
How do users design scientific workflows?
The Case of Snakemake

Sebastian Pohl
†
, Nourhan Elfaramawy

†
, Kedi Cao

†♯
, Birte Kehr

♯
, and Matthias Weidlich

†

†
Humboldt-Universität zu Berlin, Germany

♯
Leibniz Institute for Immunotherapy, Regensburg, Germany

{sebastian.pohl,nourhan.elfaramawy,matthias.weidlich}@hu-berlin.de {kedi.cao,birte.kehr}@klinik.uni-regensburg.de

ABSTRACT
Scientific workflows automate the analysis of large-scale

scientific data, fostering reuse of data processing operators

as well as reproducibility and traceability of analysis results.

In exploratory research, however, workflows are adapted

continuously, using a wide range of tools and software li-

braries, to test scientific hypothesis. Script-based workflow

engines cater for the required flexibility through a direct inte-

gration of programming primitives, but lack abstractions for

an interactive exploration of the workflow design by a user

during workflow execution. To derive requirements for such

interactive workflows, we conduct an empirical study on the

use of Snakemake, a popular Python-based workflow engine.

Based on workflows collected from 1602 Github repositories,

we present initial insights on common structures of Snake-

make workflows, as well as the language features typically

adopted in their specification.
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1 INTRODUCTION
Scientific workflows define series of discrete programs to

automate the analysis of large-scale scientific data [3]. Tra-

ditionally, models and systems for scientific workflows have

been introduced with a focus on the reuse of standardized

data processing operators, as well as the reproducibility and

traceability of analysis results. Workflow engines such as

Kepler [9] and Galaxy [5] provide libraries of standard op-

erators, include collaboration features, and facilitate the ex-

ecution of workflows on various technical infrastructures.

However, they only provide limited support for exploratory

research, in which workflows are designed to assess scien-

tific hypotheses. Here, workflows are subject to continuous

change and a flexible integration of existing tools and soft-

ware libraries is important. Script-based workflow engines,

such as Snakemake [7] and Nextflow [11], offer the required

flexibility, but still focus on the specification of a workflow
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at design-time and lack the abstractions needed to explore

the workflow design at run-time. Although Snakemake en-

ables the integration of Python notebooks, interactions in

these notebooks are decoupled from the workflow definition.

Hence, users cannot steer the execution of a workflow based

on the insights obtained from intermediate or partial results.

In order to designmodels and systems for interactive work-

flows, however, we first need to develop an understanding

of the what and how of workflow design in practice:

(1) What are common properties of scientific workflows?

(2) How are the workflows typically specified?

Answers to the first question shed light on the conceptual

requirements for a model for interactive workflows, e.g., in

terms of actions to apply to a workflow at run-time. The

second question, in turn, focuses on the realization of such a

model in the context of a particular workflow engine, e.g.,

in terms of the language constructs that shall be augmented.

Given the importance of the above questions for effec-

tive user support, not only for interactive workflows for

exploratory research, but for workflow design in general,

it is striking that there exist only a few studies that aim at

addressing them empirically. Notably, existing work focused

on structural properties of traditional workflows based on

reusable operators [12, 8] and also derived abstract catego-

rizations of data processing operators and high-level design

principles [4]. Yet, there is a research gap, framed by the need

to derive conclusions on the structural properties of script-

based workflows, as well as the language features adopted

in their specification.

In this work, we set out to study the questions of what
and how in the design of scientific workflows for the case of

Snakemake [7], a popular Python-based workflow engine.

Our starting point has been the Snakemake Workflow Cata-

log,
1
a listing of more than 2,000 public workflows, mostly in

bioinformatics, but also spanning other disciplines, such as

astrophysics and Earth-scale infrastructure simulation. Based

thereon, we have been able to collect workflows from 1602

Github repositories to analyze the structure of the graphs

derived for execution as well as the frequency with which

certain language features are used.

1
https://snakemake.github.io/snakemake-workflow-catalog/
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In the remainder, we first review related work (§2) and pro-

vide background information on Snakemake (§3). We then

elaborate on how we obtained the collection of workflows

(§4), before providing initial insights from its analysis (§5).

We conclude with a discussion of our observations (§6).

