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Abstract

Event logs recorded during the execution of business processes provide a valuable starting point for operational
monitoring, analysis, and improvement. Specifically, measures that quantify any deviation between the recorded
operations and organizational goals enable the identification of operational issues. The data to compute such process-
specific measures, commonly referred to as process performance indicators (PPIs), may contain personal data of
individuals, though, which implies an inevitable risk of privacy intrusion that must be addressed.

In this article, we target the privacy-aware computation of process performance indicators. To this end, we adopt
tree-based definitions of PPIs according to the well-established PPINOT meta-model. For such a PPI, we design
data release mechanisms for the functions in a PPI tree. Using a probabilistic formulation of the expected result of
a privatized PPI, we further show how to determine the combination of release mechanisms that inflicts the least
loss in utility. Moreover, given a set of PPIs, we provide an algorithmic framework to manage an inherent trade-off:
Privatization may strive for maximal utility of each single PPI or for maximal reuse of privatized functions among
all PPIs to use a privacy budget most effectively. Results from experiments with synthetic as well as real-world data
indicate the general feasibility of privacy-aware PPIs and shed light on the trade-offs once a set of them is considered.
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1. Introduction

Once business processes are supported by information
systems, it is often possible to extract event data on the
execution of individual activities as part of a specific
case [1]. Such data, which are commonly captured in the
form of event logs, provides a valuable starting point for
operational monitoring, analysis, and improvement. In
particular, event logs enable conclusions on the extent to
which qualitative as well as quantitative properties of pro-
cess execution are in line with organizational goals. An
example for a qualitative assessment is the verification
of the conformance of the recorded process behaviour
against a behavioural specification [2]. A quantitative
assessment, in turn, may refer to the question whether a
process shows desired performance characteristics [3].
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Monitoring, analysis, and improvement of quantitative
properties of a business process are typically driven by
the definition of process performance indicators (PPIs),
i.e., quantifiable metrics that allow the evaluation of
a process efficiency and effectiveness, calculated over
the individual cases of a process [4]. We illustrate the
notion of a PPI with a simple claim handling process. As
illustrated using the BPMN diagram in Fig. 1a, such a
process may involve the receipt of a claim (RecC), which
is either rejected (RejC) or processed. In the latter case, a
settlement is proposed (PS), before the premium (CP) or
the damage payoff (CDP) are calculated. For this process,
Fig. 1b illustrates three PPIs. They follow the PPINOT
meta-model [4], which defines PPIs as trees of functions.
Specifically, the first PPI assesses the time required from
the receipt of a claim (RecC) to the end of the process
(End), and is defined by the mean of the observed values.
The second PPI considers the maximal time between the
settlement (PS) and the process end (End). The third PPI,
in turn, is based on two temporal measures, the average
time from the claim receipt (RecC) to the settlement (PS)
and the process end (End), respectively. It then defines
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(b) A forest consisting of three PPIs.

Figure 1: Example scenario for the evaluation of privacy-preserving process performance indicators.

the ratio, in percent, of the former duration.
Given that event logs contain information about the in-

dividuals involved in process execution, the computation
of PPIs implies an inevitable risk of privacy intrusion. In
the above example, an event log may contain personal
data of claimants as well as the knowledge workers han-
dling the claims. Such sensitive data may take the form
of financial information such as income, health-related
data such as an HIV diagnosis, or personal information
such as relationship status, depending on the process as-
sociated with the data. Thus, if an adversary obtains this
data utilizing multiple queries on the recorded data, it
may gain access to such sensitive information that can
be exploited and inflict harm on the target individual
[5]. Yet, the data can be relevant for the ongoing opti-
mization of the processes at large, as it gives insight into
the general trends of the recorded process executions.
Addressing the privacy risk is not merely an ethical con-
sideration, but also enforced by legal frameworks, such
as the GDPR [6] and the CCPA [7]. They restrict the
use of personal data without consent, especially for sec-
ondary use of the data, i.e. purposes other than those
for which the data were originally recorded. Yet, these
regulations allow the usage of the data for said purposes,
given that the data is properly anonymized. It has been
shown, that the mere removal of personal identifiers in
process logs does not offer sufficient protection against
privacy attacks [8]. Therefore, sophisticated privacy pro-
tection is necessary [9]
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Figure 2: Architecture for privacy-preserving PPIs.

Against this background, we argued for an architecture
as the foundation for privacy-preserving PPIs [5], which
is illustrated in Fig. 2. It separates the trusted environ-
ment of the process owner, who captures and stores event
data for the primary purpose of supporting the execution
of the process, from the untrusted environment of the
process analyst, who intends to compute PPIs over the
event data for some secondary purpose involving process
monitoring, analysis, and improvement. To avoid that
the privacy of an individual is compromised, i.e., to avoid
that their individual contribution to a PPI is revealed, ac-
cess from the untrusted environment to the event data is
guarded by a query interface. Given a PPI definition, the
interface realizes a data release mechanisms that com-
putes the result and adds noise to it, thereby guaranteeing
differential privacy. This way, the evaluation of a PPI
reduces a privacy budget that represents the strength of
the obtained guarantee.

In this paper, we provide a comprehensive instantia-
tion of the architecture, which is derived by answering
the following research questions:
Q1: How to privatize the functions of a PPI? Data pri-

vatization typically induces a trade-off between the
strength of a privacy guarantee and a loss in data
utility. As such, the latter shall be minimized for
a desired strength of the guarantee. However, pri-
vatization models for traditional aggregates [6, 7]
ignore the structure of process-related data, and of
the PPIs defined over them. Hence, we devise dedi-
cated release mechanisms for the functions of PPIs
that follow the PPINOT meta-model.

Q2: How to best privatize a PPI? While the above re-
lease mechanisms target individual functions, dif-
ferent combinations of these mechanisms may be
employed to privatize a complete PPI. Using a prob-
abilistic formulation of the expected PPI result, we
show how to determine the combination of release
mechanisms that inflicts the least loss in data utility.

Q3: How to orchestrate the release mechanisms for a set
of PPIs? Once a set of PPIs needs to be evaluated,
we face a trade-off between optimizing the utility
of each single PPI or the reuse of privatized func-
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tions among all PPIs to use a privacy budget most
effectively. We therefore present an algorithmic
framework to manage this trade-off.

This paper builds upon an earlier conference paper [5],
which introduced the general architecture outlined in
Fig. 2 and proposed the release mechanisms for the func-
tions of a PPI (Q1). Here, we extend these results with
an approach to use these release mechanisms to privatize
a PPI with minimal loss in utility (Q2). Moreover, we
lift the approach from a single PPI to a set of PPIs (Q3).

We evaluate our approach with synthetic and real-
world data. Specifically, in a series of controlled exper-
iments, we assess the sensitivity of the release mech-
anisms for various properties of the considered event
log. Moreover, in a case study with a public event log
in the healthcare domain, we demonstrate feasibility of
our approach and shed light on the interplay of the utility
of individual PPIs and their joint reduction of a given
privacy budget.

In the remainder, we clarify preliminaries for our work
in Section 2. We then introduce our solutions to the afore-
mentioned research questions on the privatization of PPI
functions (Section 3), on the optimal combination of
them for a single PPI (Section 4), and on the orchestra-
tion of the trade-off imposed by a set of PPIs (Section 5).
The results of our experimental evaluation are presented
in Section 6, before we review related work in Section 7
and conclude in Section 8.

2. Preliminaries

To provide the foundations for our work, this section
first introduces a model for event logs (Section 2.1). We
then review the definition of process performance indica-
tors according to the PPINOT meta-model(Section 2.2).
In terms of stochastic foundations, we further discuss
random variables (Section 2.3), before turning to the
concept of differential privacy (Section 2.4).

2.1. Notions and Notations for Event Logs

We consider ordered, finite datasets, each being a set
of elements X = {x1, . . . , xn} that carry a numeric
value and are partially ordered by ≤. To simplify the
presentation, we will consider datasets as sets of integers
or real numbers. Yet, in practice, a dataset may contain
multiple elements referring to the same numeric value.

The cardinality of the dataset is denoted as |X| = n.
For one of the (potentially many) elements of X that
are minimal and maximal according to ≤, we write X
and X , respectively. An interval of the dataset is defined
by I = (xlower, xupper) with xlower, xupper ∈ X and

xlower ≤ xupper. Lifting the notation for minima and
maxima to I , we define I = xlower and I = xupper.

