
Semantics-aware Mechanisms for Control-flow
Anonymization in Process Mining

Stephan A. Fahrenkrog-Petersena,∗, Martin Kabierskia, Han van der Aab,
Matthias Weidlicha

aHumboldt-Universität zu Berlin, Germany
bUniversity of Mannheim, Germany

Abstract

Information systems support the execution of business processes. As part of

that, data about process execution is recorded in event logs, which can be used

to analyze the control-flow of the respective processes. However, such data

may contain personal information on process stakeholders that is protected

by privacy regulations. Process analysis based on event logs shall, therefore,

employ anonymization techniques. In this paper, we introduce two approaches to

anonymize the recorded control-flow of a process. Specifically, we present SaCoFa

and SaPa as two techniques to anonymize the result of trace-variant queries over

an event log. Unlike existing techniques that achieve differential privacy through

randomized noise insertion, our techniques rely on noise insertion mechanisms

that incorporate a process’ semantics, thereby avoiding easily-recognizable noise.

Both techniques take different design choices, though. SaCoFa anonymizes

a trace-variant distribution directly, thereby focusing on utility preservation

at the expense of potentially changing the number of a traces in the result

considerably. SaPa, in turn, anonymizes a trace-variant distribution indirectly,

through play-out of an anonymized directly-follows distribution. This way, the

number of traces in the result is close to the original log, but the drop in utility

∗Corresponding author
Email addresses: stephan.fahrenkrog-petersen@hu-berlin.de (Stephan A.

Fahrenkrog-Petersen), martin.kabierski@hu-berlin.de (Martin Kabierski),
han.van.der.aa@uni-mannheim.de (Han van der Aa), matthias.weidlich@hu-berlin.de
(Matthias Weidlich)

Preprint submitted to Information Systems January 10, 2023



may become larger due to using only local control-flow information. However,

our experiments demonstrate that both approaches strike a better balance of

preserving the utility of an event log compared to existing techniques.

Keywords: Privacy-preserving Process Mining, Differential Privacy,

Anonymization

1. Introduction

Information systems that support the execution of business processes often

leave data traces that enable operational analysis. These data traces are sequences

of events that indicate which activities have been conducted when, by whom, and

for whom. Once such data is available, stored in the form of event logs, methods5

for process mining support a rich set of analysis questions [1]. For instance,

event logs serve the construction of process models [2], the verification of the

recorded executions against some specification [3], and the creation of models

for simulation [4], prediction [5], or even recommendation [6].

In many application scenarios, however, event logs may contain sensitive10

information on process stakeholders, i.e., people that get served or are involved in

the conduct of a process’ activities. As such, there is an inherent risk for privacy

intrusion that should be addressed for both, ethical as well as legal reasons (as

imposed by, for instance, the GDPR [7] and the CCPA [8]). Yet, simply deleting

or transforming identifying information is insufficient in the context of process15

analysis, since the behavioural characteristics of event logs pose a generally large

re-identification risk [9]. That is, behavioural properties of recorded execution

sequences can be linked to the context of process execution, thereby revealing

the identity of process stakeholders.

Against this background, privacy-preserving process mining [10] strives to20

protect sensitive information in event logs and process mining results. To

this end, an event log, or the result of some query evaluated over it, may

be transformed in order to provide well-known privacy guarantees, including

group-based privacy notions such as k-anonymity [11] and its derivatives [12] or

2



Table 1: Illustration of a trace-variant distribution, both original and privatized.

(a) Original distribution.

Trace Variant #

〈Register ,Triage,Surg.,Release〉 20

〈Register ,Triage,Surg.,Antibio.,Release〉 12

〈Register ,Triage,Antibio.,Antibio..Release〉 6

〈Register ,Triage,Antibio.,Surg.,Release〉 5

〈Register ,Triage,Consul.,Release〉 2

〈Register ,Triage,Consul.,Surg.,Release〉 4

(b) Distribution privatized using existing work.

Trace Variant #

〈Register ,Triage,Surg.,Release〉 192

〈Register ,Triage,Antibio.,Antibio.,Release〉 7

〈Release,Triage,Triage,Surg.,Register〉 4

differential privacy [13]. However, the transformations to achieve anonymization25

typically induce some loss in the utility of the data for an analysis task. As a

consequence, for a given notion of utility, anonymization can typically be phrased

as an optimization problem: One strives for achieving a pre-defined privacy

guarantee, while minimizing the incurred loss in data utility.

One important notion of utility in process mining relates to the trace-variant30

distribution of an event log. It provides an abstract view on the control-flow of a

process by listing all variations of the recorded sequences of activity executions

along with their occurrence frequency. For instance, Table 1a exemplifies a

trace-variant distribution for a healthcare process, which covers different clinical

pathways of patients in a hospital along with their frequency. Such a trace-35

variant distribution provides a basis for many process mining use cases, from

the exploration of the observed behaviour, through the separation of common

and rare trace variants, to the construction of simulation and prediction models.

Given the importance of queries to compute a trace-variant distribution, their

anonymization has previously been addressed by Mannhardt et al. [14]. Their40

technique uses noise insertion to achieve differential privacy, i.e., to limit the

impact of one’s individual data on a trace-variant distribution. Essentially, such

a technique thus turns a query for a trace-variant into a probabilistic one that

aims to approximate the true distribution, while satisfying a desired privacy

guarantee. While this state-of-the-art technique succeeds in its privatization45

purpose, the work, however, neglects three important aspects:

3



(1) Anonymized distributions may include trace variants that denote behaviour

that was never observed or, more importantly, which is clearly impossible

for the considered process. Even if the distribution is generally close to the

one over the original log, ignoring a process’ semantics means that inserted50

noise may be identified immediately. For instance, after privatizing the event

log in Table 1a, naive noise insertion may yield variants like the last one in

Table 1b, in which patients are released before being treated in a hospital,

whereas such behaviour is naturally never seen in reality.

(2) A privatized distribution may show fundamentally different absolute proper-55

ties compared to the true distribution. In particular, the number of traces

in the result tends to deviate by up to orders of magnitude, which lowers

its utility and clearly indicates that the data has been transformed. For

instance, the original distribution in Table 1 indicates that 49 traces were

executed in the process, whereas the privatized distribution clearly over-60

shoots this number, with a total of 203 traces in the distribution, 192 of

which correspond to its most common variant.

(3) Finally, the state of the art requires the selection of parameters that have a

large influence on the obtained result (e.g., the length of trace prefixes to

prune [14]), but for which hardly any guidance can be given for a specific65

application scenario. This generally lowers the practical applicability of

the technique and may have far reaching consequences for the results. For

instance, depending on the setting for such a pruning parameter, entire swaths

of behaviour may be omitted from the privatized trace-variant distribution.

This is, e.g., seen for the variants starting with 〈Register ,Triage,Consul .〉,70

which were part of the original event log, but no longer appear in Table 1b.

In previous work [15], we addressed the first of the above issues with SaCoFa, an

approach for semantics-aware control-flow anonymization. Unlike existing tech-

niques that achieve differential privacy by the Laplace mechanism, which inserts

noise randomly, SaCoFa employs the exponential mechanism, which enables the75

incorporation of the semantics of the underlying process. By nudging noise inser-

tion towards trace variants satisfying certain behavioural constraints, we achieve

4



trace variant distributions that show less unobserved or impossible behaviour,

while providing the same privacy guarantee. However, SaCoFa still follows the

same idea as existing techniques to construct trace variants, i.e., it iteratively80

builds up a prefix tree. Therefore, it inherits the aforementioned limitations

related to the absolute properties (2) and the practical applicability (3).

In this paper, we close this research gap and complement SaCoFa with an

alternative algorithm to construct differentially-private trace variant distributions.

To this end, we present a step-wise construction of trace variants using an85

anonymized version of the distribution of the directly-follows relation of an event

log, referred to as semantics-aware play-out-based anonymization, SaPa in short.

This way, we better preserve the number of traces, compared to SaCoFa. At the

same time, SaPa does not necessitate a user to specify algorithmic parameters,

which, due to the lack of an intuitive interpretation, are hard to determine. By90

integrating the ideas of SaCoFa on nudging privatization towards trace variants

that satisfy behavioural constraints in SaPa, we also achieve semantics-aware

anonymization.

While the newly presented algorithm addresses all three of the above issues,

it also comes with drawbacks compared to SaCoFa. In particular, the utility95

in terms of the relative similarity of the resulting distribution and the true

distribution may be worse for relatively structured processes. This is due to SaPa

exploiting only local control-flow information (if executions of two activities may

directly follow each other), whereas SaCoFa always considers complete prefixes

of traces.100

As a consequence, both algorithms open a design space for semantics-aware

anonymization of trace-variant distributions. We explore this design space in

comprehensive evaluation experiments with several real-world event logs. Our

empirical results illustrate that both algorithms yield higher utility for process

analysis and provide more robust privacy guarantees than the state of the art.105

Moreover, they introduce less obvious noise in the result, as classified by anomaly

detection techniques. Comparing the two algorithms, we note that SaPa properly

maintains the number of traces in all evaluation scenarios. In terms of the utility

5



of the trace-variant distribution, both algorithms are mostly on-par for relatively

unstructured processes, while SaCoFa leads to better utility for scenarios with110

highly structured behaviour.

In the remainder, Section 2 provides essential background information and

definitions. Our two algorithms, SaCoFa and SaPa are introduced in Section 3

and Section 4, respectively. Our evaluation results are summarized in Section 5,

whereas key insights are discussed in Section 6. Finally, we review related work115

in Section 7 and conclude in Section 8.