2 RELATEDWORK
Scientific workflow systems, such as Kepler [1], Galaxy [5],

Taverna [13], or Pegasus [2] provide rich infrastructures and

ecosystems to support users in their data-intensive analysis

tasks. Recent script-based workflow engines, such as Snake-

make [7] and Nextflow [11], in turn, focus on the flexible

combination of existing tools and software libraries, as of-

ten required in exploratory research. However, empirical

analysis of the use of these systems is scarce. Anecdotal evi-

dence on how users design workflows is available in the form

of case studies, e.g., for Kepler workflows in the BioEarth

project [10]. Small collections of workflows have also been

analyzed to derive common performance characteristics [6].

Only a few studies aimed at more general insights by con-

sidering large collections of workflows. Notably, around 400

Taverna workflows from the myExperiment repository have

been analyzed in [12], focusing on their structural properties.

For instance, it was observed that the majority of operators

(57%) were implemented directly by the engine, whereas only

(14%) accounted for dedicated scripts. Therefore, the work-

flows in this collection represent relatively standardized data

processing tasks. A similar study based on the same reposi-

tory at a later point in time revealed an increase in workflow

complexity [8]. The authors further noticed that workflows

contained a large number of data transformation operators

needed to integrate existing tools. This observation may be

interpreted as hinting at an increasing use of workflows for

less standardized analysis tasks.

Aiming at requirements for an abstract classification of

workflows, a collection of 260 workflows has been investi-

gated in [4] with the goal to identify their commonalities.

Based on these workflows from various scientific domains,

the study devised a collection of motifs, abstract categories

for (i) data processing operators (e.g., data retrieval and data

visualization) and (ii) the design of workflows (e.g., composi-

tion of workflows or manual tasks in workflows).

We conclude that existing studies on collections of work-

flows did not consider structural properties of script-based

workflows as well as the use of particular language features.

3 BACKGROUND ON SNAKEMAKE

Workflow design. Snakemake is a Python-based workflow

engine [7]. In Snakemake, workflows are defined in a so-

called ‘snakefile’, which includes rules that capture the logi-

cal operators of data processing. A rule typically defines three

main parts: the input files, the output files, and the program

to derive the output files from the input files. The program

referenced in a Snakemake rule can be any shell command,

a run statement with plain Python code, an external script

(Python, R, Markdown), or a wrapper for some script defined

in Snakemake’s internal repository. This way, Snakemake

provides several mechanisms to integrate existing tools or

software libraries in the workflow.

To apply a rule to multiple sets of input files, Snakemake

offers an expand function that produces input file specifica-

tions, essentially deriving all combinations of its arguments.

More flexible control is achieved by input functions, i.e.,

Python functions to select input files. Such a function takes

a wildcard as input to guide the selection of files.

To support conditional execution, a rule may be declared

to be a checkpoint, which means that input functions are re-

evaluated whenever a physical job created for the checkpoint

finished execution. A rule may further include execution-

related parameters, such as the number of threads and the

amount of memory to use, or a path to a Conda environ-

ment. The latter enables users to specify a unique software

environment per rule.

Snakemake offers four different ways to modularize the

design of a workflow: An include statement enables the sep-

aration of a workflow definition over several files. Workflows

may also be combined via a module statement, which facili-

tates the reuse of rules among workflows. Through a wrapper,

as mentioned above, external scripts may be integrated from

a dedicated repository. Finally, the concept of a subworkflow

enables the specification of preliminary steps in data process-

ing, i.e., a subworkflow will run before the parent workflow

to prepare files needed for the execution of the latter.

Moreover, users may store the configuration of a work-

flow in dedicated files (in JSON or YAML format). They are

structured as dictionaries of parameter keys and values that

can be accessed through a workflow’s global variable config.

Workflow execution. To execute a workflow, Snakemake

needs a target rule, which is given explicitly or assumed to

correspond to the first rule in the snakefile. Based thereon,

Snakemake derives a set of physical jobs by instantiating

each logical rule for each set of input files (specified directly

or computed by an input function) that is needed to eventu-

ally compute the input of the target rule. Constraints on the

execution of the workflow are captured by a directed acyclic

graph (DAG), in which the nodes represent physical jobs and

the directed edges model data dependencies.

