r], . . . , H[n] enthalten die n− r+ 1 größten Feldelemen-
te in sortierter Reihenfolge und der Teilbaum H1,r−1 ist
ein Heap.

Am Ende der zweiten for-Schleife (d.h. r = 2) enthält also H[2, . . . , n]
die n− 1 größten Elemente in sortierter Reihenfolge, d.h. H[1, . . . , n]
ist sortiert.
Als nächstes zeigen wir die Korrektheit von Heapify. Sei also
H[1, . . . , n] ein Feld, so dass der Teilbaum Hi,r die Heap-Eigenschaft
in allen Knoten bis auf seine Wurzel i erfüllt. Dann müssen wir zeigen,
dass Heapify(H, i, r) die Heap-Eigenschaft im gesamten Teilbaum
Hi,r herstellt.
Heapify(H, i, r) bestimmt den Knoten x ∈ {i, 2i, 2i + 1} mit ma-
ximalem Wert H(x). Im Fall x = i erfüllt der Knoten i bereits die
Heap-Eigenschaft. Ist x dagegen eines der Kinder von i, so vertauscht
Heapify die Werte von i und x. Danach ist die Heap-Eigenschaft
höchstens noch im Knoten x verletzt. Daher folgt die Korrektheit von
Heapify durch einen einfachen Induktionsbeweis über die Rekursi-
onstiefe.
Es ist leicht zu sehen, dass Heapify(H, i, r) maximal 2h(i) Vergleiche
benötigt, wobei h(i) die Höhe des Knotens i in H1,r ist. Daher ist die

Laufzeit von Heapify(H, i, r) durch O(h(i)) = O(log r) beschränkt.
Für den Aufbau eines Heaps H der Tiefe t = blog2 nc wird Heapify
in der ersten for-Schleife für höchstens
• 20 = 1 Knoten der Höhe h = t,
• 21 = 2 Knoten der Höhe h = t− 1,

...
• 2t−1 Knoten der Höhe h = t− (t− 1) = 1

aufgerufen. Für h = 1, . . . , t sind das also höchstens 2t−h Knoten
der Höhe h. Da Heapify für einen Knoten der Höhe h höchstens 2h
Vergleichsfragen stellt, benötigt der Aufbau des Heaps maximal

V1(n) ≤ 2
t∑
h=1

h2t−h ≤ 2
t∑
h=1

h
n

2h < 2n
∞∑
h=1

h

2h = 4n

Vergleiche. Für den Abbau des Heaps in der zweiten for-Schleife wird
Heapify genau (n− 1)-mal aufgerufen. Daher benötigt der Abbau
des Heaps maximal

V2(n) ≤ 2(n− 1)blog2 nc ≤ 2n log2 n

Vergleiche.

Satz 17. HeapSort ist ein vergleichendes Sortierverfahren mit einer
im schlechtesten Fall asymptotisch optimalen Laufzeit von O(n log n).

Die Floyd-Strategie

Die Floyd-Strategie benötigt beim Abbau des Heaps im Durchschnitt
nur halb so viele Vergleiche wie die bisher betrachtete Williams-
Strategie. Die Idee besteht darin, dass Heapify(H, 1, r) beginnend
mit der Wurzel i0 = 1 sukzessive die Werte der beiden Kinder des
aktuellen Knotens ij vergleicht und jeweils zu dem Kind ij+1 mit dem

15

2 Suchen und Sortieren 2.3 Sortieralgorithmen

größeren Wert absteigt, bis nach t ≤ blog2 rc Schritten ein Blatt it
erreicht wird.
Nun geht Heapify auf diesem Pfad bis zum ersten Knoten ij
mit H[ij] ≥ H[1] zurück und führt auf den Werten der Knoten
ij, ij−1, . . . , i0 einen Ringtausch aus, um die Heap-Eigenschaft herzu-
stellen. Dies erfordert

t+ (t− j + 1) = 2t− j + 1

Vergleiche (im Unterschied zu 2j Vergleichen bei der Williams-
Strategie). Da sich der Knoten ij, an dessen Stelle der Wurzelknoten
eingefügt wird, im Mittel sehr weit unten im Baum befindet (d.h.
t− j = O(1)), spart man auf diese Art asymptotisch die Hälfte der
Vergleiche.