2. Background

Event model. Our work focuses on the control-flow perspective of business

processes. Therefore, we use an event model that builds upon a universe of

activities A. Each event in a log is assumed to correspond to one of these120

activities. Using E to denote the universe of all events, a single execution of a

process, i.e., a trace, is modelled as a sequence of events t = 〈e1, e2, . . . , en〉 ∈ E∗,

such that no event can occur in more than one trace. We write ti, 1 ≤ i ≤ n, to

refer to the i-th event ei of the trace t. An event log is a set of traces, L ⊆ 2E
∗
,

with L as the universe of event logs. Distinct traces that indicate the same125

sequence of activity executions are said to be of the same trace variant, i.e., A∗

is the universe of trace variants. The set of activities referenced by events in an

event log L is denoted by A(L).

Trace-variant queries. A trace-variant query is a function that returns the

trace-variant distribution of an event log L, i.e., it captures how often certain

trace variants occur in L. With A∗ as the universe of potential trace-variants

and N is the set of natural numbers, it is defined as follows:

τ(L) : L → A∗ × N.

In other words a trace-variant query τ(L) returns a count for each trace-variant

that exists in the log. Aside from τ(L) we also define a query that returns the

6



number of times a trace variant v occurs in L:

τ(L, v) : L ×A∗ → N.

Directly-follows queries. A directly-follows query is a function δ(L) that

returns the directly-follows distribution of an event log L, i.e., it captures how

often an event e1 corresponding to an activity a1 ∈ A is directly-followed by an

event e2 corresponding to an activity a2 ∈ A within the same trace t:

δ(L) : L → A×A× N.

A directly-follows query δ(L) is a special case of a trace-variant query τ(L),

in the sense that a trace-variant query is counting sequences of varying length130

in a log L and a directly-follows-query δ(L) counts sequences of fixed length

two (reflected by the domain A×A), i.e., pairs of directly-following activities.

Therefore, the following discussion on differential privacy and insights on how

it relates to trace-variant queries τ , also implicitly applies to directly-follows

queries δ. We therefore focus on the trace-variant-query in the remainder of135

this section and limit the discussion to hints on how the respective concepts are

adopted to a directly-follows query.

Differential privacy. A query can be made privacy-preserving, through a

privacy guarantee [16], such as differential privacy [13], which has been adopted

by companies such as Apple [17], SAP [18], and Google [19]. The main benefit140

of differential privacy is its immunity to post-processing. Therefore, it provides

an effective protection and limits the information gain of an adversary. The

general idea behind differential privacy is to ensure that the inclusion of the

data of one individual in a certain dataset does not significantly change the

result returned by a query over this data. In the context of our work, this145

implies that a trace-variant query τ is said to preserve differential privacy, if the

trace-variant distribution returned by query τ(L) does not significantly differ

from the distribution returned by a query over a neighbouring log, i.e., a log that

contains one additional trace, τ(L ∪ {t}) or misses a certain trace τ(L \ {t}), for

any trace t ∈ E∗. Note that, for a directly-follows query, neighbouring logs would150

7



actually be characterized by the presence of a single pair of events that affects

the directly-follows relation for one pair of activities. However, we can adopt

the above definition based on the difference by a single trace in the absence

of repetitive structures in the traces, since anonymization of different pairs of

activities is independent of each other (known as the parallel composition rule155

of differential privacy [20]).

A trace-variant query τ that returns the actual frequency distribution, in

general, cannot be expected to satisfy differential privacy. Hence, one relies on

probabilistic queries τ̂ that approximate the true distribution, while satisfying

the privacy guarantee. This leads to the following definition:160

Definition 1 (Differential Privacy). Given a probabilistic trace-variant query

τ̂ and privacy parameter ε ∈ R, query τ̂ provides ε-differential privacy, if for

all neighbouring pairs of event logs L1, L2 ∈ L and for all sets of possible trace-

variant distributions, D ⊆ A∗ × N, it holds that:

Pr[τ̂(L1) ∈ D] ≤ eε · Pr[τ̂(L2) ∈ D]

where the probability is taken over the randomness introduced by the query τ̂ .

The lower the value of ε, the stronger the provided privacy guarantee. In

scenarios where an individual can be part of the result multiple times (i.e.,

in multiple traces for a trace-variant query or through multiple repetitions of

pairs of activities for a directly-follows query), the same degree of privacy can165

be achieved by dividing the privacy parameter ε by the maximal number of

occurrences of an individual in the result. In case of the directly-follows query

such a lower ε could only be applied to the respective directly-follows relation.

To establish a trace-variant query τ̂ that provides ε-differential privacy as

given in Def. 1, it is common to insert noise into the result of the original query τ ,170

thus obfuscating the absolute occurrence counts of potential trace variants. This

is commonly done according to a noise-insertion mechanism, guided by a certain

probability distribution. In this work, we consider the Laplace and exponential

mechanisms for this purpose, as described in the following paragraphs.

8



Laplace mechanism. The Laplace mechanism inserts noise based on a Laplace

distribution and was previously used to anonymize trace-variant distributions [14].

The impact of this mechanism generally depends on the strength of the privacy

guarantee ε and the sensitivity ∆f of some query q. A query q̂ protected by the

Laplace mechanism can formally be described as:

q̂ ← q + Lap(
∆f

ε
)

The sensitivity ∆f depends on the maximum impact one individual can have on175

the result of query q. So, if q is a trace-variant query (τ , as introduced above)

and one individual participates in at most one trace, the sensitivity is ∆f = 1.

In the absence of repetitive structures in the traces, the same holds true for the

directly-follows query, as, again, the anonymization of different pairs of activities

is independent of each other. If an individual can appear multiple times in the180

query result, the sensitivity is higher and more noise needs to be introduced

to achieve ε-differential privacy. However, in such scenarios, the guarantee of

ε-differential privacy may also be relaxed, which lowers the increase in sensitivity

and still provides a relatively strong protection [21].

When used to insert noise into a trace-variant distribution, the Laplace185

mechanism has considerable drawbacks. That is, the probability for a certain

anonymized trace-variant distribution to be returned only depends on the syntac-

tic distance of this distribution to the actual one. Yet, this ignores that certain

distributions are less desirable than others, even when they are syntactically just

as different.190

Exponential mechanism. The exponential mechanism [22] enables prioriti-

zation of certain query results by incorporating the notion of a score function

into the noise-insertion process. This score function s : L, D → R defines some

results to be more desirable than others for the given dataset over which the

query is evaluated. Put differently, the higher s(d, r), the more desirable query195

result r is for the dataset d. Moreover, let ∆s be the sensitivity of score function

s, i.e., the maximum differences between scores assigned to the possible results

for any two neighbouring datasets. Then, for some query q over dataset d and

9



privacy parameter ε, the query q̂ protected by the exponential mechanism [22] is

derived by selecting result r with a probability proportional to e(εs(d,r))/(2∆s).200

The exponential mechanism may be lifted to trace-variant queries, as follows:

For a given log L and a possible trace-variant distribution D ∈ A∗×N, the score

s(L,D) shall capture whether D is desirable in terms of a process’ semantics, as

captured by L. Then, the mechanism returns a specific trace-variant distribution

D with a probability proportional to e(εs(L,D))/(2∆s) .205

This general idea will be exploited in our algorithms, SaCoFa and SaPa, as

presented in the next sections.

3. Semantics-aware Control-flow Anonymization

This section introduces SaCoFa (semantics-aware control-flow anonymization)

as an approach to retrieve the anonymized behaviour of an event log. Section 3.1210

presents the general algorithm based on the exponential mechanism. Section 3.2

then defines the score function that SaCoFa employs for incorporating a process’

semantics. Finally, Section 3.3 discusses pruning strategies for SaCoFa, their

computational necessity, and how the score function helps to decrease the negative

effects of pruning.215

3.1. The SaCoFa Algorithm

The idea of the SaCoFa algorithm is to construct a prefix tree of trace

variants through step-wise expansion, where each step adds an activity or a

dedicated end symbol to a branch in the tree. During this construction, prefixes

are evaluated based on a score function, which reflects their compliance with the220

process’ semantics, as captured in the original event log. Specifically, prefixes are

categorized as harmful or harmless, depending on whether they violate semantic

constraints and hence, threaten the utility of a trace-variant distribution.

10



While harmless prefixes are always added to the tree, some harmful prefixes

typically also need to be incorporated, to achieve differential privacy. To this225

end, we leverage the exponential mechanism, which incorporates a score function

to assign lower probabilities to prefixes that induce a stronger violation of a

process’ semantics. Hence, we are able to nudge the expansion of the tree to

prefixes that are less harmful. In any case, all prefixes added to the tree are

assigned noisy counts by taking the original frequency of th prefix within the230

log and adding a randomly drawn (possibly negative) amount from a Laplace

distribution. To cope with the exponential growth of the prefix tree, we also

prune the tree based on these noisy counts in each step of its expansion.

In Algorithm 1, we provide the pseudo-code for our algorithm. It takes

as input an event log L and several parameters: the strength of the desired235

privacy guarantee ε, an upper bound on the trace-variant length k, and a pruning

parameter p (or two pruning parameters pharmless and pharmful , as detailed later).

It returns τ ′(L), i.e., an anonymized trace-variant distribution.