A key feature of Snakemake is the abstraction provided for

the execution of jobs. That is, jobs can be executed locally or

using a distributed compute infrastructure. Thus, users may

scale up their experiments from a workstation to compute

clusters without any modifications to the workflow.
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Moreover, Snakemake provides basic support for user in-

teractions during workflow execution through Jupyter note-

books. When executing jobs of a rule that is assigned a

notebook statement, a notebook is started and opened in

a web browser. While this enables users to explore and visu-

alize the available data files, it does not provide abstractions

to steer or adapt the execution of the workflow. Once the

notebook is closed, the execution simply continues according

to the DAG that was constructed initially.

4 A COLLECTION OF WORKFLOWS
Our analysis is based on the Snakemake Workflow Catalog,

2

an automatically generated and continuously growing col-

lection of publicly available Snakemake workflows. Using

this catalog, we collected data in two ways:

Run cloned repositories. At the time of data collection,

we have been able to extract 1602 Github repositories from

the catalog. We have been able to clone 1570 of these 1602

repositories. For each cloned repository we attempted to run

Snakemake with a flag to build the respective DAG (--dag)
in its main folder. Our data collection, therefore, was based

on the assumption that each repository corresponds to one

workflow and that Snakemake would be able to detect the

main snakefile in the root directory of the repository.

For 362 out of 1602 repositories, Snakemake successfully

ran with the above flag. In the other cases, it failed, for exam-

ple due to missing files or specification errors. If successful,

Snakemake returned the DAG of the workflow in the DOT

graph description language. Our analysis of workflow struc-

tures in the remainder, therefore, is based on a collection of

362 DAGs, which we were able to construct in this way.

Query Github repositories. We also collected data regard-

ing the use of Snakemake’s language features in these repos-

itories. To this end, we queried Github, collected the source

code of Snakemake workflows, and parsed the code line by

line to search for specific key words. This part of our analysis

exploits the data for 1431 of the 1602 repositories, i.e., all

repositories for which the snakefile could be queried directly

at Github, i.e., without cloning the repository.

Specifically, our text search starts with the snakefile in

the root directory of the repository. To cover as much of

the source code as possible, we then also attempted to re-

solve include statements recursively. For 3436 out of the

3550 encountered include statements, such a resolution was

possible, i.e., we have been able to parse the referenced file.

5 ANALYSIS OF THEWORKFLOWS
Our analysis of the workflow collection focused on the two

aforementioned questions on the what and how of workflow

2
https://github.com/snakemake/snakemake-workflow-catalog

Figure 1: # Rules / jobs per workflow (362 DAGs).

Figure 2: Longest paths in workflows (362 DAGs).

design, exploring (i) structural properties of the workflows

(§5.1), and (ii) the used language features (§5.2).

5.1 Structure of the Workflows
To understand the common structure of Snakemake work-

flows, we study the granularity with which the analysis task

is defined and the presence of specific flow patterns.

Granularity.We start with an assessment of the overall size

of the workflows in terms of the logical rules and physical

jobs, which provides clues on the granularity at which the

analysis task is specified in a workflow. For the 362 repos-

itories, and hence workflows, for which a DAG could be

generated by Snakemake, the size distributions are given

in Fig. 1. Ignoring a considerable number of degenerated

workflows with one rule, the results generally suggest that

most workflows comprise up to 20 rules. However, there

exists also a significant number of very large workflows,

with more than 50 rules. Comparing the distributions of log-

ical rules and physical jobs, there is a notable, but not huge

shift, which suggests that many rules are instantiated only

once (as analyzed in more detail later). However, there are

also exceptional cases that yield a relatively high number of

workflows with more than 50 jobs.

Flowpatterns. Scientific workflows can often be traced back
to a few common flow patterns, i.e., sequencing of programs,

repetitive behaviour, and parallelism.

https://github.com/snakemake/snakemake-workflow-catalog
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Figure 3: DAG of the snakemake workflow from https://github.com/robinmeyers/atac-encode-snakemake.