Our notion of an event log is based on a relational
event model [8]. That is, an event schema is defined by
a tuple of attributes A = (A1, . . . , An), so that an event
is an instance of the schema, i.e., a tuple of attribute
values e = (a1, . . . , an). An event schema consists of at
least three attributes: The case that identifies the process
instance to which an event belongs, the timestamp for
the point in time an event has been recorded, and the
activity, for which the execution is signalled by an event.
The timestamp-ordered list of events corresponding to a
single case is called a trace. Such a trace represents the
execution of a single process instance. An event log is a
set of traces.

2.2. Process Performance Indicators
A key performance indicator (KPI) is a metric that

quantifies, to which extent the goals set for an organisa-
tion are fulfilled. A process performance indicator (PPI)
is a KPI, which is related to a single business process and
which is evaluated solely based on the traces recorded
during process execution. The Process Performance In-
dicator Notation (PPINOT) [? ] is a meta-model for
the definition and evaluation of PPIs. At its core, the
PPINOT model relies on the composition of measures,
i.e., simple, well-defined functions that enable the defini-
tion and automated evaluation of more complex PPIs:

Base measures concern a single instance of a process
and include event counts (e.g., to count activity
executions), timestamp differences between events,
the satisfaction of conditions, or aggregations over
the events’ attribute values.

Aggregation measures are multi-instance measures that
combine values from multiple process instances
into a single value. PPINOT includes aggrega-
tion measures to calculate the minimum, maximum,
mean, and sum of a set of input values.

Derived measures are user-defined functions of arbi-
trary form, applied to a single process instance, or
a set thereof.

A PPI defined using the PPI meta-model is a function
composition tree, so that a set of PPIs is a forest.

Consider the third PPI of our example in Fig. 1b. Here,
the leaf nodes represent base measures, time1 and time2,
that assess the timestamp difference between events sig-
nalling the receipt of a claim (RecC), and events indi-
cating the settlement (PS) or the process end (End), re-
spectively. In either case, the mean is adopted as an
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aggregation measure, mean1 and mean2, before com-
puting the ratio, (a/b) · 100, which is a derived measure.

2.3. Random Variables

To reason about the computation of PPIs, we later
need a model of random variables and functions of them.
Let Ω be a sample space of possible outcomes ω ∈ Ω of
a random experiment. A random variable is a function
X : Ω → R, mapping each point in the sample space to
a real number r ∈ R. We denote as X = x, that random
variable X realizes as value x ∈ R, i.e X takes on the
value x. If X takes on a finite set or countably infinite
set of realizations, we call it discrete; and continuous
otherwise.

A probability function f : X → [0, 1] of a random
variable X maps each possible realization of X to a
value p, s.t. Σx∈Ω = 1. We denote as P (X=x) =
f(x) the probability of the realization x of X . If X
is discrete, f(x) is referred to as a probability mass
function; otherwise, f(x) is referred to as a probability
density function. Furthermore, we define range(X) as
the set of possible realizations of X .

For illustration purposes, let Ω be the result of two
coin tosses, i.e., Ω = {H,H}, {H,T}, {T,H}, {T, T}.
Now, let random variable X be the number of heads of
two coin tosses, i.e., X({H,H}) = 2, X({H,T}) =
X({T,H}) = 1, X({T, T}) = 0. Assuming fair coin
tosses, the probabilities of the realizations of X are given
as P (X=2) = 0.25, P (X=1) = 0.5, P (X=0) =
0.25.

Next, we consider functions of random variables. Let
X be a discrete random variable with probability mass
function f . Let g be a function. Then, Y = g(X) is also
a random variable with P (Y =y) = Σx:g(x)=yf(x).

Let Ω = {−1, 0, 1, 2} and let X be a random variable
with P (X= − 1) = 0.1, P (X=0) = 0.2, P (X=1) =
0.3, and P (X=2) = 0.4. Now, for Y (x) = x2, we get
P (Y =0) = 0.2, P (Y =1) = 0.4, and P (Y =4) = 0.4.

Likewise, the concept can be extended to func-
tions of multiple random variables. Assume that
X1, X2, . . . , Xn are discrete random variables with
probability mass functions f1, f2, . . . , fn. Let Y =
g(X1, X2, . . . , Xn) be a function of multiple discrete
random variables. Then, Y is a discrete random variable
with P (Y =y) = Σx1,x2,...,xn:g(x1,x2,...,xn)=y f1(x1) ·
f2(x2) · . . . · fn(xn).

2.4. Differential Privacy

Differential privacy [9] is a privacy guarantee that lim-
its the impact a single element may have on the output
of a function f that is computed over a set of elements.

Therefore, it limits an adversary to conclude on the set
of used input elements (or the presence of a certain input
element) from the result of the function. This obfusca-
tion is usually achieved by adding noise, for which the
magnitude depends on the sensitivity ∆f of function f ,
i.e., the ∆f denotes the maximal impact any element
x ∈ X may have on f(X).

A randomized mechanism K is a randomized function
that can be applied to a dataset, with range(K) as the
set of possible results. Let D1, D2 be two neighbouring
datasets, i.e., they differ in exactly one element. The
randomized mechanism K provides (ϵ, δ)-differential
privacy, if the following inequality holds for the proba-
bilities of the function result falling into a sub-range of
all possible results:

∀ S ⊆ range(K) :

P (K(D1) ∈ S) ≤ eϵP (K(D2) ∈ S) + δ.

Differential privacy enforces an upper bound on the dif-
ference in result probabilities of neighbouring datasets.
If δ = 0, K is said to be ϵ-differentially private (and
the δ may be omitted altogether). We note that larger
ϵ values imply weaker privacy, whereas smaller values
yield a stronger privacy guarantee.

In the remainder, we rely on different mechanisms to
achieve differential privacy. First, we incorporate the
Laplace mechanism [9], which adds noise sampled from
a Laplace distribution onto f(X). The distribution is
considered with a location parameter µ = 0 and a scale
parameter b = ∆f/ϵ, i.e., the amount of noise is derived
from the aforementioned sensitivity of function f . Since
the Laplace distribution is symmetric, the location is set
to zero, and there is an exponential falloff on either side
of the distribution, the results of f(X) can be expected
to be close to the original values after noise insertion.

However, the symmetric and monotonous falloff of the
Laplace distribution also has a downside. In particular, it
yields undesirable results in scenarios where result values
close to the true result have a disproportionally negative
effect on the utility. To avoid this issue, the exponential
mechanism [10] has been proposed. It constructs a prob-
ability space based on a function q(D, r), which assigns
a score to all possible results r ∈ range(K) based on
the input dataset D. Here, a higher score is assigned to
more desirable results, which implies an exponentially
higher result probability. The mechanism then chooses
a result r ∈ range(K) with a probability proportional
to e(ϵq(D,r))/(2∆q), where ∆q is the sensitivity of the
scoring function, i.e., the maximum change in assigned
scores possible for two neighbouring datasets.

Both above mechanisms, the Laplace mechanism and
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the exponential mechanism, assume that ∆f and ∆q are
known beforehand. In applications where these values
cannot be determined, the sample-and-aggregate frame-
work [11] drops this assumption. It samples subsets of
the input set and evaluates the given function per sample.
The obtained results are then combined using a known
differentially private aggregator. If function f can be
approximated well on small sub-samples, then the re-
sults per sample are close to f(X). By aggregating these
approximated results using a differentially private mean,
i.e., by computing the mean m and adding noise drawn
from a Laplacian calibrated with ∆(m), one achieves a
differentially private result for f(X), even though the
sensitivity of the function f is unknown.

While a differentially private mechanism achieves pri-
vacy by systematically obfuscating the true value, repeat-
edly querying the mechanism for the same data increases
the risk of information leakage. Each privatized value
known to an attacker allows the approximation of the
obfuscated value, through reconstruction of the proba-
bility mass function of the mechanism. Thus, to limit
the knowledge obtainable by an attacker, a pre-defined
privacy budget ϵmax is introduced. Whenever the mech-
anism is queried, the privacy budget is reduced, thereby
limiting the number of possible queries for the same data.
Once the budget is depleted, no further access is allowed.
Here, the reduction of the budget depends on ϵ, i.e. larger
values for ϵ exhaust larger amounts of the budget, since
there is an increased risk of de-anonymization.