First, the algorithm initializes the prefix tree, represented as an empty set

of prefixes T (line 1). Next, the trace-variant distribution d and the current240

prefix length n are initialized (lines 2-3). Then, the prefix tree is iteratively

expanded. This expansion will eventually terminate once n reaches the maximal

prefix length k (line 4).

Candidate generation. For each n ≤ k, we expand the current tree by first

generating a set of candidate prefixes. To obtain these candidates, we select each245

prefix v ∈ T that is maximal, i.e. for which |v| = n − 1, and that has not yet

been ended, i.e. v(|v|) 6= ⊥ (line 6). Note that the first iteration is conducted

for an empty prefix v = 〈〉. Then, for each a ∈ A(L)∪ ⊥, i.e., for any activity or

the end symbol ⊥, we generate a new candidate by appending a to v and add it

to the candidate set C (lines 7-8).250

As an example, let us assume the current tree T consists of one prefix

v = 〈Register〉. Then, the potential candidates C would be a concatenation of this

prefix and each of the activities, e.g., 〈Register ,Triage〉 or 〈Register ,Register〉.

11



Algorithm 1: The SaCoFa Algorithm
input : L, an event log; ε, the privacy parameter; k, the max. prefix

length; p (pharmless , pharmful ), the pruning parameter(s).

output : the result of τ ′(L), an anonymized trace-variant distribution.

1 T ← {〈〉}; /* Initalize the prefix tree with an empty prefix */

2 d← ∅; /* Initalize the trace-variant distribution */

3 n← 1; /* Initialize the current prefix length */

4 while n ≤ k do /* Consider prefixes up to length k */

5 C ← ∅; /* Initialize candidate set */

/* Select candidate prefixes to expand */

6 foreach v ∈ T ∧ |v| = n− 1 ∧ v(|v|) 6=⊥ do

/* For each possible activity */

7 foreach a ∈ A(L) ∪ {⊥} do

/* Add expanded prefix to candidate set */

8 C ← C ∪ {v.〈a〉};

/* Determine harmless prefix candidates */

9 Cexpand ← {c ∈ C | score(L, c) = 1} ;

/* Determine harmfull prefix candidates */

10 Charm ← C \ Cexpand ;

/* Select prefixes; harmful prefix candidates are selected using the exponential

mechanism */

11 Cexpand ← Cexpand ∪ Exp(Charm , score(L, .), ε);

/* Assign positive noisy count to prefixes */

12 foreach v ∈ Cexpand do

13 d(v)← [τ(L, v) + Lap( 1
ε
)]>0 ;

14 T ← prune(T, d, p, Charm ); /* Prune prefix tree */

15 n← n+ 1; /* Increase current prefix length */

/* Return the distribution over all prefixes that are complete or of length k */

16 return {d(v) | v ∈ T ∧ (v(|v|) = ⊥ ∨ |v| = k)};

Tree expansion. The candidate prefixes in C are evaluated with a score

function to classify them as harmless (Cexpand) or harmful (Charm) (lines 9-10).255

The definition of the score function depends on the incorporated notion of a

process’ semantics and will be discussed in Section 3.2. Here, we assume the

12



score function to be applicable to prefixes, while the actual scoring (function s

in Section 2) refers to a distribution over prefixes with their frequencies all set

to one.260

Employing the exponential mechanism, we determine which of the harmful

prefixes to add to the tree by random selection (line 11). Then, the selected

harmful prefixes, together with the harmless ones, expand the prefix tree (line 12).

Each of these prefixes is assigned a noisy count, based on its number of occurrences

in the original log and added random noise (line 13). The Laplace noise is drawn265

from a Laplace distribution, scaled according to the privacy parameter ε, i.e.,

Lap( 1
ε ) (as discussed in Section 2). Here, we enforce that the noisy count is

positive, since the decision to include the prefix has already been taken as part

of the exponential mechanism.

To illustrate this reconsider the candidates from above. Prefix 〈Register ,Triage〉270

appears 49 times in event log L, while 〈Register ,Register〉 never appears in it.

To both prefixes, randomly drawn values from the Laplace distribution are added,

so that we end up with new, noisy counts. For instance, this may yield counts

of 44 for 〈Register ,Triage〉 (noise of -5) and 3 for 〈Register ,Register〉 (noise of

+3).275

Tree pruning. Following the prefix tree expansion, we prune it based on the

noisy counts assigned to trace variants (line 14). A simple pruning strategy

removes all prefixes from the tree, for which the noisy count is below a threshold

set by parameter p. However, as we will discuss in Section 3.3, pruning may

treat harmful and harmless prefixes differently (using two thresholds, pharmless280

and pharmful). In general, we also favour pruning of harmful prefixes to avoid

the removal of prefixes that conform to the semantics of the process at hand.

Let us revisit our example and let us assume the pruning parameter was set

to p = 5. We also assume no difference is made between harmful and harmless

prefixes. In this case, the noisy count for the prefix 〈Register ,Triage〉 with 44285

is higher than the pruning parameter and the prefix is kept inside the prefix

tree T . Therefore, this prefix will be considered within the further extension of

the prefix tree. On the other hand, for the prefix 〈Register ,Register〉, we have a

13



Register, Triage, Antibio., Surg.

Register Triage Surg. Antibio. Consul. Release ⊥

× × × X × X ×

Figure 1: Example of potential prefix extensions. X and ×, indicate harmless and harmful

prefix extensions, respectively.

noisy count of 3 and the prefix is removed from the prefix tree. Prefixes that

would be based on 〈Register ,Register〉 will also no longer be considered in the290

remaining run of SaCoFa.

Result construction. Finally, the resulting trace-variant distribution is derived

and returned (line 16). To this end, the counts of all prefixes that end with

the symbol ⊥ or that have a length of k are considered. Intuitively, prefixes of

length k may represent variants of traces that have not yet finished execution.295

3.2. A Semantics-aware Score Function

SaCoFa uses a score function to assess the utility loss associated with a prefix

based on the process behaviour included in the original log L. This function is

employed to distinguish harmless prefixes (Cexpand) from harmful ones (Charm)

(line 9) and in the exponential mechanism (line 11). As such, the definition of300

the score function denotes a design choice that enables us to incorporate different

notions of a process’ semantics in the anonymization.

To exemplify this design choice, we propose a function that is based on a

generalization of the behaviour in the original log. Specifically, we consider a

behavioural abstraction that was proposed in the context of the behavioural305

appropriateness measure [23]. This behavioural abstraction defines rules between

pairs of activities, reflecting their order and co-occurrence in a log. Specifically,

given a1, a2 ∈ A(L), the rules capture if a1 will always, never, or sometimes follow

(or precede) an activity a2, not necessarily directly. As such, the set of rules

encodes hidden business logic, derived from a log without manual intervention.310

We instantiate two score functions based on these rules, one binary and

one continuous. The binary instantiation classifies all prefixes that violate at

14



least one rule as harmful, and all other prefixes as harmless. In contrast, the

continuous instantiation aggregates the number of rule violations to quantify the

harmfulness of a prefix, thus assessing the severity of the violations. Since the315

sensitivity of the exponential mechanism considers the maximum impact one

trace may have on the score function, this degree of harmfulness needs to be

limited by a user-defined upper bound.

For illustration purposes, consider the example given in Fig. 1, which depicts

the expansion of prefix 〈Register ,Triage,Antibio.,Surg .〉, based on the example320

from Table 1. In the original log, activity Surg . is always followed by activity

Release, may be followed by activity Antibio., and is never followed by the

remaining activities. Respecting these behavioural rules, expansions based on

the former two activities are considered harmless, while those in the latter are

categorized as harmful.325

As mentioned above, the score function may also be defined based on other

behavioural models. In particular, it may be grounded in other sets of behavioural

rules, such as those presented in [24, 25], which are then instantiated for the

original log to capture the semantics of the underlying process. Moreover, rules

may also originate from other sources, such as textual documents [26]. However,330

deriving the rules from the original log ensures that trace variants in the original

log are more likely to be preserved.

3.3. Semantics-aware Pruning

To achieve differential privacy, the number of prefixes to be considered during

prefix expansion grows exponentially in the prefix length. Consequently, we335

prune infrequent trace variants to achieve tractability, as detailed below.

The need for generalization. Pruning comes with the risk of removing

prefixes (and thus trace variants) that are common in the original log, which

subsequently reduces the utility of the anonymized trace-variant distribution.

However, unlike log anonymization with the Laplace mechanism, SaCoFa sup-340

ports a differentiation between prefixes that are harmful and harmless for an

anonymized distribution. Therefore, we can limit pruning only to harmful pre-

15



fixes. This way, the overall number of pruned prefixes is reduced, but harmless

prefixes are always preserved, even when their noisy count is below the pruning

parameter p.345

A lower number of pruned prefixes, in general, also reduces privacy degrada-

tion. However, when pruning solely harmful prefixes, there is a risk to violate

the required differential privacy guarantee. That is, if harmful prefixes are char-

acterized based on their absence in the original log, the following may happen:

For two neighbouring event logs, that differ by a trace of a variant that appears350

only in one of the logs, the anonymized variant distributions may enable the

identification of the respective trace. To avoid such situations, we employ a

pruning strategy that incorporates behavioural generalization.

Rule-based pruning. By employing the abstraction underlying the behavioural

appropriateness measure to identify harmful prefixes for pruning, we avoid to355

reveal the difference between two neighbouring event logs. Due to the implied

behavioural generalization, a trace representing a difference between two logs may

also induce a change in the respective rule sets. The changed rules potentially

allow for more behaviour, i.e., they increase the set of harmless prefixes. Hence,

the anonymized trace-variant distributions of neighbouring logs may differ by360

multiple trace variants, instead of just a single one.