1 def cromwell_inputs(wildcards):

2 inputs ={'json': os.path.join("jsons",wildcards.is_grouped+wildcards.condition+".json")}

3 if (wildcards.is_grouped):

4 inputs['tagalign ']=os.path.join("results/groups/",wildcards.condition ,wildcards.condition+".grouped.tagAlign.gz")

5 return inputs

Listing 1: Input function from the workflow in Fig. 3.

Sequences: The sequentiality in terms of the longest paths of

physical jobs in the workflows is illustrated in Fig. 2. Here,

themajority of paths is shorter than 10. Combining this result

with the sizes of workflows in terms of the total number of

physical jobs, see Fig. 1, this hints at a significant amount of

jobs that do not have a direct data dependency and, therefore,

could be executed independently.

Repetitions: To analyze repetitions in workflows, we con-

ducted a depth first traversal of the DAGs, from the root

to all leaf nodes, and recorded any path that contained at

least two physical jobs of the same logical rule. We found

six DAGs that showed such repetition; only one of them

included a rule that was repeated more than two times.

One example is the workflow in Fig. 3, in which the rules

𝐴 and 𝐵 are apparently applied repeatedly, the first four

jobs per rule relate to individual data samples, whereas the

fifth job per rule processed the merged results of the sam-

ples. Interestingly, a closer inspection reveals that only the

first rule is in fact repeated. The second one relies on the

input function defined in Listing 1. It leverages a wildcard,

which is often used to simplify the application of a rule to a

large number of input files, to control the behaviour of rule.

That is, depending on the binding of the wildcard, the input

function either selects individual JSON files as inputs or a

JSON file of grouped results from an earlier execution of the

rule. As such, the construction is used to introduce stateful-

ness to this particular rule, illustrating the high degree of

flexibility in script-based workflow specifications.

Parallelism: Physical jobs that are independent may be ex-

ecuted concurrently. However, such independent jobs may

represent data parallelism, in which a single logical rule is

instantiated for various sets of input files, or task parallelism,

in which certain files are taken as input by multiple different

logical rules. For instance, turning to Fig. 3, we observe data

parallelism for the jobs of rule 𝑋 and task parallelism for the

jobs of rules 𝑌 and 𝑍 .

To shed light on the general presence of either type of

parallelism in our workflow collection, Fig. 4 illustrates the

average and maximal in-degrees of logical rules and physical

jobs, respectively. Again, neglecting the workflows with an

average in-degree of zero (mostly degenerated workflows

with a single rule or job), we see that most workflows have

an average in-degree around one for rules and jobs. However,

a large number of workflows also have a maximal in-degree

larger than one for rules, hinting at task parallelism. The

distribution for the maximal in-degree for jobs, in turn, is no-

tably right-shifted. This difference provides evidence for the

presence of data parallelism, with a few workflows having

jobs with an in-degree of up to 1440.

https://github.com/robinmeyers/atac-encode-snakemake
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Figure 4: Avg and max in-degrees of rules / jobs (362
DAGs), grouping degrees >10 (avg) and >40 (max).

Figure 5: Ratios of rules and jobs (362 DAGs).

Figure 6: Avg and min ratio of rules and jobs per work-
flow (362 DAGs).

An alternative view on data-parallelism is provided in

Fig. 5, which shows the ratios of logical rules and their corre-

sponding physical jobs, over all rules. While a large number

of logical rules is instantiated once, many rules also lead to

several jobs. The distribution of these ratios over the work-

flows is illustrated in Fig. 6 in terms of average and minimal

values. Here, dozens of workflows show low minimal ratios,

i.e., high data-parallelism for at least one rule.

5.2 Language Usage
Next, we focus on the use of Snakemake language features

as observed in the workflow collection.

Modularization primitives. First, the use of the modular-

ization concepts in Snakemake provides clues on the strength

of the coupling of parts of a workflow. For the whole collec-

tion of 1431 repositories queried at Github, Table 1 illustrates

that include statements and wrappers are very common, oc-

curring in around a third of the workflows and, typically,

many times per workflow. Grouping of rules into modules is

less common, while subworkflows are rarely used. We inter-

pret these results such that users often manage complexity

through modularization within the context of a single work-

flow, but rarely encapsulate functionality for explicit reuse.