3. Privatizing Process Performance Indicators

To realize the architecture for privacy-preserving PPIs
in Fig. 2, this section first outlines how the structure
of PPIs in terms of function composition trees can be
exploited for privacy protection in Section 3.1. Based
thereon, Section 3.2 introduces a set of data release mech-
anism that guarantee ϵ-differential privacy.

3.1. Using Function Composition Trees for Privacy Pro-
tection

Our idea is to exploit the compositional nature of PPIs
defined in the PPINOT meta-model for privacy protec-
tion. Instead of adding noise to the final query result,
we introduce noise, with smaller magnitude, at the inner
functions of a PPI. Such a compositional approach still
guarantees ϵ-differential privacy of the result. At the
same time, it enables us to minimize the overall intro-
duced error. Hence, data utility is preserved to a higher
degree, which leads to more useful process analysis, un-
der the same privacy guarantees.

We aim to protect the privacy of individuals, of whom
personal data is materialized in a trace. Hence, the results
of base measures shall be protected. However, common
PPIs assess the general performance of process execution
by aggregating these results in multi-instance measures
(aggregation or multi-instance derived measures), so that
guarantees in terms of differential privacy may be given
for these measures. This raises the question of selecting
a subset of the multi-instance measures for privatization.
On the one hand, this selection shall ensure that the
results of all aforementioned single-instance measures
are protected. On the other hand, the selection shall be
minimal to keep the introduced noise to the absolutely
necessary magnitude.

We capture the above intuition with the notion of an
admissible set of measures of a PPI. Let (F, ρ) be the
function composition tree of a PPI, with F as the set
of measures and ρ : F → 2F as the function assigning
child measures to measures. With ρ∗ as the transitive
closure of ρ, a set of measures F ′ ⊆ F is admissible, if
it satisfies the following conditions:

• it contains only multi-instance measures:
f ∈ F ′ implies that f ∈ dom(ρ);

• it covers all trace-based measures:
∀ f ∈ (F \ dom(ρ)) : ∃ f ′ ∈ F ′ : f ∈ ρ∗(f ′);

• it is minimal:
∀ F ′′ ⊂ F ′ : ∃ f ∈ (F \ dom(ρ)) : ∀ f ′′ ∈ F ′′ :
f /∈ ρ∗(f ′′).

The first condition of an admissible set applies, as differ-
ential privacy may only be used for the aggregation of
multiple inputs, thus single-instance measures cannot be
privatized with the given privacy framework. The sec-
ond condition ensures, that the selected set of functions
privatizes all base measures, that directly access trace in-
formation. Finally, the third condition ensures, that only
the minimum amount of noise to achieve ϵ-differential
privacy is added onto the intermediate results.

The function composition tree of the third PPI in
Fig. 1b has two sets of admissible measures, one in-
cluding only the derived measure, {ratio}, and one in-
cluding both aggregation measures, {mean1,mean2}.
Either way, both single-instance measures that refer
to timestamp differences, time1 and time2, are cov-
ered. In contrast, the set {mean1} is not admis-
sible, as it would leave the single-instance measure
time2 uncovered (second condition). Likewise, select-
ing both base measures, {time1, time2}, or the set
{mean1,mean2, ratio} would not be admissible either.
The former would violate the first condition on the inclu-
sion of multi-instance measures, while the latter would
violate the third condition on the minimality.
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A set of measures that is admissible induces one spe-
cific way to privatize a single PPI by incorporating a
release mechanism for each of the measures. While we
later discuss how to chose among different admissible
sets of measures, also in the light of multiple PPIs, we
first turn to the definition of the release mechanisms.

3.2. Release Mechanisms for Multi-Instance Measures

The design of a release mechanism for a specific multi-
instance measure is influenced by (i) the ability to assess
the domain of input values over which the measure is
evaluated, and (ii) the ability to assess the sensitivity
of the measure. As for the first aspect, we can rely on
an estimation of the respective domain. Here, a simple
estimation is based on the minimal and maximal values,
X and X , of the dataset X used as input for the measure
(i.e., the result of the child measures). The bounds may
be extended by constant offsets to account for the fact
that the dataset X is merely a sample of an unknown do-
main. The sensitivity of the measure, in turn, depends on
the semantics of the measure. While for the aggregation
functions of PPINOT, this sensitivity may be estimated,
it is unknown in the general case of derived measures.

Below, we first introduces three release mechanisms
for aggregation measures: an instantiation of the Laplace
mechanism; an interval-based mechanism based on the
exponential mechanism; and a threshold-sensitive mech-
anism that extends the interval-based one to preserve the
significance of a measure related to a threshold. Finally,
we discuss how derived measures, in the absence of an
estimate of their sensitivity, can be privatized using a
sample-and-aggregate strategy.

Laplace Mechanism for Aggregation Measures. Pri-
vatization of an aggregation measure can be based on
the addition of Laplace noise to the actual result. As
mentioned, this requires to estimate the sensitivity ∆f
of the given aggregation function, i.e., the maximal im-
pact any element x ∈ X may have on f(X). For the
aggregation functions of the PPINOT meta-model, the
sensitivity is derived as ∆(min) = ∆(max ) = |X−X|,
∆(sum) = X and ∆(mean) = |X −X|/|X|. Based
thereon, noise from a Laplacian (with parameters µ = 0
and b = ∆f/ϵ, see Section 2.4) is added to f(X).

Since the sensitivity ∆f directly influences the magni-
tude of added noise, for mean measures, this mechanism
potentially leaks information about the number |X| of
process instances (and hence, individuals) within the
given scope. An adversary may conclude on the differ-
ence |X − X| based on the magnitude of noise from
another PPI incorporating a min or max measure and,
based thereon, derive |X| from the magnitude of noise in

a PPI with a mean measure. However, in practice, |X|
may be revealed explicitly to enable a process analyst to
assess the statistical reliability of the PPI result.

Interval-based Mechanism for Aggregation Measures.
The drawback of the Laplace mechanism is the inherently
high sensitivity, which scales linearly with the domain
of input values. Our idea, therefore, is to group similar
result values into intervals and score them using the
exponential mechanism. This way, we obtain a release
mechanism with a score function sensitivity ∆q = 1,
which ultimately leads to a smaller magnitude of noise
for large domains of input values.

To realize this idea, our interval-based release mecha-
nisms consists of three phases:

(1) Interval creation: We partition the domain and the
range of the aggregation function into intervals.

(2) Interval probability construction: Scores are as-
signed to these intervals, which are then converted
to result probabilities.

(3) Result sampling: Using these probabilities, an inter-
val is chosen as the output interval, from which the
result value is sampled.

The interval creation is based on the range of the ag-
gregation function, given as range(f(X)) = (X,X)
for f ∈ {min,max ,mean} and range(f(X)) = (X ·
|X|, X · |X|) for f = sum . This range is split
into non-overlapping intervals I = {I0, . . . , In}, with
I0 ∩ . . . ∩ In = ∅ and I0 ∪ . . . ∪ In = range(f(X)).
Let τ(xi, xj) = (xi + xj)/2 be the mean of xi, xj and
let If be the interval containing the result value, i.e.
f(X) ∈ If . For mean and sum , the range of f(X) is
divided into evenly spaced intervals of size ∆f , so that
f(X) = τ(If , If ) is the mean of its containing interval.
For min and max , the range of f(X) is divided into
n intervals of different size, for which the boundaries
are the means of neighbouring values τ(xi, xi+1) with
xi, xi+1 ∈ X .

Fig. 3 exemplifies the intervals for a dataset X =
{2, 3, 7, 8, 10}. For min and max , the interval bound-
aries are 2.5, 5, 7.5, and 9. For mean and sum , the
intervals have size ∆f = 1.6 and ∆f = 10, and are
centred around mean(X) = 6 and sum(X) = 30.