For illustration, consider a log L1 containing only traces that represent

variants from Table 1a. Let L2 = L1 ∪ {t} be a neighbouring log, where t is

a trace of the variant 〈Register ,Antibio.,Release〉. Comparing the rule sets of

both logs, trace t adds the rule that Register is sometimes followed by Antibio.365

Hence, the SaCoFa algorithm would consider the prefix 〈Register ,Antibio.〉 as

harmless when anonymizing L2, whereas it would be harmful regarding L1.

For L2, further prefixes would then be derived and considered as harmless, e.g.,

〈Register ,Antibio.,Release〉 and 〈Register ,Antibio.,Surg .,Release〉. Thus, the

distributions derived for the logs will differ by more than one trace variant.370

Therefore, pruning only harmful prefixes requires that a single trace either

leads to multiple trace variants to be considered as harmless, or none at all. In

16



practice, this may not be the case, which is why we relax the pruning strategy, as

follows. We introduce pharmless and pharmful as separate pruning thresholds for

harmless and harmful prefixes, respectively. By setting 1 < pharmless < pharmful ,375

we favour pruning of harmful prefixes. Yet, by pruning also some harmless

prefixes, we ensure that information on the existence of a single trace variant

is not disclosed, even if the above requirement is not met. Also, the two

aforementioned extreme scenarios could be configured accordingly, i.e., pruning

only harmful traces (pharmless = 1 and pharmful > 1) or pruning all prefixes that380

introduce new behaviour (pharmless = 1 and pharmful =∞). It is important to

note that pruning is always applied to the noisy counts, as inserted during the

Tree expansion step.

4. Directly-follows-based Control-flow Anonymization

In this section, we complement the previously proposed approach with an385

algorithm that aims to overcome the issues inherent to control-flow anonymiza-

tion using prefix tree construction. That is, we present semantics-aware play-

out-based anonymization, short SaPa, as an approach that achieves a better

preservation of absolute properties of a trace-variant distribution and avoids the

need to configure parameters that have a large impact on the result, but are390

difficult to set in practice.

Our idea is to construct a trace-variant distribution based on a directly-

follows query and a play-out procedure for the obtained result. In Section 4.1,

we first outline the general idea behind SaPa and explain why this approach

avoids the aforementioned issues. Afterwards, in Section 4.2, we lift the idea395

of semantics-aware anonymization to the anonymization of the directly-follows

query, allowing us to instantiate SaPa in a semantics-aware manner as well.

4.1. Generating Trace Variants based on Play-out

A directly-follows distribution, capturing how often events corresponding to

certain activity pairs directly follow each other in traces (see Section 2), denotes400

17



a certain representation of the behaviour present in a log. Through play-out,

this representation can be used to simulate the control-flow of the respective

process, which is achieved through the step-wise concatenation of directly-follows

relations to construct traces. The privacy rationale of our approach can therefore

be summarized as follows: If the directly-follows distribution itself is protected405

by differential privacy, the result of the play-out will then also be protected by

differential privacy, given that no additional information is incorporated. The

latter meaning that the play-out is based solely on the privatized directly-follows

distribution.

Following this line, an anonymized directly-follows distribution can be used to410

generate an anonymized trace-variant distribution. By generating a trace-variant

distribution from the directly-follows distribution, we are more likely to create

a result that has similar absolute properties as the result computed over the

original log, i.e., the overall number of traces (and also their lengths) can be

expected to be relatively close. The reason being that we consider directly-follows415

distributions that contain dedicated symbols to indicate the start (>) and end

(⊥) of a trace, or trace variant, respectively. Then, the number of generated

traces depends primarily on the frequency of these start and end symbols. Since

these frequencies are constructed from several noisy counts, for which the average

of the randomly drawn noise will be close to zero, the frequencies can be expected420

to be relatively stable.

In Algorithm 2, we outline the SaPa approach, which uses an anonymized

directly-follows distribution as a basis for the generation of an anonymized

trace-variant distribution. In principle, the algorithm only requires an event

log L as input, though, depending on the mechanism used to anonymize the425

directly-follows distribution, further inputs may be necessary.

Anonymization of the directly-follows distribution. The first step in the

approach is to anonymize the directly-follows distribution. Our algorithm is

independent of the choice for a specific procedure to achieve this.

As suggested in literature, a common choice would be a procedure based430

18



Algorithm 2: Play-out Algorithm
input : L, an event log.

output : the result of τ ′(L), an anonymized trace-variant distribution.

1 d← ∅; /* Initalize the trace-variant distribution */

2 dfg ′ ← δ̂(L); /* Generate ε-differentially private directly-follows distribution */

3 while containsTrace(dfg ′) do /* Checks if there is still a trace */

4 t← 〈>〉; /* Initalize trace with trace start event */

/* As long as last element is not end of trace and it is not empty */

5 while t|t| 6= ⊥ ∨ t 6= 〈〉 do

/* Select next activity based on random choice from the df-distribution */

6 a← pickNextActivity(dfg ′, t|t|);

/* Check if a next activity exists and the trace can be continued */

7 if a 6= ∅ then

/* Decrease DFG count by used directly-follows relation */

8 dfg ′ ← dfg ′ \ {(t|t|, a, n)} ∪ {(t|t|, a, n− 1)};

9 t← t.〈a〉; /* Adding a to t to continue the trace */

10 else

/* All df-relation entries to the last element of t are removed */

11 dfg ′ ← {(a1, a2, n) ∈ dfg ′ | a2 6= t|t|}

12 t← 〈t1, ..., t|t|−1〉; /* The last element of t is removed */

/* Trace variant distribution is updated by including the current trace */

13 if t 6= 〈〉 then d(t)←

d(t) + 1 if t ∈ dom(d)

1 otherwise.
;

/* Return anonymized trace variant distribution */

14 return d

on the Laplace mechanism [14], configured by the privacy parameter ε. We

later propose an alternative procedure that accounts for a process’ semantics

(Section 4.2). In any case, it is important to note that, contrary to the approaches

that anonymize trace-variants directly, we here anonymize each entry of the

directly-follows relation independently.435

Iin Algorithm 2, we first initialize an empty trace-variant distribution (line 1),

before retrieving the anonymized directly-follows distribution with a privacy-

preserving directly-follows query δ̂ (line 2).

19



We provide an example of an anonymized directly-follows distribution in

Table 2. The example serves illustrative purposes and is, therefore, less noisy440

than what would be expected to increase readability.

Play-out of the anonymized directly-follows distribution. Next, traces

will be generated from the directly-follows distribution, for as long as a trace can

be constructed from the start symbol (>) to the end symbol (⊥) based on the

entries in the directly-follows distribution (line 3). Here, the respective entries in445

the directly-follows distribution need to be subsequent, i.e., the target activity of

one entry needs to be equivalent to the source of the next entry, and their counts

in the distribution need to be larger than zero. If such a construction would be

generally possible, beginning with a start symbol (>) (line 4), we try to assemble

a trace activity by activity until reaching the end symbol (⊥) (line 5). Once this450

happens, the now completed trace is included in the trace-variant distribution

(line 13).

The actual expansion works as follows. The trace is extended by appending

a randomly selected, directly-following activity from the anonymized directly-

follows distribution (line 6). If such an activity could be found (∅ denotes455

that this was not the case) (line 7), the count of the respective entry in the

directly-follows distribution is reduced by one (line 8) and the trace is expanded

accordingly (line 9).

Let us turn to our example in Table 2 to better understand these steps. In

the example, a trace could be started with either the activity Register or Triage.460

Assume that we start a trace we Triage. As the next step, we could extend the

the trace with either Surg. or Antibio.. If the trace is extended with Surg., it

is only possible to continue to Release. From there, we finally reach the trace

end ⊥ and we would have constructed a trace 〈Triage, Surg.Release〉. We now

would decrease all counts that let to that trace and restart with >.465

If no activity could be found for expansion of the trace, we remove all entries of

the directly-follows distribution that lead to this activity (line 11). Furthermore,

aiming for completion of the current prefix, we adopt a backtracking procedure.

20



Table 2: Example of a anonymized Directly-follows Distributions

↓ follows → > Register Triage Surg. Antibio. Consul Release ⊥

> 0 0 0 0 0 0 0 0

Register 44 ... ... ... 0 ... ... 0

Triage 3 52 ... ... 0 ... ... 0

Surg. 0 ... 30 ... 0 ... ... 0

Antibio. 0 0 15 0 0 0 0 0

Consul. 0 ... ... ... 0 ... ... 0

Release 0 ... ... 16 0 .. ... 0

⊥ 0 ... ... ... 0 ... 51 ...

That is, we remove the last activity (line 12), and continue with the algorithm.

Should it turn out to be impossible to finish construction of the respective trace,470

backtracking will yield the empty trace, which is discarded entirely.

Considering our example, if we had step-wise created a prefix 〈Register, T riage,Antibio.〉,

we would run into the issue that Antibio. has no outgoing directly-follows re-

lations. Therefore, we would backtrack to 〈Register, T riage.〉 and remove all

incoming directly-follows relations for Antibio.. Our trace would instead be475

continued with the activity Surg., since it is the only other activity that can be

reached from Triage.