Table 1: Use of modularization concepts (1431 repos).

include wrapper module subworkflow

Number of repos 679 540 200 10

Number of instances 3550 1769 415 20

Configuration. Snakemake’s configurationmechanism turns

out to be widely used: 712 of the 1431 repositories contain a

total of 1303 non-empty configuration files. The size of these

configuration files varies significantly with an average of 64

lines, a median of 32 lines, and a 75th-percentile of 71 lines.

Operators. As explained above, Snakemake supports sev-

eral ways to define the program of a logical rule. In Table 2,

we outline the number of occurrences of the respective key-

words in the 1431 repositories, along with the average num-

ber of lines of the instructions following these keywords

to gauge the average rule complexity. Note that 5676 of the

17330 rules contained more than one of the keywords. In gen-

eral, most rules define a direct execution of a shell command.

Yet, all program types are used to some extent.

Table 2: Program types for 17330 rules (1431 repos).

shell run script wrapper

Number of rules 13144 3426 2979 1869

Avg number of lines 5.247 9.531 2.330 2.272

Dynamic execution. Next, we consider the use of the lan-
guage features for dynamic workflow execution. Here, we

first note that the expand function to construct sets of in-

put files is used frequently. An extreme case is illustrated in

Listing 2, which includes the use of an expand function to

generate jobs based on the combination of various param-

eters. As a consequence, a job with an in-degree of 1440 is

created,
3
the largest observed among all our DAGs.

3
Rule tabulate_sim_scores from https://github.com/gitter-lab/ssps.

https://github.com/gitter-lab/ssps
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1 input:

2 scores=expand(SCORE_DIR+"/{ method }/v={v}_r={r}_a={a}_t

={t}_replicate ={rep}.json",

3 method=SIM_METHODS , v=SIM_GRID["V"], r=SIM_GRID["R"],

4 a=SIM_GRID["A"], t=SIM_GRID["T"], rep=SIM_REPLICATES)

Listing 2: Expand function in one of the workflows.

Turning to the selection of input files via input functions,

we find a total of 68 occurrences in 42 of the 1431 repositories.

A similar observation is made for checkpoints, i.e., there are

251 occurrences in 94 of the 1431 repositories. Arguably,

input files can be expected to be selected directly in most

cases. Yet, our numbers also illustrate a certain need for

conditional execution of workflows.

Finally, we observe 47 occurrences of the notebook state-

ment in 23 of the 1431 repositories. We conclude that this

feature is not (yet) widely used, potentially due to its limited

integration in workflow execution.

6 SUMMARY AND DISCUSSION
In this paper, we explored a large collection of Snakemake

workflows in order to better understand the what and how of

script-based workflow design. This analysis constitutes a pre-

liminary step to develop models and methods for interactive

workflows to effectively support exploratory research. In this

regard, our results lead to several conclusions, as follows:

First, our results on workflow sizes, especially in terms of

physical tasks, and on the longest paths in workflows illus-

trate that most workflows split up the analysis task into sev-

eral rules that at least partially induce jobs that are executed

sequentially. These sequences of jobs denote an opportunity

for the integration of interaction features that enable users

to assess intermediate results and, based thereon, adapt the

execution of the workflow.

Second, we observe that many workflows include at least

a single logical rule inducing several physical jobs, i.e., the

workflow shows data-parallelism. To support the exploration

of workflow design, interactions features that enable users to

control this data parallelism can be expected to be valuable.

For instance, users may choose to first evaluate a certain part

of a workflow based on a few sets of input files, before inter-

actively deciding whether, and to which extent, to increase

the processed data volume.

Third, several of our observations hint at a need for dy-

namic workflow steering. Examples include the use of input

functions and checkpoints as well as the number of rules

with script program types. However, Snakemake provides

only limited support for conditional execution so far, as

particularly highlighted by the observed use of an input

function to introduce statefulness to a rule. An integration

of user interactions would provide the basis for a richer set

of means to adapt and fine-tune the execution of a workflow.

As a next step, to sharpen the requirements for interactive

workflows, we intend to study the evolution of the workflows

in our collection. For many repositories, a considerable revi-

sion history is available, which may lead to valuable insights

into common change operations for scientific workflows.
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