The interval probability construction relies on a scor-
ing function that assigns higher scores to intervals that
are closer to the interval containing f(X). Let I1, . . . , In
be the intervals in the order induced by ≤ over their
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Figure 3: Intervals and scores for the aggregation functions for dataset X = {2, 3, 7, 8, 10}.

boundaries, and let 1 ≤ k ≤ n be the index of interval
If containing the result value. Then, the score for each
interval Ii is defined as q(i) = −|k − i|, as illustrated
in Fig. 3 for the example. Here, intervals, that lie closer
to f(X), denoted by the blue dashed lines, are scored
higher, than those further away. Since each interval Ii
corresponds to a set of potential result values, we incor-
porate the size of this set in the probability computation.
Hence, the probability for Ii is defined as:

P (Ii) =
|Ii| · e(ϵ·q(i)/2·∆q)

Σ1≤j≤n|Ij | · e(ϵ·q(j)/2·∆q)

Result sampling chooses one interval based on their prob-
abilities. From this interval one specific value is drawn
based on a uniform distribution over all interval values.

Threshold-Sensitive Mechanism for Aggregation
Measures. The interval-based mechanism is problem-
atic, if a PPI is tested against a threshold, as often done
in practice. Consider the dataset X and assume that the
sum function is the root of a PPI’s function composition
tree, i.e., f(X) = 30 as shown in Fig. 3. Assume that
it is important whether the PPI is less or equal than 30.
Then, adding noise may change the actual interpretation
of the PPI, since the release mechanism will sometimes
publish values larger than 30.

To mitigate this effect, we present a threshold-sensitive
release mechanism that extends the interval creation and
interval probability construction of the above mecha-
nism. Let χ be a Boolean function formalizing a thresh-
old, e.g., χ(x) = x ≤ 30. Then, the Boolean predicate
ϕ(x, f(X), χ) ⇔ χ(x) ≡ χ(f(X)) describes, whether
the possible result value x ∈ range(f(X)) leads to the
same outcome of χ as the true result f(X). For our ex-
ample, ϕ(20, 30, χ) holds true (20 ≤ 30 and 30 ≤ 30),
whereas ϕ(40, 30, χ) is false (40 ≰ 30, but 30 ≤ 30).

Using this predicate, we adapt the intervals I =
I1, . . . , In obtained during interval creation, so that
interval boundaries coincide with changes in ϕ. Let
B(ϕ) be the boundary values of ϕ, i.e., the values
x ∈ range(f(X)) with limy<x,y→x ϕ(y, f(X), χ) ̸=
limy>x,y→x ϕ(y, f(X), χ). For our example, we arrive
at B(ϕ) = {30}. Based thereon, we split each interval
Ii containing a boundary value b ∈ B(ϕ) into two new

10 20 30 40 50

0

4

8

12

Sum

Figure 4: Adapted intervals and scores.

intervals (Ii, b), (b, Ii). Hence, each interval contains
only values that share the outcome of the Boolean func-
tion χ. In our example, the interval (25, 35) is split into
(25, 30) and (30, 35), as shown in Fig. 4.

Finally, the scoring function used for interval prob-
ability construction is adapted. Let d(i) be the mini-
mal inter-interval-distance of interval Ii to any other
interval Ij with ϕ(x, f(X), χ) ̸= ϕ(y, f(X), χ) for all
Ii ≤ x ≤ Ii and Ij ≤ y ≤ Ij . As before, let k be the
index of interval If containing the result value. Then,
scores assigned to intervals that preserve the outcome of
the Boolean function χ remain unchanged. For all other
intervals Ii, the score is reduced by ξ · d(i), i.e., by the
distance to the closest interval preserving the outcome
multiplied by a falloff factor ξ ∈ N. The adapted scoring
function is defined as:

q(i) =


−|k − i| if ϕ(x, f(X), χ)

for all Ii ≤ x ≤ Ii,

−|k − i| − ξ · d(i) otherwise.

Fig. 4 illustrates the adapted scores for our running ex-
ample, using ξ = 3. The scores of the right-most three
intervals are reduced, as all of their values lead to a dif-
ferent outcome compared to the true result, f(X) = 30,
when testing against χ(x) = x ≤ 30.

We obtain d(4) = 1, d(5) = 2, and d(6) = 3 for
those intervals, given that the third interval (25, 30) is
the closest one retaining ϕ to any of those three. Thus,
we arrive at q(4) = −4, q(5) = −8, and q(6) = −12.
As the largest possible change in scores assigned to a
possible result value in neighbouring input sets is never
larger than ξ and as the interval sizes are determined
based on ∆f , we conclude that ∆q = ξ.

Sample-and-aggregate Mechanism for Derived Mea-
sures. Since the sensitivity of a derived multi-instance
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measures is unknown in the general case, the above
mechanisms are not applicable. However, many de-
rived measures may be approximated using small sam-
ples, since their range is often independent of the do-
main of their input values. Functions that compute a
normalized result are an example of this class of mea-
sures. For instance, the derived measure that denotes the
root of the function composition tree of the third PPI in
Fig. 1b yields a percentage, i.e., it is normalized to 0%
to 100%. For such measures, the sample-and-aggregate-
framework mentioned in Section 2.4 may be instantiated.
That is, the actual result f(X) is computed on n parti-
tions of X . The obtained results per sample are then
aggregated using a differentially private mean function
to achieve privatization of the derived measure.

4. Optimal Privatization of a PPI

So far, we introduced the notion of an admissible
function set for the privatization of a PPI, along with
several data release mechanisms that may be applied
to each function in such a set. As such, we outlined
a design space for each PPI in terms of the selection
of an admissible function set and the respective release
mechanism. In this section, we show how to guide this
selection in order to achieve optimal privatization of a
PPI that minimizes the loss in utility.

In Section 4.1, we first give an overview of the gen-
eral framework to find an optimal instantiation of an
admissible function set. We then describe the involved
steps in detail: Section 4.2 outlines how to identify pos-
sible function set instantiations; Section 4.3 discusses
the generation of output random variables for a function
set instantiation; Section 4.4 discusses how to compute a
utility value per instantiation; and Section 4.5 elaborates
on an optimal selection among the instantiations.

4.1. Framework

Given a PPI, an admissible set of functions needs to be
selected for privatization and a release mechanism needs
to be instantiated for each selected function. Ideally, this
shall be done such that the utility of the PPI result is
preserved as much as possible, under the given privacy
parameter ϵ. Yet, having a user take this selection would
require access to the recorded trace data to be analysed,
which is undesirable. At the same time, the estimation
of the expected utility loss is challenging, given that
the expected outcome of a specific mechanism may be
influenced by many factors, such as number of inputs or
their distribution, which may also change for each time
scope for which a PPI is to be evaluated. We will later

demonstrate the impact of these factors for the presented
data release mechanisms as part of our experimental
evaluation.

Against this background, we present the framework
shown in Fig. 5, which, as part of the PPI interface, de-
termines a admissible function set and the instantiations
of release mechanism. To this end, the PPI interface con-
siders the utility score of the output distribution for each
possible instantiation of the mechanisms for each poten-
tial admissible function set. More specifically, given a
PPI in the form of a function tree defined in PPINOT and
the desired privacy parameter ϵ, this involves four steps:

(1) The interface determines all admissible function sets
and all instantiations of the respective functions with
differentially private release mechanisms, jointly re-
ferred to as admissible function set instantiations.
Here, parameters of the mechanisms (e.g., the falloff
factor ξ for the threshold-sensitive mechanism for
aggregation measures) may be incorporated and lead
to separate instantiations.

(2) The output random variable describing the probabili-
ties of each possible result of an admissible function
set instantiation is calculated.

(3) For each of the output variables, a utility score is
calculated. It takes into account the pre-calculated
true value of the PPI and quantifies the goodness of
a value sampled from its distribution.

(4) Finally, the interface selects the admissible function
set instantiation, for which the output random vari-
able achieves the highest utility score. Then, the PPI
is evaluated accordingly, which yields a privatized
result.

It is worth to note that this general approach is indepen-
dent of the specific set of considered release mechanisms.
While we later apply with the mechanisms introduced
in Section 3.2, it may be adopted also for other sets of
differentially private release mechanisms.