Eventually, it will no longer be possible to construct any traces, from start

to end, based on the remaining counts of the directly-follows distribution. In

that case, the trace-variant distribution is returned (line 14).480

4.2. Exponential Mechanism for Directly-follows-Query

In this section, we propose a semantics-aware procedure for the anonymization

of a directly-follows query, based on the exponential mechanism. The exponential

mechanism aims to optimize the model generated by the play-out of the resulting

directly-follows distribution. Therefore, the main goals are to prevent the485

insertion of harmful directly-follows relations and to preserve relations that

21



provide utility. Our intuition to achieve that goal is based on the idea, that we

want to avoid the procedure skipping parts of the process, by jumping from the

start of the process to its end.

To ensure this intuition, we assess the utility of a directly-follows relation,490

i.e., how realistic its occurrence is, in terms of its k-follows score. This score

measures the minimum distance that exists between pairs of activities, for the

traces in an event log. For instance, if, following events corresponding to an

activity a1, there are always at least two other events before an event of activity

a2 appears, the k-follows score from a1 to a2 is 3.495

Given a specific value for k, this measure allows us to distinguish between

directly-follows relations whose activities have a minimal distance below or equal

to k and those that only occur further apart from each other. Intuitively, such

latter relations should be avoided when establishing an anonymized directly-

follows distribution, since it would mean that the directly-follows play-out would500

contain process behaviour that stands out from what has been observed in the

underlying event log.

For example, if there is always a considerable distance between occurrences of

the Register (which usually appears as the first activity of a trace) and Release

(usually the last activity) activities, an anonymization procedure should avoid505

placing these activities directly after each other. Otherwise, we would create

traces where a patient is first admitted/registered in a hospital and, afterwards,

immediately released without any treatment.

We use this intuition in conjunction with the exponential mechanism for a

directly-follows query δ, as outlined in Algorithm 3.510

Exponential mechanism for the directly-follows query. The algorithm

takes as input an event log L, a parameter k for the score function and a

parameter ε to determine the privacy protection guarantee. First, the directly-

follows distribution (line 1) is initialized. Next, all directly-follows relations of

the original event log L are separated into utility-preserving Rutil (line 2 and515

harmful Rharm(line 3), depending if their k-follows score is below or equal to, or

22



Algorithm 3: Exponential Mechanism for the Directly-follows Query
input : L, an event log, ε, the privacy parameter; k, the k-follows threshold.

output : dfg′, an anonymized directly-follows distribution.

1 dfg′ ← ∅

2 Rutil ← {(a1, a2, n) ∈ δ(L) | follows−score(a1, a2) ≤ k}

3 Rharm ← {(a1, a2, n) ∈ δ(L) | follows−score(a1, a2) > k}

4 Rutil ← Rutil ∪ Exp(Rharm, score(L, .), ε)

5 foreach (a1, a2, n) ∈ δ(L) do

6 if (a1, a2, n) ∈ Rutil then

7 n′ ← [n+ Lap( 1
ε
)]>0

8 dfg′ ← dfg′ ∪ {(a1, a2, n′)}

9 return dfg′

above the threshold k.

Now, some randomly picked harmful relations from Rharm are added to those

relations that will be preserved Rutil, whose amount depends on the privacy

parameter ε (line 4). After this, the procedure iterates through the directly-520

follows distribution (line 5) and all directly-follows relations captured in Rutil

are considered for further anonymization (line 6). Noise scaled proportionally

to the privacy guarantee ε is added to the considered relations. At the same

time, we enforce that these relations need to have counts above 0, so they need

to be present in the anonymized directly-follows query result (line 7). The525

anonymized directly-follows distribution is updated with the new privatized

occurence count, and the procedure continues with the next relation (line 8).

Once all directly-follows relations have been considered, the anonymized directly-

follows distribution is provided as an output (line 9).

5. Evaluation530

In this section, we evaluate our approaches to control-flow anonymization

with SaCoFa and SaPa, which includes a comparison against the state of the art.

We investigate the utility of the derived trace-variant distributions for process

23



discovery and assess the ability to avoid obvious noise by exploring the frequency

of anomalies.535

Below, we first review the used datasets (Section 5.1) and our experimental

setup (Section 5.2). We then present our experimental results (Section 5.3).

5.1. Datasets

We use three real-world event logs as the basis for our experiments. Table 3

lists some essential properties of these event logs, illustrating also the motivation540

for selecting them: The event logs differ in their size and complexity. The Traffic

Fines log contains data on a very structured process, with just 231 variants over

a total of 150,370 traces. In contrast, the Sepsis log captures an unstructured

hospital-treatment process, containing 846 variants of which the vast majority

occurred just once. Finally, the CoSeLoG log provides a middle ground, with a545

semi-structured process that consists of 116 variants over 1,434 traces.

Table 3: Descriptive statistics for the event logs.

Event Log # Events # Activities # Cases # Variants

CoSeLoG [27] 8,577 27 1,434 116

Sepsis [28] 15,214 16 1,050 846

Traffic Fines [29] 561,470 11 150,370 231

5.2. Experimental Setup

Baselines. We evaluate our approaches against the state of the art for the com-

putation of anonymized trace-variant distributions, as presented by Mannhardt

et al. [14]. It anonymizes the result of a trace-variant query using the Laplace550

mechanism, which is why we refer to this approach as ‘Laplace‘. Furthermore,

we also consider a realization of SaPa using a directly-follows distribution that

was anonymized with the Laplace mechanism, as also suggested by Mannhardt

et al. [14]. We refer to this approach as ‘DF-Laplace’.

Parameter settings. SaCoFa takes four parameters: the strength of the desired555

privacy guarantee ε, an upper bound on the trace-variant length k, and the

24



Table 4: Employed parameter settings.

Log ε k pharmful pharmless

1.0 10 3 /

CoSeLoG 0.1 10 25 22

0.01 10 220 200

1.0 23 4 /

Sepsis 0.1 23 20 15

0.01 23 190 150

1.0 9 2 /

Traffic Fines 0.1 9 20 15

0.01 9 150 120

pruning parameters pharmful and pharmless . Per event log, we set k so that roughly

80-90% of the original trace variants are covered. For each of the employed

privacy guarantees, i.e., ε = {1.0, 0.1, 0.01}, we explored pruning parameters

starting at 2, 20, and 200, respectively, until a configuration was found such that560

the trace-variant query could be executed within several seconds. Overall, this

approach resulted in the parameter settings given in Table 4, which we employed

for our approach and, if applicable, for the baseline techniques.

For SaPa, we consider different values for the k-follows relation parameter,

i.e., k = {1, 2, 3, 4, 5}. However, if the parameter is not mentioned explicitly, we565

use a default value of k = 1.

Evaluation measures. To quantify the efficacy of our work, we primarily

assess the utility of process models discovered on the basis of the anonymized

trace-variant distributions generated by the different techniques. Next to that,

we also consider various measures that quantify characteristics of the privatized570

logs themselves.

To discover a model, we use the Inductive Miner Infrequent [30], a state-of-

the-art technique for process discovery, which is commonly used (and selected

here) because it guarantees process models that are free of deadlocks. The

technique uses noise filtering to remove infrequent behaviour, for which we575

25



select the default threshold of 20%. Given such a discovered model, we use

several metrics to measure its utility. First, we use the F-score in relation to the

original event log, i.e., the harmonic mean of the fitness [31] and precision [32].

These metrics are the most widely-used metrics for process model utility. Also,

we evaluate the generalization [33] of the process models discovered from the580

anonymized trace-variant distributions. For these measures, a score closer to

1 indicates a better result. Finally, as an additional proxy for utility, we use

sequence entropy [34] to measure the complexity of the anonymized logs. It

was shown, that a high level of complexity leads to worse process discovery

results. Therefore, a low complexity score is desirable. The complexity score is585

normalized between 0 and 1, with 1 being the highest level of complexity.

Beyond assessing the utility of discovered process models, we assess the size of

the result by considering the ratio of the number of traces within the anonymized

result and the number of traces in the original log. Therefore, a ratio above one

means that the result size increased through anonymization, whereas a value590

below one hints at a reduction in the number of traces.

Finally, as an additional evaluation dimension, we measure the fraction of

easily-recognizable noise introduced as part of the anonymization. To this end,

we apply a standard anomaly detection technique, which employs isolation

forests [35], to the anonymized result. We train the model on the original595

log, before using it to detect anomalous traces in the anonymized result. As

features in the learning process, we use a binary encoding of the activities,

signalling if they are present in a trace. Moreover, we also encode the presence

of directly-follows dependencies in a trace with a binary encoding.

Implementation. To conduct our experiments, we implemented SaCoFa and600

SaPa in Python. The source code is available on GitHub1 under the MIT license.

Furthermore, we used PM4Py’s [36] implementation of the Inductive Miner and

the evaluation measures. The implementation of the isolation forest is available

1https://github.com/samadeusfp/SaCoFa

26

https://github.com/samadeusfp/SaCoFa


Figure 2: F-score of discovered process models.

in scikit-learn.2

Repetitions. To account for the non-deterministic nature of the algorithms,605

we perform 10 repetitions of all experiments. In the remainder, we report on the

median, the upper quartile, and the lower quartile, using box plots.

5.3. Results

Process Discovery Utility. Fig. 2 depicts the F-scores of the process models

constructed from the anonymized trace-variant distributions derived by the610

different techniques. As shown, SaCoFa outperforms the other techniques con-

siderably, being on par only for the setting with the strongest privacy guarantee

(ε = 0.01) and the most structured process (Traffic Fines).