2.3.7 BucketSort

Die Prozedur BucketSort sortiert n Zahlen a1, . . . , an aus einem
Intervall [a, b) wie folgt (z.B. für n = 10, a = 0 und b = 100):

1. Erstelle für j = 1, . . . , n eine Liste Lj für das halb offene Intervall
Ij =

[
a+ (j − 1) b−a

n
, a+ j b−a

n

)
= [10(j − 1), 10j).

2. Bestimme zu jedem Element ai das Intervall Ij , zu dem es gehört,
und füge es in die entsprechende Liste Lj ein.

3. Sortiere jede Liste Lj.
4. Füge die sortierten Listen Lj wieder zu einer Liste zusammen.

Im schlechtesten Fall kommen alle Schlüssel in die gleiche Liste. Dann
hat BucketSort dieselbe asymptotische Laufzeit wie das als Unter-
routine verwendete Sortierverfahren. Sind dagegen die zu sortierenden
Zahlenwerte im Intervall [a, b) (annähernd) gleichverteilt, so ist die
durchschnittliche Laufzeit von BucketSort Θ(n). Dies gilt sogar,
wenn als Unterroutine ein Sortierverfahren der Komplexität O(n2)
verwendet wird.

Wir schätzen nun die erwartete Laufzeit von BucketSort ab, wobei
wir annehmen, dass die Folgenglieder ai im Intervall [a, b) unabhängig
gleichverteilt sind. Sei Xi die Zufallsvariable, die die Länge der Liste
Li beschreibt. Dann ist Xi binomialverteilt mit Parametern n und
p = 1/n. Also hat Xi den Erwartungswert

E[Xi] = np = 1

und die Varianz

V [Xi] = np(1− p) = 1− 1/n < 1.

Wegen V [Xi] = E[X2
i] − E[Xi]2 ist E[X2

i] = V [Xi] + E[Xi]2 < 2.
Daher folgt für die erwartete Laufzeit T (n) von BucketSort:

T (n) = O(n) + E

[
n−1∑
i=0
O(X2

i)
]

= O
(
n+

n−1∑
i=0

E[X2
i]
)

= O(n).

2.3.8 CountingSort

Die Prozedur CountingSort sortiert eine Zahlenfolge, indem sie zu-
nächst die Anzahl der Vorkommen jedes Wertes in der Folge und
daraus die Rangzahlen C[i] = ‖{j | A[j] ≤ i}‖ der Zahlenwerte
i = 0, . . . , k bestimmt. Dies funktioniert nur unter der Einschränkung,
dass die Zahlenwerte natürliche Zahlen sind und eine Obergrenze k
für ihre Größe bekannt ist.

Algorithmus CountingSort(A, 1, n, k)
1 for i := 0 to k do C[i] := 0
2 for j := 1 to n do C[A[j]] := C[A[j]] + 1
3 for i := 1 to k do C[i] := C[i] + C[i− 1]
4 for j := 1 to n do
5 B[C[A[j]]] := A[j]
6 C[A[j]] := C[A[j]]− 1
7 for j := 1 to n do A[j] := B[j]

16

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Satz 18. CountingSort sortiert n natürliche Zahlen der Größe
höchstens k in Zeit Θ(n+ k) und Platz Θ(n+ k).

Korollar 19. CountingSort sortiert n natürliche Zahlen der Größe
O(n) in linearer Zeit und linearem Platz.

2.3.9 RadixSort

RadixSort sortiert d-stellige Zahlen a = ad · · · a1 eine Stelle nach der
anderen, wobei mit der niederwertigsten Stelle begonnen wird.