4.2. Identifying Admissible Function Set Instantiations

First, we identify all sets of functions of a PPI, given
as a function composition tree, that are admissible,
i.e., that satisfy the conditions detailed in Section 3.1.
To illustrate this, we turn to the third PPI provided in
Fig. 1b. Here, as mentioned, two admissible function
sets exist, {ratio} and {mean1,mean2}. Next, all
instantiations of these functions with a set of pre-defined,
differentially private release mechanisms for each type
of measure are determined. For illustration, we consider
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Figure 5: Overview of the framework for optimal privatization of a PPI.

the mechanism proposed in Section 3, i.e., the Laplace
mechanism (L) and the interval mechanism (I) for
aggregated measures, and the sample-and-aggregate
mechanism (S) for multi-instance derived measures. To
keep the example simple, we neglect the parameters of
the mechanisms. Then, the set of admissible function
set instantiations for the example includes the follow-
ing elements: {ratio : S}, {mean1 : L,mean2 : L},
{mean1 : L,mean2 : I}, {mean1 : I,mean2 : L},
and {mean1 : I,mean2 : I}.

4.3. Generating Output Random Variables

We now turn to the evaluation of PPIs under the as-
sumption that inputs are not singular values, but random
variables describing the probabilities of all potential in-
puts. While generally, these random variables can be
either continuous, discrete or a mix-thereof, we assume
all variables to be discrete. This assumption is motivated
by the fact that the evaluation of continuous random vari-
ables relies on the integration of probability density func-
tions, which are, in general, difficult to evaluate and often
approximated numerically. We therefore rely on trans-
formations of probability density functions into probabil-
ity mass functions by means of equi-width histograms.
Moreover, we recall from Section 2.3 that a function g
over a set of random variables X1, X2, . . . , Xn yields
again a random variable, describing the output probabil-
ities of all possible outputs of this function, given the
provided input random variables.

We illustrate this procedure with the example pro-
vided in Fig. 6 depicting the function tree instantiation
{mean1 : L,mean2 : L} for the third PPI in Fig. 1b.
Here, the time frame to consider consists of the three
traces, t1, t2, t3, for which the two base measures in

TimeMeasure
from: "RecC"

to: "End"

TimeMeasure
from: "RecC"

to: "PS"


Aggregation
Mean - Laplace


Aggregation
Mean - Laplace


Derived

a b

Figure 6: For each time frame consisting of a set of traces of the log,
we calculate the random variable describing the probabilities of each
possible output value.

the leaf nodes directly retrieve the values 1.0h, 0.5h,
1.5h; and 2.0h, 1.5h, 2.5h, respectively. The values are
subsequently transformed into random variables with
a probability of 1.0 for their respective values. Next,
these random variables are used as input for the aggre-
gation measures, which rely on the respective function
applied to a set of random variables instead of singular
values. For the left aggregation measure, the resulting
random variable is a Laplacian, with location parameter
µ = 1.0 (since 1.0 = (1.0 + 0.5 + 1.5)/3) and scale
parameter b = 0.5/ϵ (since ∆mean(1.0, 0.5, 1.5) =
(1.0 + 0.5 + 1.5)/3 = 0.5). Similarly, the resulting
random variable of the second aggregation measure is a
Laplacian with parameters µ = 1.0 and b = 1.0/ϵ. The
random variables obtained from the aggregation mea-
sures are used as inputs for the derived measure. The
resulting random variable and its probability mass func-
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tion describe the probability of each possible output of
the chosen instantiation {mean1 : L,mean2 : L}.

To realize the procedure in the general case, we handle
the different types of measures of a PPI, as follows:

Base Measures. Base measures do not assume a random
variable as input, since they are computed directly over
the given traces. However, conceptually, their result is
not a single value, but a distribution for a random variable
denoting the result. The only possible realization of the
variable is the retrieved value. This way, we achieve
compositionality since all functions building on base
measures may now assume random variables as input.

Single-Instance Derived Measures. These measures
can be regarded as functions defined over a single ran-
dom variable. As such, they evaluate the respective func-
tion over all realizations of the input random variable.
For instance, let the function g(X) defined by the mea-
sure be a separation of the inputs in two classes, 0 and 1,
depending on whether the input is below a threshold of
10. Now, assume the input to be random variable X with
realizations 2, 8, 12 and the respective probabilities to
be P (X=2) = 0.3, P (X=8) = 0.4, P (X=12) = 0.3.
Then, the output random variable Y = g(X) consists
of two possible realization 0 and 1, with probabilities
P (Y =0) = 0.7 and P (Y =1) = 0.3.

Aggregation Measures and Multi-instance
Derived Measures. These measures evalu-
ate a function g(X1, X2, . . . , Xn) on a set of
input random variables X1, X2, . . . , Xn with
realizations range(X1) = {x11, x12, . . . , x1m},
range(X2) = {x21, x22, . . . , x2m}, . . . , range(Xn) =
{xn1, xn2, . . . , xnm}. For aggregation measures, these
functions are mean , sum , min , and max , while for
derived measures these functions are user-defined.

To evaluate the measure and obtain the output ran-
dom variable Y the measure thus needs to evaluate
g(X1, X2, . . . , Xn) on all combinations of realizations
of input variables, i.e., the set Xjoined = range(X1)×
range(X2)× . . .× range(Xn), of which each element
{(X1=x1i), (X2=x2j), . . . , (Xnk=xnk)} has proba-
bility P (X1=x1i) · P (X2=x2j) · . . . · P (Xn=xnk).
In cases where the measure shall not be priva-
tized, i.e., evaluated without a differentially pri-
vate release mechanism, the output random vari-
able Y is defined with range(Y ) =

⋃
g(Xjoined)

and corresponding probabilities are P (Y =yi) =
Σ(x1,x2,...,xn)∈Xjoined :g(x1,x2,...,xn)=yi

P (X1 = x1) ·
P (X2 = x2) · . . . · P (Xn = xn). For instance, let
the input variables for an aggregation measure evalu-
ating the maximum of inputs be range(X1) = {0, 2}

and range(X2) = {1, 4}, and let the probabilities be
given as P (X1=0) = 0.5, P (X1=2) = 0.5 and
P (X2=1) = 0.8, P (X2=4) = 0.2. Then, Xjoined =
({0, 1}, {0, 4}, {2, 1}, {2, 4}) and for the output random
variable Y , range(Y ) = {1, 2, 4}. The corresponding
probabilities for each possible realization of Y are given
as P (Y =1) = 0.5 · 0.8 = 0.4, P (Y =2) = (0.5 · 0.8)+
(0.5 · 0.2) = 0.5, and P (Y =4) = 0.5 · 0.2 = 0.1.

If privatization is applied, the outcome of evaluat-
ing the measure for a given combination of realiza-
tions is not a singular value, but a random variable it-
self. Let Y1, . . . , Yn be the output random variables
of evaluating g using a differentially private release
mechanism on each combination of possible realiza-
tions in Xjoined . Then, for the output random variable
Y , range(Y ) =

⋃
1≤i≤n range(Yi) and P (Y =yi) =

1
nΣ1≤j≤nP (Yj=yi). As mentioned, if the output ran-
dom variable is continuous, we discretize it using equi-
width histograms, such that the number of possible real-
izations is equal to a pre-defined count.

4.4. Computing a Utility Score per Instantiation
Once the random variable Y associated with one ad-

missible function set instantiation has been derived, we
proceed with the computation of a utility score. It de-
scribes the expected information loss, when sampling a
result from this particular instantiation. It is computed
based on the difference of the true value of the PPI de-
rived for the given traces and the value obtained by sam-
pling the distribution of the random variable denoting
the result.

Formally, let φ be the true output value and Φ(Y, φ)
be a utility function. As for the latter, we consider the av-
erage distance of a random variable to a particular value
in terms of the Rooted Mean Squared Error (RMSE):

RMSE(Y, φ) =
√
Σy∈range(Y )P (Y =y) · (φ− y)2.

Output random variables that have higher variance or
that lie further away from φ are assigned a higher value.

4.5. Selecting an Optimal Function Set Instantiation
Once all output random variables Y1, Y2, . . . , Yn for

each of the instantiations of admissible function sets
f1, f2, . . . , fn have been retrieved, we select an instan-
tiation that yields the largest utility regarding the true
output value. That is, we select a variable as:

Y ∗ = argmaxY ∈{Y1,Y2,...,Yn} Φ(Y, φ).