In particular, we observe major improvements for the two less-structured

processes, which have more activities and longer traces, resulting in significantly615

higher F-scores obtained using SaCoFa, while providing the same privacy guar-

antee as the other techniques. Furthermore, our results also illustrate that,

2https://scikit-learn.org/stable/

27

https://scikit-learn.org/stable/


(a) Laplace baseline.

(b) SaCoFa approach.

Figure 3: Process models obtained for anonymized versions of CoSeLoG (ε = 0.01).

sometimes, the anonymized results lead to higher F-scores than the original log.

The reason being that the Inductive Miner guarantees the generation of a fitting

model, which may result in very low precision values. If an anonymized log620

contains less behaviour, above the threshold adopted by the discovery algorithm

to filter noise, the model becomes more compact. It then shows higher precision

and, therefore, also a higher F-score. We also observe, that SaPa yields slightly

better results than the DF-Laplace mechanism. However, both algorithms based

on directly-follows queries achieve results similar to the direct anonymization of625

the trace-variant query with the Laplace mechanism and are therefore, no match

with the results produced by SaCoFa.

To further illustrate the above results, Fig. 3 shows excerpts of two process

models obtained for the CoSeLoG process under the strongest privacy guarantee

(ε = 0.01). Here, Fig. 3a shows part of the model discovered from the result of630

28



the Laplace baseline, whereas Fig. 3b is based on SaCoFa. As seen, the process

model generated with SaCoFa is much more structured. It starts with a sequence

of activities that, notably, is also the same in the process model generated from

the original event log. In contrast, the model in Fig. 3a is highly unstructured

and strays far from the original process: nearly all activities can start a trace,635

be skipped, or executed multiple times. Therefore, the higher utility of the

process model also comes with a better understandability of the model. This

result further supports the argument that SaCoFa provides the highest utility

for process discovery.

Next, we turn to an assessment of the generalization of the obtained models.640

As illustrated in Fig. 4, the models generated based on the results derived with

SaCoFa are more general than the models generated by the Laplace baseline

technique, i.e., they abstract more from the represented behaviour. SaCoFa also

produces more general models than the two techniques based on the directly-

follows queries, with the exception of the Traffic Fines log, i.e., the most struc-645

tured event log. Combined with the results for the F-score, we conclude that the

results anonymized with SaCoFa have the highest utility for process discovery.

Results generated with SaPa are usually of similar quality as those generated by

the baseline techniques.

As a final measurement for process discovery utility we turn to the complexity650

of the underlying log, measured by sequence entropy. As shown in Fig. 5, for two

out of the three logs, the trace-variant-based approaches lead to less complex logs,

with SaCoFa outperforming the Laplace mechanism. SaPa seems to perform

slightly better than the Laplace counterpart. Overall, the biggest log (Traffic

Fines) is mostly resistant to anonymization in terms of complexity. For the other655

logs, SaCoFa achieves lower complexity than the original logs. We attribute this

to the prefix-tree pruning, which filters a certain amount of noise.

Result Size. Next, we turn to the number of traces in the trace-variant distri-

butions generated by the respective techniques. In Fig. 6, we show the relative

number of traces within the anonymized results generated by SaCoFa, SaPa,660

29



Figure 4: Generalization of discovered process models.

and DF-Laplace. The DF-Laplace approach generally produces distributions

that have nearly the same number of traces as the original log. We can see the

same result for SaPa for all cases, except the unstructured log (Sepsis). However,

even for this log, the anonymized results are also consistent in their size, over

several runs and ε values. Consequently, the introduced error is likely due to the665

play-out procedure for that specific case. On the other hand, SaCoFa produces

anonymized results of very different sizes, especially for strong privacy guarantees

(low ε). The SaCoFa results can contain two to three times more traces than

the original log. This observation does not hold for the Traffic Fines event log,

which may be attributed to the log’s overall larger size.670

We present the results for the baseline that adopts the Laplace mechanism

directly for the trace-variant distribution separately, in Fig. 7, to ensure the

readability of the figures. This approach may produce results that have more

than 200 times more traces than the original log, for small values of ε. Put

30



Figure 5: Complexity of anonymized event logs.

differently, the anonymized results do not provide any reliable information675

about the actual size of the original log. Considering this observation as well

as the high variability in the results obtained with SaCoFa, we conclude that

results generated by playing out an anonymized directly-follows distribution are

beneficial in terms of preserving the number of traces of the log in the obtained

trace-variant distribution.680

Noise Insertion. Next, we turn to the presence of easily-recognizable noise. In

Fig. 8, we show the percentage of behaviour that is classified as normal behaviour

by the aforementioned anomaly detection technique. While all techniques achieve

good results for the Traffic Fines dataset, there is a clear trend for the other two

logs: the Laplace baseline technique produces much more noise that is directly685

recognizable as anomalous. Therefore, the traces introduced by SaCoFa or SaPa

are more in line with the original process’ behaviour.

31



Figure 6: Relative size of anonymized logs compared to the original log

Study of the Exponential Mechanisms. Finally, we investigate technical

aspects of SaCoFa and SaPa. We first turn to an experiment regarding the

effects of semantics-aware pruning for SaCoFa. Fig. 9 shows the F-score of690

models discovered from the anonymized results obtained with and without

pruning. Overall, semantics-aware pruning turns out to only be beneficial for the

Traffic Fines log, which is the most structured one. For the less-structured logs,

the F-score actually decreases in comparison to the approach without pruning.

We attribute this observation to the significance of the rules used to separate695

harmful and harmless prefixes. Apparently, they are not always sophisticated

enough to compensate for the additional variance introduced to the trace-variant

distribution.

For SaPa, we investigated the effects of different values for the k-follows rela-

tion threshold, as employed in the score-function of the exponential mechanism.700

In Fig. 10, the F-score for different thresholds is shown. Overall, no general

trend can be seen. We conclude that our technique is robust against changes in

this parameter, while there is some evidence that a value of k = 1 is generally

beneficial.

32



Figure 7: Relative size of anonymized logs compared to the original log

6. Discussion705

We now turn to a discussion of different observations and characteristics of

our proposed SaCoFa (Section 6.1) and SaPa (Section 6.2) approaches.

6.1. SaCoFa

Runtime aspects. As mentioned in Section 5.2, the employed parameters of

SaCoFa must be selected carefully for trace-variant queries to complete in a710

reasonable time. Specifically, we observed that the anonymization procedure

either terminated within seconds, or not all, for both SaCoFa and the Laplace

trace-variant query. This reveals that there is a clear point when the prefix growth

makes the trace-variant query intractable. Until now, this point is determined

by step-wise altering the maximal variant length (k) and pruning parameters for715

a given ε. Nevertheless, we observe that SaCoFa can compute results for lower

pruning thresholds faster than the Laplace baseline. However, to ensure a fair

comparison, we used the same pruning parameters for all mechanisms in our

experiments.

33



Figure 8: Relative frequency of normal behaviour in event logs.

Figure 9: F-score for configurations with and without pruning of SaCoFa

Non-binary score functions. Beyond determining if a prefix is harmful or720

not, the behavioural appropriateness-based score can be used to quantify its

degree of harmfulness. However, the sensitivity of the exponential mechanism

depends on the maximal impact that a single case can have on the employed

score function, i.e., on the function’s maximal value (see Section 2). Therefore,

if we define a score function that quantifies harmfulness in, e.g., the range [0, 3],725

the query’s sensitivity would thus be ∆f = 3, instead of ∆f = 1 for a binary

assessment. Since the exponential mechanism inserts noise proportional to the

sensitivity, such a non-binary classification leads to larger magnitudes of noise

inserted. Therefore, the intended benefits obtained from quantifying harmfulness

34



Figure 10: F-score for different configurations of SaPa

in a non-binary manner must outweigh the increased sensitivity for it to have730

a noticeable effect. While this did not appear to be the case in our current

experiments, we believe that this approach may still be applicable for more

sophisticated score functions, tailored to the specifics of the process at hand. In

any case, it is important to consider this trade-off while selecting appropriate

pruning parameter values.735

Restrictiveness of longer prefixes. Each activity within a prefix potentially

adds new rules that increase the number of harmful prefixes. Therefore, longer

prefixes tend to be more restricted than shorter prefixes. This observation might

be relevant, since it can create an argument for adjustments of the score-function

for event logs with extremely long traces, for instance by only considering prefix740

expansions that violate two or more behavioural appropriateness-based rules.

Privacy Guarantee. The SaCoFa algorithm anonymizes the retrieved trace-

variant distribution using noisy counts, drawn from a distribution adjusted to

the differential privacy parameter ε and sensitivity of the function ∆f (for trace

variant queries, ∆f=1), taken as input. Therefore, data anonymized in this745

manner is known to be protected by ε-differential privacy [13]. However, one can

35



argue that the actual protection may be stronger. The reason for this is that

the pruning used by SaCoFa means that uncommon variants are less likely to

be present in the final output of the algorithm, which reduces the difference in

output between neighboring logs. Consequently, the pruning part of SaCoFa750

might even lead to a slightly higher privacy protection than chosen by the user.

6.2. SaPa

Unused directly-follows relations. One consequence of the play-out algo-

rithm of SaPa is that some directly-follows relations are not considered for the

final trace-variant distribution. As shown in Section 5, the approach was still755

able to generate trace-variant distributions with a reasonable utility. However,

we believe it is important to notice this inherent information loss. It may be

possible to minimize this loss through more sophisticated play-out algorithms,

which involves some of the considerations discussed below.