Algorithmus RadixSort(A, 1, n)
1 for i := 1 to d do
2 sortiere A[1, . . . , n] nach der i-ten Stelle

Hierzu sollten die Folgenglieder möglichst als Festkomma-Zahlen vor-
liegen. Zudem muss in Zeile 2 „stabil“ sortiert werden.

Definition 20. Ein Sortierverfahren heißt stabil, wenn es die relative
Reihenfolge von Elementen mit demselben Wert nicht verändert.

Es empfiehlt sich, eine stabile Variante von CountingSort als Unter-
routine zu verwenden. Damit CountingSort stabil sortiert, brauchen
wir lediglich die for-Schleife in Zeile 4 in der umgekehrten Reihenfolge
zu durchlaufen:

1 for j := 1 to n do C[A[j]] := C[A[j]] + 1
2 for i := 1 to k do C[i] := C[i] + C[i− 1]
3 for j := n downto 1 do
4 B[C[A[j]]] := A[j]
5 C[A[j]] := C[A[j]]− 1
6 for j := 1 to n do A[j] := B[j]

Satz 21. RadixSort sortiert n d-stellige Festkomma-Zahlen zur Ba-
sis b in Zeit Θ(d(n+ b)).

RadixSort sortiert beispielsweise n O(log n)-stellige Binärzahlen in
Zeit Θ(n log n). Wenn wir r benachbarte Ziffern zu einer „Ziffer“
z ∈ {0, . . . , br − 1} zusammenfassen, erhalten wir folgende Variante
von RadixSort.
Korollar 22. Für jede Zahl 1 ≤ r ≤ d sortiert RadixSort n d-
stellige Festkomma- Zahlen zur Basis b in Zeit Θ(d/r(n+ br)).

Wählen wir beispielsweise r = dlog2 ne, so erhalten wir für d =
O(log n)-stellige Binärzahlen eine Komplexität von

Θ (d/r(n+ 2r)) = Θ(n+ 2r) = Θ(n).

2.3.10 Vergleich der Sortierverfahren

Folgende Tabelle zeigt die Komplexitäten der betrachteten verglei-
chenden Sortierverfahren.

Insertion- MergeSort Quick- Heap-
Sort Sort Sort

worst-case Θ(n2) Θ(n log n) Θ(n2) Θ(n log n)
average-case Θ(n2) Θ(n log n) Θ(n log n) Θ(n log n)
Speicherplatz Θ(1) Θ(n) bzw. Θ(1) Θ(log n) Θ(1)
stabil ja ja nein nein

Wir fassen auch die wichtigsten Eigenschaften der betrachteten
Linearzeit-Sortierverfahren zusammen.
• BucketSort: Im Durchschnitt linearer Zeitverbrauch, falls die
n Zahlen in einem Intervall [a, b) gleichverteilt sind.
• CountingSort: Sogar im schlechtesten Fall lineare Zeit, falls

die Werte natürliche Zahlen sind und O(n) nicht übersteigen.
• RadixSort: Bitweises Sortieren in linearer Zeit, falls die zu

sortierenden Zahlen nicht mehr als O(log n) Bit haben.

17

	1 Einleitung
	2 Suchen und Sortieren
	2.1 Suchen von Mustern in Texten
	2.1.1 String-Matching mit endlichen Automaten
	2.1.2 Der Knuth-Morris-Pratt-Algorithmus

	2.2 Durchsuchen von Zahlenfolgen
	2.3 Sortieralgorithmen
	2.3.1 Sortieren durch Einfügen
	2.3.2 Sortieren durch Mischen
	2.3.3 Lösen von Rekursionsgleichungen
	2.3.4 Eine untere Schranke für das Sortierproblem
	2.3.5 QuickSort
	2.3.6 HeapSort
	2.3.7 BucketSort
	2.3.8 CountingSort
	2.3.9 RadixSort
	2.3.10 Vergleich der Sortierverfahren