When using the RMSE as utility function, variable Y ∗

that minimizes the RMSE corresponds to the function
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Figure 7: A set of PPIs that share a subtree.

set instantiation f∗ for which the distribution of possible
output values yields the highest utility.

As a final step, variable Y ∗ is used to sample a value
that denotes the result of the privacy-preserving PPI.

5. Privatization of Multiple PPIs

The previous sections introduced a generic approach
to privatize a single PPI. However, in many application
scenarios, multiple PPIs need to be evaluated over the
event data of a single process, such as illustrated with
the three PPIs in Fig. 1b for the claim handling process
in Fig. 1a. This is problematic, though: Multiple base
measures of different PPIs may access the recorded event
data, such that each of them reduces the privacy budget
assigned to the data by a value proportional to the pri-
vacy parameter ϵ. In the worst case, this may render it
impossible to compute some of the PPIs, as for certain
data, the privacy budget ϵmax may have been exhausted.
To avoid such situations, this section shows how shared
subtrees of PPIs may be exploited to limit the reduction
of the privacy budget when evaluating the PPIs.

Below, we first give the intuition of our approach to
exploit shared subtrees of PPIs with an example (Sec-
tion 5.1), before we present its operationalization based
on constrained admissible function sets (Section 5.2).

5.1. Intuition
As mentioned above, base measures of different PPIs

may access the same event data, thereby reducing the
respective privacy budget considerably, up to the point
that not all measures can be computed. Yet, some of
the PPIs may share a set of subtrees, i.e., the PPIs are
partly based on equivalent measures. In Fig. 7, this
is exemplified by three PPIs defined for our running
example in Fig. 1a. These PPIs all share a subtree that
first retrieves the time from the claim receipt (RecC)
until the process end (End) and then computes the mean
average of the obtained values.

Naively evaluating the PPIs in isolation deducts three
times from the privacy budget ϵmax, as the read val-
ues are privatized independently for each PPI, which
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Figure 8: PPIs reusing results of the shared subtree.

increases the risk that the obfuscated value may be de-
duced. However, as all PPIs access the same value, it is
sensible to use a single, privatized output of the subtree
to evaluate all three PPIs, as illustrated in Fig. 8. This
way, the privacy budget is reduced only once.

Conceptually, the three PPIs have been merged, and
the value of the shared subtree is used to evaluate all
three PPIs. While this limits the reduction of the privacy
budget, it potentially comes with a loss in utility. If
each PPI is privatized individually, an optimal admissible
function set instantiation may be based on measures that
are not shared with other PPIs. As such, to foster reuse of
the results of some shared measures, it may be required
to select instantiations that are not optimal for some PPIs.

5.2. Constrained Admissible Function Sets

In order to realize the above idea, we constrain the
construction of the admissible function sets per PPI.
In particular, the constraints enforce the privatization
of root nodes of shared subtrees, thereby enabling the
reuse of these results. Assuming a set of PPIs P =
{(F1, ρ1), (F2, ρ2), . . . , (Fn, ρn)}, this set of root nodes
of shared subtrees S ⊂

⋃
1≤i≤n Fi is identified prior to

step 1 of our proposed framework (Fig. 5).
The set S can be obtained either through manual in-

spection during the definition of PPIs or automatically.
It may be constructed automatically by enumerating, for
each multi-instance measure in a function composition
tree, content information of all children in a pre-defined
order of elements. If any two trees contain equivalent
enumerations, then they share at least one sub-tree. How-
ever, this enumeration considers all shared subtrees, and
not only the maximal shared subtrees. Therefore, the
enumeration needs to be filtered, such that only maximal
shared subtrees remain. This can be achieved by travers-
ing a function tree in a breadth-first manner. Should at
any time during this traversal, an enumerated node be
reached, it is added to the final set of root nodes of shared
subtrees, whereas its child nodes are skipped.

The output of this retrieval step is the set S of root
nodes of shared subtrees. To manage the trade-off be-
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tween the utility loss and the preservation of ϵmax, we in-
troduce a constraint-parameter 0 < k < |S|. This param-
eter constrains the selection framework to consider func-
tion set instantiations, such that exactly k shared subtrees
are privatized. Formally let Sk = {S′ ∈ S | |S′| = k}
be all sets of root nodes of shared subtrees of size k.
Then, for a PPI (Fi, ρi) and a set S′

k ∈ Sk, we con-
sider an admissible function set F ′

i ⊆ Fi only, if it also
satisfies the following condition:

∀ f ∈ Fi : f ∈ S′
k ⇒ f ∈ F ′

i .

Thus, for one set of shared subtrees S′
k, the framework

only considers function set instantiations that explicitly
privatize the selected subtrees and subsequently selects
that instantiation obtaining the best utility for these sets.
As above, let Φ be a utility function to evaluate the error
introduced by a specific instantiation with respect to the
true value. Then, with Yi(S

′) as the random variable of
the root node of the PPI (Fi, ρi) for which privatization
was achieved based on the shared subtrees S′ ∈ Sk, and
φ as the true output value, our approach is to select an
instantiation as follows:

S∗
i = argmaxS′∈Sk

Φ(Yi(S
′), φ).

Consider, again, the PPIs in Fig. 7. Assume that the
PPIs are given as P = {(F1, ρ1), (F2, ρ2), (F3, ρ3)}
with three shared subtrees S = {f1, f2, f3}, as men-
tioned before. Now, let k = 2. Then, S2 =
{(f1, f2), (f2, f3), (f3, f1)}. For each of these sets, the
framework selects the optimal function sets instantiations
for the PPIs in P in terms of the utility function. Assume
that the latter may be given by the RMSE with values
10, 8, 2 for (f1, f2), 6, 1, 3 for (f2, f3) and 2, 3, 2 for
(f3, f1). Then, we would obtain RMSE(f1,f2) = 20,
RMSE(f2,f3) = 10, RMSE(f3,f1) = 7 as the aggre-
gated utility loss, so that the optimal function set in-
stantiations associated with (f3, f1) are chosen for the
privatized evaluation of the PPIs.

6. Evaluation

To assess the feasibility and utility of the proposed
approach, we realized the PPI interface on top of an
existing Java-based PPINOT implementation1. The im-
plementation extends the PPI definition syntax of the
PPINOT implementation to include privacy protection.
While this has not been done for this work, this imple-
mentation can be extended to simplify the definition for

1https://mvnrepository.com/artifact/es.us.isa.

ppinot/ppinot-model

end users of PPIs using L-pattern or graphical models, as
has been proposed for the original PPINOT metamodel
[12, 13]. We conducted controlled experiments using
synthetic data (Section 6.1). Furthermore, we evaluated
the selection of an optimal function set instantiation for
PPIs defined on the Sepsis Cases log (Section 6.2). Fi-
nally, we report on a case study using the PPIs defined on
Sepsis Cases, comparing the framework with the direct
evaluation of PPIs on logs that have been anonymized
a-priori using the PRIPEL framework [14] (Section 6.3).
While the framework introduces an overhead regarding
the evaluation of PPIs, we deemed this overhead to be
negligible as the overall runtime for evaluating each PPI
was in the range of seconds. As such, we deem the
runtime aspects of our framework as reasonable for ap-
plication in practice. Our implementation and evaluation
scripts are publicly available2.

6.1. Controlled Experiments
In a first series of experiments, we assessed the impact

of different properties of the dataset X used as input.
Specifically, we considered the impact of the estimation
of the domain of input values, its size and underlying
value distribution, and the privacy parameter ϵ. We sam-
pled sets of 10, 50, 100, and 200 random values from a
Gaussian distribution, a Pareto distribution, and a Pois-
son distribution. We chose these distributions, as they
are often observed in event data recorded by business
processes. To account for the randomness of our mecha-
nisms, we performed 200 runs per experiment. Unless
noted otherwise, the input domain is estimated using the
minimal and maximal element of X , the dataset com-
prises 200 values drawn from a Gaussian distribution,
and the privacy parameter is set as ϵ = 0.1.