Guided play-out algorithms. It is important to notice that the privacy760

guarantee for SaPa was given for the anonymized directly-follows distribution.

Therefore, this distribution can be processed in any way possible, assuming that

no other information about the event log is added. However, if the play-out

algorithm would somehow be guided by information extracted from the original

data, this would subsequently intervene with the given assumption, and thus765

with the privacy guarantee. Consequently, the privacy of the individuals would

be harmed by more than allowed for by ε. Contrary, information extracted based

on the labels of the activity, would not devalue the given privacy guarantee,

since these informations are publicly revealed and therefore public knowledge.

Therefore, for the development of play-out using additional information, it is770

necessary to extract the used information only from the anonymized distribution,

i.e. by heuristics that minimize the number of unused directly-follows relations,

or by usage of activity labels [37].

Sensitivity of the directly-follows query. The sensitivity, i.e., the maximum

impact an individual may have on the query result needs to be known in advance775

36



when applying differential privacy. For a trace-variant query, we assume this to

be ∆f = 1, i.e., one individual is only represented by exactly one trace. While

this may not always be the case, it was shown that a strong privacy protection

can still be given, without raising the sensitivity [21]. However, determining the

maximum influence one individual may have on a directly-follows distribution,780

is more complex. Even if the assumption of one individual being represented

by one trace holds, some directly-follows relations could be impacted by values

far higher than 1 due to loops in the underlying process. Therefore, fixing the

sensitivity to ∆f = 1 might not be appropriate for processes involving a lot of

loops. In such cases, it is either necessary to adjust the sensitivity accordingly785

or stick to SaCoFa, which by design is more robust.

Privacy Guarantee. In SaPa, the trace-variant distribution is retrieved from

a differential private directly-follows distribution. Since differential private data

is immune to post-processing, i.e., the guarantees remain when additional opera-

tions are applied afterwards, the final result of SaPa is therefore also protected790

by differential privacy [13]. Nonetheless, as discussed in the previous paragraph,

setting the sensitivity ∆f right for directly-follows queries is challenging and an

incorrect setting can lead to a drop in the given privacy-guarantee.

7. Related Work

We introduced several approaches for control-flow anonymization that answers795

trace-variant queries, while guaranteeing differential privacy. The state of the

art to derive a trace-variant distribution, and the related directly-follows graph,

under differential privacy, uses the Laplace mechanism [14]. As discussed, this

neglects a process’ semantics, leading to potentially low data utility and noise that

can be easily recognized. Another alternative approach aims at only publishing800

the trace-variants present in the original log, by oversampling [38]. Such an

approach does not produce any new trace-variant, therefore risking the leakage of

information, because the knowledge of a original sub-sequence of a trace-variant

may leak the whole variant. Consequently, the approach is not comparable with

37



the presented approaches and was not considered in the evaluation. Besides these805

studies of trace-variant queries, Elkoumy et al. [39] further studied the relation

between utility and risk, while the PRIPEL framework [40] uses trace-variant

queries as a basis for privacy-preserving event log publishing.

Beyond differential privacy, the anonymization of event logs based on other

privacy guarantees was studied. PRETSA [41] sanitizes event logs to ensure810

k-anonymity and t-closeness, which are guarantees based on the idea of grouping

similar cases together. Furthermore, a process mining-specific extension of k-

anonymity, called TLKC, was introduced in [42]. Previous work focused on

improving the utility of these techniques through feature learning-based distance

metrics [43]. Another group-based approach was introduced by Batista et al. [44],815

based on the uniformization of events within a group of individuals. The issue

of continuously publishing anonymized event logs was studied in [45].

Approaching privacy preservation from the viewpoint of the analysis tech-

niques used in process mining, it was shown how multi-party computation

enables the construction of process models based on inter-organizational pro-820

cesses, without sharing the data between parties [46]. The same problem was

also addressed to specialized hardware, that ensures a trusted execution[47].

Other approaches target privacy-aware role mining [48] and the establishment

of privacy-aware process performance indicators through the enforcement of

differential privacy [49].825

The application of privacy-preserving process mining towards the healthcare

domain was studied by Pika et al. [50] . Furthermore, several tools have been

developed to support the application of privacy-preserving process mining such as

ELPaaS [51], Shareprom [52] and PC4PM [53]. Further practical considerations

of publishing anonymized event logs have been discussed in [54].830

8. Conclusion

Targeting control-flow anonymization for business processes, we introduced

two approaches to answer trace-variant queries in a privacy-preserving manner.

38



First, we introduced SaCoFa, an approach based on a prefix tree construction and

the exponential mechanism. Unlike state-of-the-art techniques that leverage the835

Laplace mechanism and, hence, introduce random noise to achieve differential

privacy, SaCoFa incorporates the semantics of the underlying process when

inserting noise, achieving the same privacy guarantee. To this end, we introduced

a score function that differentiates prefixes as being harmful or harmless, which

then guides the anonymization.840

Second, we presented SaPa, an approach to anonymize trace-variant queries

based on the play-out of anonymized directly-follows distributions. Again, we

showed how to incorporate a process’ semantics in the noise-insertion procedure.

This is achieved through a score function that nudges towards the consideration

of entries of the directly-follows relation that relate to activities that appear845

close to each other in the original event log. However, the main benefits of SaPa

lay in its better practical applicability and the preservation of properties in the

generated anonymized trace-variant distribution in terms of the number of traces.

The latter aspect is of particular relevance for many analysis scenarios.

Our evaluation experiments highlight that process models generated based850

on control-flow behavior anonymized with SaCoFa have higher utility than those

obtained with the state of the art. At the same time, they are more general

and, hence, abstract better from the behavior represented in the event log.

Although the utility achieved by SaPa can be lower compared to SaCoFa, SaPa

generates distributions that are close to the original event log in terms of the855

number of traces. Moreover, we showed that SaCoFa and SaPa introduce less

easily-recognizable noise in comparison to the state of the art.

In terms of limitations, our approaches assume a static number of traces

corresponding to the same individual and due to privacy considerations insert

new behavior into the anonymized logs. As future work, we aim to investigate860

the development of other metrics that can be employed as score functions for

SaCoFa or SaPa, so the mechanisms can be further tailored towards specific

analytical properties. Furthermore, the development of play-out algorithms to

minimize the loss of directly-follows relations through SaPa provides a potential

39



angle to improve our work. Finally, while we have shown improvement in terms865

of the measured utility of anonymization through SaPa and SaCoFa it is still an

open question how analysts can best utilize anonymized process mining results

and deal with the injected noise.

Acknowledgements

This work was partially funded by the German Research Foundation (DFG),870

project 421921612, and the Leibniz Association as part of the Berlin Centre for

Consumer Policies (BCCP). The authors are grateful to Felix Oesinghaus for

his contributions to the implementation of the approaches and his support in

preliminary experiments.

References875

[1] W. Van Der Aalst, Process mining: Overview and opportunities, ACM

Transactions on Management Information Systems (TMIS) 3 (2) (2012)

1–17.

[2] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. M. Maggi, A. Marrella,

M. Mecella, A. Soo, Automated discovery of process models from event logs:880

Review and benchmark, IEEE TKDE 31 (4) (2018) 686–705.

[3] J. Carmona, B. F. van Dongen, A. Solti, M. Weidlich, Conformance Checking

- Relating Processes and Models, Springer, 2018.

[4] M. T. Wynn, A. Rozinat, W. M. P. van der Aalst, A. H. M. ter Hofstede,

C. J. Fidge, Process mining and simulation, in: Modern Business Process885

Automation - YAWL and its Support Environment, Springer, 2010, pp.

437–457.

[5] I. Teinemaa, M. Dumas, M. L. Rosa, F. M. Maggi, Outcome-oriented

predictive process monitoring: Review and benchmark, ACM Trans. Knowl.

Discov. Data 13 (2) (2019) 17:1–17:57.890

40



[6] S. A. Fahrenkrog-Petersen, N. Tax, I. Teinemaa, M. Dumas, M. de Leoni,

F. M. Maggi, M. Weidlich, Fire now, fire later: alarm-based systems for

prescriptive process monitoring, Knowl. Inf. Syst. 64 (2) (2022) 559–587.

[7] P. Voigt, A. Von dem Bussche, The EU general data protection regula-

tion (GDPR), A Practical Guide, 1st Ed., Cham: Springer International895

Publishing.

[8] E. Goldman, An introduction to the California Consumer Privacy Act

(CCPA), Santa Clara Univ. Legal Studies Research Paper.

[9] S. N. von Voigt, S. A. Fahrenkrog-Petersen, D. Janssen, A. Koschmider,

F. Tschorsch, F. Mannhardt, O. Landsiedel, M. Weidlich, Quantifying the900

re-identification risk of event logs for process mining, in: CAiSE, Springer,

2020, pp. 252–267.

[10] G. Elkoumy, S. A. Fahrenkrog-Petersen, M. F. Sani, A. Koschmider,

F. Mannhardt, S. N. von Voigt, M. Rafiei, L. von Waldthausen, Privacy and

confidentiality in process mining: Threats and research challenges, ACM905

Trans. Manag. Inf. Syst. 13 (1) (2022) 11:1–11:17.

[11] L. Sweeney, k-anonymity: A model for protecting privacy, International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10 (05)

(2002) 557–570.