Input Boundary Estimation. First, we compare the
boundary estimation using the minimal and maximal ele-
ments in X with extensions of these boundaries by 15%
and 30% at either boundary. The results for the interval-
based mechanism, see Fig. 9, show that an extension of
the domain increases the introduced magnitude of noise
for all functions due to an increase in sensitivity. These
observations are confirmed for the Laplace mechanism.
Yet, for min and max , there is a shift of the expected
result towards the true result f(X) (denoted by the blue
line). The reason is that, without the extension, f(X)
coincides with boundary values of X . The extension
increases the size of the interval containing f(X), which
increases the probability of this interval to be chosen.

2https://github.com/MartinKabierski/

privacy-aware-ppinot
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Figure 9: Impact of the input boundary estimation on the results.
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Figure 10: Impact of the dataset cardinality on the results for mean .

Input Size and Distribution. For the Laplace and
interval-based mechanisms, we identify a dependency of
∆f on the input size for mean functions. This depen-
dency coincides with smaller noise magnitudes for larger
input sizes, as illustrated in Fig. 10.

These trends were confirmed for the interval-based
mechanism for min and max . Here, the increased num-
ber of intervals and a more fine-grained differentiation
between result values leads to higher utility, i.e., the ex-
pected result is close to the actual one. Yet, the trends
are only visible for distributions with small inter-value
distances, such as the Gaussian. For the Pareto- and
Poisson-distributions, there was a significant reduction
in utility for larger inputs using max . These distributions
preserve most of their probability mass on the smaller
values, Larger values are therefore more scarce, which
inadvertently results in the creation of disproportionally
large intervals and the same output probability for large
portions of the output space.

Epsilon. The results obtained when changing the privacy
parameter ϵ are shown in Fig. 11a for mean . Both the
Laplace and interval-based mechanism show a similar
increase in the introduced noise. The Laplace mechanism
yields better results for larger ϵ.

For min and max , however, the interval-based mech-
anism clearly outperforms the Laplace mechanism for
all values of ϵ, see Fig. 11b for the maximum function.
Here, the large sensitivity for the Laplace mechanism
completely obfuscates the actual result f(X), rendering
the mechanism inappropriate for these functions.

Threshold-sensitive Mechanism. For the extension of
the interval-based mechanism that aims to preserve the
significance for thresholds, the general trends remain
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Figure 11: Sensitivity of mean and maximum function towards ϵ.

unaffected. However, the threshold-sensitive mechanism
shifts large portions of the probability mass of the out-
put space, as shown in Fig. 12. Here, the threshold to
preserve is ϕ(x) : x < f(X) ± y, with y being 100
for sum and 10 for the other aggregation functions. For
comparison, the results for the interval-based mechanism
without threshold preservation are also given. There is a
clear shift in output probabilities, depending on which
values preserve the same properties as f(X). Note that
the results should not be interpreted in absolute terms,
but serve as a binary indicator regarding the threshold.

Derived Measures. The sample-and-aggregate mech-
anism for derived measures mirrored the trends of the
Laplace mechanism for mean . This is expected since the
mechanism is based on the privatized mean. Yet, due to
the use of m buckets of size n, the magnitude of noise is
larger. The mechanism requires m times as many values
in X to achieve the same sensitivity as the mechanism
for the mean . Since the mean is computed using n val-
ues per bucket, the result estimation is accurate only for
large datasets.

6.2. Selection of optimal function set instantiations
To investigate the differences in expected utilities of

the different instantiations of admissible function sets,
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Figure 12: Results for the threshold-sensitive mechanism using differing result thresholds.

Table 1: PPIs defined for the Sepsis Cases log.

ID Measure Target Values

1: Avg waiting time until admission <24 hours
2: Avg length of stay <30 days
3: Max length of stay <35 days
4: Returning patient within 28 days <5%
5: Antibiotics within one hour >95%
6: Lactic acid test within three hours >95%

we evaluated six PPIs defined over the publicly avail-
able Sepsis Cases log using the proposed framework
for the selection of optimal function set instantiations.
Sepsis Cases is an event log consisting of 1050 pro-
cess instances, recorded during a 16 month-period (from
11-2013 until 03-2015), of patients in emergency de-
partment suspected to Sepsis conditions. The PPIs used
were created based on criteria and guidelines presented
in [15, 16] and are listed in Table 1. Some concern the
lengths of stays and treatments for patients (PPI 1-4),
wile others target the adherence to treatment guidelines
(PPI 5-6). PPI 1 to 3 could be defined using an aggre-
gation measure using the specified aggregation function
(mean for 1 and 2, max for 3). PPI 4 to 6 on the other
hand were modeled using a multi instance derived mea-
sure, defined using the function (a/b) · 100, where both
a and b are sum-instanced aggregation measures, with
a summing up the counted values, and b counting the
number of trace instances in the current time scope. For
the sake of interpretability, we set the time scopes in
which to evaluate the PPIs to 4 months, consisting of
105, 309, 303, 263 and 25 process instances respectively.
We set ϵ = 0.1 and considered the Laplace mechanism
(L) and Interval mechanism (I) for aggregation measures,
and the sample-and-aggregate mechanism (S) using 10
partitions for derived multi-instance measures. For each
time scope and considered function set instantiation, we
recorded the RMSE and the probability mass function of
the resulting random variable.
Maximizing utility. We report the RMSE values for PPI
1,2 and 3 in Table 2, and for PPI 4,5 and 6 in Table 3.
For PPI 1 and 2, the RMSE of instantiations using the
Laplace mechanism is consistently smaller for all time
scopes. For PPI 1 the probability mass functions of the
selected random variables for each time scope are illus-

ID Time Scope RMSE
L I

1

1 68.5 135.7
2 31.5 66.4
3 59.4 126.5
4 57.9 122.7
5 19.8 24.1

2

1 3.6 6.2
2 2.4 4.3
3 2.1 3.8
4 3.5 6.8
5 3.4 3.8

3

1 14.5 11.4
2 20.2 12.9
3 18.4 11.2
4 29.5 22.8
5 7.7 6.7

Table 2: Utility scores for PPIs 1 to 3

ID Time Scope RMSE
L,L L,I I,L I,I S

4

1 7.8 7.8 15.2 15.2 5.5
2 4.3 4.3 7.6 7.6 2.8
3 4.3 4.3 7.7 7.7 6.4
4 4.6 4.6 8.7 8.7 3.3
5 0.0 0.0 0.0 0.0 0.0

5

1 9.2 9.2 15.8 15.8 14.6
2 4.9 4.6 8.7 8.7 6.2
3 4.6 4.6 8.7 8.7 8.8
4 5.3 5.3 9.9 9.9 10.5
5 28.1 28.1 33.4 33.4 34.2

6

1 9.1 9.1 15.7 15.7 12.7
2 4.6 4.6 8.9 8.9 7.9
3 4.7 4.7 9.2 9.2 13.1
4 5.4 5.4 10.2 10.2 7.5
5 24.7 24.7 27.2 27.2 27.7

Table 3: Utility scores for PPIs 4 to 6

trated in Fig. 13. Here, the number of instances per time
scope seems to have the biggest influence on the RMSE
of the final random variables, which is in line with the
findings in Section 6.1. Contrary, for PPI 3, the Interval
mechanism outperforms the Laplace mechanism, which
also confirms the findings in Section 6.1. For illustration
purposes, Fig. 14 shows the probability mass functions
of both instantiations for the third time scope. Due
to the pessimistic sensitivity estimation of the Laplace
mechanism, the resulting random variable assign similar
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Figure 13: Probability mass functions of the random variables minimizing the RMSE for PPI 1.
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Figure 14: Probability mass functions for both admissible function set
instantiations of the third time scope for PPI 3.

probabilities to all possible outputs with a slight skew to-
wards larger values, while the Interval mechanism shifts
large portions of its probability mass toward the true
maximum value.

For PPIs 4,5 and 6, that have a larger set of possi-
ble function set instantiations, we see more variety, not
only between PPIs, but also between time scopes. For
instance, for PPI 4, in three out of the five time scope,
the sample-and-aggregate mechanism is optimal, while
for the third scope, the instantiations using the Laplace
mechanism for counting the returning patients are opti-
mal. In general, for all PPIs, no distinctions are made
between different mechanism instantiations of the sub-
tree counting the number of process instances. Here,
since each process instance returns the same value of
1, the boundary estimation is minimal for all instantia-
tions. In many cases we report large differences between
the RMSE values of the possible instantiations, with the
largest in the reported values being between the inter-
val mechanism-based summation and the Laplace-based
summation of the first time scope of PPI 4, whose prob-
ability mass functions are shown in Fig. 15. Here, we
denote a difference in maximal difference in the RMSE
of 9.7% (5.5 for S, 15.2 for I,L and I,I), signifying the
gain of an optimal selection to preserve utility loss.

Minimizing budget loss. When evaluating the PPIs
using optimal instantiations, while minimizing the loss
in privacy budget, the initial tree analysis, identifies one

shared subtree between PPIs 4,5, and 6. The shared sub-
tree is the aggregation measure, counting the process
instances, which is used throughout all three PPIs to re-
late the information of interest to the number of instances.
Thus, the admissible function sets after considering this
subtree, are constrained to those instantiations, that pri-
vatize on both aggregated measures. Therefore, for all
PPIs, suboptimal instantiations need to be selected. For
PPI 4, the optimal instantiation for time scope 1,2 and 4
change to L,L or L,I, respectively. The aggregated loss
in utility associated with these instantiations is 5.1 . For
both PPI 5 and 6, since the optimal instantiations are L,L
and L,I, no loss in utility is induced in these cases.

The obtained results emphasize, that selecting the op-
timal function set instantiation manually proves to be
troublesome. This holds especially for more compelx
PPIs consisting of multiple privatizable measure. As
all mechanisms are sensitive to a different set of factors
(see Section 6.1) in differing magnitudes, and as the real-
izations of these factors may change over the different
time scopes in the same log, it is not possible to reli-
ably select an instantiation that performs optimally for
all cases. Likewise, selecting a suboptimal instantiation
may result in a large utility loss, should a given time
scope favor function set instantiations other than the se-
lected. Thus, rather than a manual selection, a selection
should be taken on a per-input set basis, in the protected
environment. Not only does this remove the need for
the process analyst to make an educated, uninformed
guess, but also guarantees, that the output result has the
highest utility possible under the used utility function
and induced constraints.

6.3. Case Study: Process for Sepsis Cases

To explore how the presented mechanisms and the
selection of optimized function isntantiations perform
in a real-world application, we evaluated the previously
defined PPIs on a monthly time scope, comparing our
approach to a state-of-the-art privatization approach for
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Figure 15: Probability mass functions for all admissible function set instantiations of the first time scope for PPI 4.

event logs. That is, we evaluated the same PPIs non-
anonymously using logs that have been anonymized us-
ing PRIPEL [14]. Again, we evaluated each PPI 10 times
using ϵ = 0.1, reporting aggregate values. While results
for all PPIs are available online3,

due to space constraints, we here focus on PPI 1 and
PPI 6, see Fig. 16 and Fig. 17, respectively.

For PPIs 1 to 3, we were able to reconstruct the general
trends of the non-privatized analysis (exemplified for PPI
1 in Fig. 16). Yet, we also observed specific months with
high result variances. For PPI 1 and 2 (mean functions),
the variance stems from the large domain of input values
in these months, resulting in larger sensitivities. For PPI
3 (max function), variances were relatively small, yet the
framework consistently underestimates the maximum.
This is due to large amounts of the probability mass
being distributed below the maximum value.

The results obtained with our framework are in sharp
contrast to those achieved when privatizing the event
log with PRIPEL before computing the PPIs in a reg-
ular manner. As shown in Fig. 16 (right), the latter
approach accumulates an error over the recorded time
period. The steadily increasing deviation from the true
value is caused by traces that represent outlier behaviour,
which was artificially created by PRIPEL.

For PPIs 4 to 6, the results follow the general trends of
the true values, see Fig. 17 for PPI 6. The result obtained
using PRIPEL on the other hand, undererstimate the true
values, while also not following trends in the data. In
months, in which few traces are selected for a PPI, e.g.,
at the beginning and end of the covered time period, the
variance is notably larger for our proposed framework,
an effect that is avoided by the approach based on event
log privatization.

Our results provide evidence that the proposed frame-
work enables the computation of privacy-aware PPIs that
mirror the general trends of their true values. Only for

3https://github.com/MartinKabierski/

privacy-aware-ppinot

time periods, in which the PPI computation is based
solely on a few traces, our framework does not yield sen-
sible results. Thus, given a sufficiently large number of
traces as the basis for the evaluation of PPIs, we can ex-
pect our framework to retain the trends, while selecting
the best possible instantiations of release mechanisms
from all of the available options.

7. Related Work

To define PPIs, it was suggested to rely on ontology-
based systems [17] or to resort to predicate logic to en-
able formal verification [18]. In this work, we followed
the PPINOT meta-model, which is expressive due to its
compositional approach. The compositionality is also
the reason why we opted for the adoption of differential
privacy in our approach. Other privacy models include
k-anonymity [19] and its derivatives [20, 21], which stati-
cally mask recorded data points. Yet, since the evaluation
of PPIs is driven by queries and processes continuously
record data, these techniques are not suitable.

In the context of data-driven business process analysis,
i.e., process mining, the re-identification risk related to
event data was highlighted empirically in [22] as one
of many privacy risk that were identified in the litera-
ture [23]. To mitigate this risk, different directions have
been followed, namely the anonymization of event data
or the direct anonymization of the process analysis arte-
fact [24]. Moreover, the literature on privacy-preserving
process mining can be divided into two sub-areas, based
on the adopted privacy guarantees. Some techniques
focus on providing differential privacy, whereas others
employ group-based guarantees, such as the aforemen-
tioned k-anonymity.

Anonymization techniques that focus on differential
privacy either focus on control-flow queries [25, 26, 27]
or the anonymization of complete event logs [14]. Our
work fills the gap for queries that are not purely control-
flow related, but instead measure process performance.
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Figure 16: Evaluation Results for PPI1, privacy-aware PPI (left), and Privacy-aware PPI & PRIPEL (right).
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In the realm of group-based privacy guarantees, the gen-
eral aim is to strip the event data from information that
could hurt the privacy either by changing the distribution
of the respective data [28, 29] or suppressing it [30]. An
important concern of all these techniques is the aim to
preserve the utility of the data for the analysis purpose.
To this end, semantics-aware distance functions [31] may
be integrated within the aforementioned techniques.

Turning to the protection of privacy based on process
mining artefacts, several research directions have been
followed. In particular, the analysis of the control-flow
of a process in a distributed setting was addressed, either
under the assumption of a trusted third-party [32] or
without that assumption, through the adoption of secure
multi-party computation [33]. Also, a hardware-based
approach that leverages trusted execution environments
has been proposed for this setting [34]. Furthermore,
privacy-preserving role mining was studied in [35].

The above techniques for privacy-preserving process
mining have been integrated in several tools to make
them easily applicable [36, 37, 38].

In general, we conclude that most work in the area of
privacy-preserving process mining has focused on the
control-flow perspective of processes. Our work com-
plements these techniques with an approach to achieve
privacy-preserving evaluation of process performance
indicators.

8. Conclusion

In this work, we proposed an approach to the privacy-
aware evaluation of process performance indicators
based on event logs recorded during the execution of
business processes. We presented a generic framework
that includes an explicit interface to serve as the single
point of access for the evaluation of PPIs. For this frame-
work, we introduce a set of release mechanisms, that
ensure ϵ-differential privacy and a structured methodol-
ogy of instantiating these release mechanisms for PPIs
defined using the PPINOT meta-model. To cope with
the problem of selecting an optimal instantiation of re-
lease mechanisms for a PPI, we presented a probabilistic
formulation of the evaluation of a PPI, which enables us
to minimize the loss according to some utility function.
Moreover, we discussed the trade-off between minimiz-
ing the loss in utility for each single PPI and maximizing
the reuse of privatized functions among multiple PPIs
to use a privacy budget most effectively; and presented
means to handle this trade-off. We evaluated our ap-
proach on both synthetic data and PPIs defined over a
public event log. The results highlight the feasibility of
our approach, as well as the advantages of the automated
instantiation of the release mechanisms, compared to a
manual instantiation. In future work, we intend to define
additional utility functions that take into account whether
output values comply with the true result on the fulfil-
ment of target values of the PPI. Furthermore, we aim
at incorporating additional release mechanisms, thereby
broadening the design space for the privatization of PPIs.
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