[12] N. Li, T. Li, S. Venkatasubramanian, t-closeness: Privacy beyond k-910

anonymity and l-diversity, in: ICDE, IEEE, 2007, pp. 106–115.

[13] C. Dwork, Differential privacy: A survey of results, in: International confer-

ence on theory and applications of models of computation, Springer, 2008,

pp. 1–19.

[14] F. Mannhardt, A. Koschmider, N. Baracaldo, M. Weidlich, J. Michael,915

Privacy-preserving process mining, Business & Information Systems Engi-

neering 61 (5) (2019) 595–614.

41



[15] S. A. Fahrenkog-Petersen, M. Kabierski, F. Rösel, H. van der Aa, M. Wei-

dlich, SaCoFa: Semantics-aware control-flow anonymization for process

mining, in: ICPM, IEEE, 2021, pp. 72–79.920

[16] I. Wagner, D. Eckhoff, Technical privacy metrics: a systematic survey, ACM

Computing Surveys (CSUR) 51 (3) (2018) 1–38.

[17] D. Team, et al., Learning with privacy at scale (2017).

URL https://machinelearning.apple.com/2017/12/06/

learning-with-privacy-at-scale925

[18] S. Kessler, J. Hoff, J.-C. Freytag, Sap hana goes private: from privacy

research to privacy aware enterprise analytics, Proceedings of the VLDB

Endowment 12 (12) (2019) 1998–2009.

[19] Ú. Erlingsson, V. Pihur, A. Korolova, Rappor: Randomized aggregatable

privacy-preserving ordinal response, in: ACM SIGSAC, 2014, pp. 1054–1067.930

[20] F. McSherry, Privacy integrated queries: an extensible platform for privacy-

preserving data analysis, in: U. Çetintemel, S. B. Zdonik, D. Kossmann,

N. Tatbul (Eds.), ACM SIGMOD, ACM, 2009, pp. 19–30.

[21] H. B. Kartal, X. Liu, X.-B. Li, Differential privacy for the vast majority,

ACM Transactions on Management Information Systems (TMIS) 10 (2)935

(2019) 1–15.

[22] F. McSherry, K. Talwar, Mechanism design via differential privacy, in:

FOCS, IEEE, 2007, pp. 94–103.

[23] A. Rozinat, W. M. P. van der Aalst, Conformance checking of processes

based on monitoring real behavior, Inf. Syst. 33 (1) (2008) 64–95.940

[24] M. Weidlich, J. M. E. M. van der Werf, On profiles and footprints - relational

semantics for petri nets, in: PETRI NETS, Springer, 2012, pp. 148–167.

42

https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale


[25] A. Polyvyanyy, M. Weidlich, R. Conforti, M. L. Rosa, A. H. M. ter Hofstede,

The 4C spectrum of fundamental behavioral relations for concurrent systems,

in: PETRI NETS, Springer, 2014, pp. 210–232.945

[26] H. van der Aa, H. Leopold, H. A. Reijers, Checking process compliance

against natural language specifications using behavioral spaces, Inf. Syst.

78 (2018) 83–95.

[27] J. Buijs, Receipt phase of an environmental permit application pro-

cess (‘WABO’), CoSeLoG project (8 2014). doi:10.4121/uuid:950

a07386a5-7be3-4367-9535-70bc9e77dbe6.

[28] F. Mannhardt, Sepsis cases-event log, Eindhoven Univer-

sity of Technology. Dataset (2016) 227–228doi:10.4121/uuid:

915d2bfb-7e84-49ad-a286-dc35f063a460.

[29] M. M. De Leoni, F. F. Mannhardt, Road traffic fine management process955

(2015). doi:10.4121/UUID:270FD440-1057-4FB9-89A9-B699B47990F5.

[30] S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Discovering block-

structured process models from event logs containing infrequent behaviour,

in: BPM Workshops, 2013, pp. 66–78.

[31] A. Berti, W. M. van der Aalst, Reviving token-based replay: Increasing960

speed while improving diagnostics., in: ATAED@ Petri Nets/ACSD, 2019,

pp. 87–103.

[32] J. Munoz-Gama, J. Carmona, A fresh look at precision in process confor-

mance, in: BPM, Springer, 2010, pp. 211–226.

[33] J. C. Buijs, B. F. van Dongen, W. M. van der Aalst, Quality dimensions965

in process discovery: The importance of fitness, precision, generalization

and simplicity, International Journal of Cooperative Information Systems

23 (01) (2014) 1440001.

43

http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/UUID:270FD440-1057-4FB9-89A9-B699B47990F5


[34] A. Augusto, J. Mendling, M. Vidgof, B. Wurm, The connection between

process complexity of event sequences and models discovered by process970

mining, Information Sciences 598 (2022) 196–215.

[35] F. T. Liu, K. M. Ting, Z.-H. Zhou, Isolation forest, in: ICDM, IEEE, 2008,

pp. 413–422.

[36] A. Berti, S. J. van Zelst, W. van der Aalst, Process mining for python

(pm4py): bridging the gap between process-and data science, arXiv preprint975

arXiv:1905.06169.

[37] H. van der Aa, A. Rebmann, H. Leopold, Natural language-based detection

of semantic execution anomalies in event logs, Inf. Syst. 102 (2021) 101824.

[38] G. Elkoumy, A. Pankova, M. Dumas, Mine me but don’t single me out:

Differentially private event logs for process mining, in: ICPM, IEEE, 2021,980

pp. 80–87.

[39] G. Elkoumy, A. Pankova, M. Dumas, Privacy-preserving directly-follows

graphs: Balancing risk and utility in process mining, arXiv preprint

arXiv:2012.01119.

[40] S. A. Fahrenkrog-Petersen, H. van der Aa, M. Weidlich, PRIPEL: Privacy-985

preserving event log publishing including contextual information, in: BPM,

Springer, 2020, pp. 111–128.

[41] S. A. Fahrenkrog-Petersen, H. van der Aa, M. Weidlich, PRETSA: event

log sanitization for privacy-aware process discovery, in: ICPM, IEEE, 2019,

pp. 1–8.990

[42] M. Rafiei, W. M. van der Aalst, Group-based privacy preservation techniques

for process mining, Data & Knowledge Engineering 134 (2021) 101908.

[43] F. Rösel, S. A. Fahrenkog-Petersen, H. v. d. Aa, M. Weidlich, A distance

measure for privacy-preserving process mining based on feature learning, in:

BPM Workshops, Springer, 2021, pp. 73–85.995

44



[44] E. Batista, A. Solanas, A uniformization-based approach to preserve indi-

viduals’ privacy during process mining analyses, Peer-to-Peer Networking

and Applications (2021) 1–20.

[45] M. Rafiei, W. M. van der Aalst, Privacy-preserving continuous event data

publishing, arXiv preprint arXiv:2105.11991.1000

[46] G. Elkoumy, S. A. Fahrenkrog-Petersen, M. Dumas, P. Laud, A. Pankova,

M. Weidlich, Secure multi-party computation for inter-organizational process

mining, in: BPMDS, Springer, 2020, pp. 166–181.

[47] M. Müller, A. Simonet-Boulogne, S. Sengupta, O. Beige, Process mining

in trusted execution environments: Towards hardware guarantees for trust-1005

aware inter-organizational process analysis, in: ICPM Workshops, 2021.

[48] M. Rafiei, W. M. van der Aalst, Mining roles from event logs while preserving

privacy, in: BPM Workshops, Springer, 2019, pp. 676–689.

[49] M. Kabierski, S. A. Fahrenkrog-Petersen, M. Weidlich, Privacy-aware pro-

cess performance indicators: Framework and release mechanisms, in: CAiSE,1010

Springer, 2021, pp. 19–36.

[50] A. Pika, M. T. Wynn, S. Budiono, A. H. Ter Hofstede, W. M. van der Aalst,

H. A. Reijers, Privacy-preserving process mining in healthcare, International

journal of environmental research and public health 17 (5) (2020) 1612.

[51] M. Bauer, S. A. Fahrenkrog-Petersen, A. Koschmider, F. Mannhardt,1015

H. van der Aa, M. Weidlich, Elpaas: Event log privacy as a service, in:

BPM Demos, Vol. 2420, CEUR-WS.org, 2019, pp. 159–163.

[52] G. Elkoumy, S. A. Fahrenkrog-Petersen, M. Dumas, P. Laud, A. Pankova,

M. Weidlich, Shareprom: A tool for privacy-preserving inter-organizational

process mining, in: BPM Demos, Vol. 2673, CEUR-WS.org, 2020, pp. 72–76.1020

[53] M. Rafiei, A. Schnitzler, W. M. P. van der Aalst, PC4PM: A tool for

privacy/confidentiality preservation in process mining, in: BPM Demos,

Vol. 2973, CEUR-WS.org, 2021, pp. 106–110.

45



[54] M. Rafiei, W. M. van der Aalst, Privacy-preserving data publishing in

process mining, in: BPM Forum, Springer, 2020, pp. 122–138.1025

46


	Introduction
	Background
	Semantics-aware Control-flow Anonymization
	The SaCoFa Algorithm
	A Semantics-aware Score Function
	Semantics-aware Pruning

	Directly-follows-based Control-flow Anonymization
	Generating Trace Variants based on Play-out
	Exponential Mechanism for Directly-follows-Query

	Evaluation
	Datasets
	Experimental Setup
	Results

	Discussion
	SaCoFa
	SaPa

	Related Work
	Conclusion

