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Abstract—LTE-U/WiFi coexistence can be significantly im-
proved by placing so-called coexistence gaps in space through
cross-technology interference-nulling (CTIN) from LTE-U BS
towards WiFi nodes. Such coordinated co-existence scheme
requires, for the exchange of control messages, a cross-technology
control channel (CTC) between LTE-U and WiFi networks which
was presented recently. However, it is unclear how a practical
CTIN operates in the absence of channel state information which
is needed for CTIN but cannot be obtained from the CTC.
We present XZero, the first practical CTIN system that is able
to quickly find the suitable precoding configuration used for
interference nulling without having to search the whole space
of angular orientations. XZero performs a tree-based search to
find the direction for the null beam(s) by exploiting the feedback
received from the WiFi AP on the tested null directions. We
have implemented a prototype of XZero using SDR platform
for LTE-U and commodity hardware for WiFi and evaluated its
performance in a large indoor testbed. Evaluation results reveal
on average a reduction by 15.7 dB in interference-to-noise ratio
at the nulled WiFi nodes when using a ULA with four antennas.
Moreover, XZero has a sub-second reconfiguration delay which is
up to 10× smaller as compared to naive exhaustive linear search.

I. INTRODUCTION

As LTE operators have been expanding their operation to
unlicensed spectrum via carrier aggregation, ensuring coexis-
tence in the unlicensed bands has become a big challenge,
particularly with WiFi networks which carry a significant
fraction of current mobile data traffic and thereby are vital
to communications [1]. A significant body of research, e.g.,
[2], [3], develops solutions for this key issue and the common
approach is to employ so-called coexistence gaps in either
time, frequency, space, or code domains. Coexistence gap
refers to a resource block (in one of the above-listed domains)
which one network leaves to the other’s use. LTE-U applies
duty-cycling to fairly share the medium with the colocated
WiFi networks [4], i.e., uses time domain coexistence gaps.

In our recent work [5], we showed that LTE-U/WiFi co-
existence can be significantly improved by placing coexis-
tence gaps in space through cross-technology interference-
nulling (CTIN) from LTE-U BS towards WiFi nodes. Nulling
removes the co-channel interference from LTE-U towards the
nulled WiFi nodes; hence co-existence can be significantly
improved. Consequently, the LTE-U network is able to use
a larger duty-cycle in comparison to the usual one computed
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Fig. 1. Architecture of XZero: LTE-U BS performs cross-technology
interference-nulling towards co-located WiFi nodes. Signaling information is
exchanged over cross-technology control channel (CTC).

according to LTE-U’s CSAT algorithm as the nulled WiFi node
is effectively being removed from the system. But, using some
of its degrees of freedom for nulling, the SNR towards its
own UEs is slightly decreased. However, as long as the gain
from increased CSAT cycle outweighs the SNR loss, nulling
improves the capacity of LTE cell without deteriorating that
of the WiFi cell. Moreover, under certain circumstances the
sum/total capacity of the two networks can be increased [5].

Despite its promises, CTIN has its own challenges to be
realized in a practical system. First, such coordinated co-
existence scheme requires a cross-technology control chan-
nel (CTC) between LTE-U and WiFi which is needed to
exchange CTIN control information between both networks.
Unfortunately such a CTC is missing in the standard WiFi/LTE
implementations. Luckily, a recent work [6] designs a CTC,
named LtFi, which facilitates communication between LTE
and WiFi networks. Unfortunately, the channel state informa-
tion (CSI) at the LTE-U BS towards the WiFi node to be nulled
is needed for CTIN but it cannot be obtained from the CTC
as only the amplitude of the signal is available.

Previous works overcame this challenge (i.e., lack of CSI for
nulling) by exploiting channel reciprocity for estimating the
interferer’s channel ratio [7] which is sufficient to compute
nulling precoding vector. However, nulling in TIMO [7] is
possible only if the colocated technology has a bidirectional
communication as channel reciprocity is exploited to estimate
the channel ratios and it needs time for channel estimation in
the order of a few seconds. It remains unclear how TIMO’s
approach of utilizing channel ratios can be generalized to more
than two antennas and multiple user nulling without requiring
a high overhead [8]. In contrast, we design in the present paper
XZero which does not exhibit these shortcomings as LTE-U



BS does not estimate channel ratios but rather relies on a null
search using the feedback from the WiFi nodes to be nulled.

Contributions: We present XZero, the first low-complexity
solution enabling cross-technology interference nulling from
LTE-U towards WiFi nodes. XZero is able to quickly, e.g.,
in sub-seconds, find a proper precoding configuration used
for interference nulling without having to search the whole
angular space. Instead of an exhaustive linear null search,
XZero performs a tree-based search to find proper beam-
forming configuration for nulling the preferred WiFi nodes.
We implemented a prototype of XZero and evaluated its
performance in a large indoor testbed. Our experiments show
that XZero is able to decrease the interference-to-the-noise ra-
tio (INR) at the WiFi nodes drastically, e.g., on the average
15.7 dB. Moreover, XZero is very fast compared to a naive
linear search which tests sequentially each candidate nulling
configuration. Another merit of XZero is its UE-transparent
operation: LTE BS can simultaneously continue its downlink
transmission while searching for the nulling angle.

II. BACKGROUND ON LTE-U AND LTFI

A. LTE-U/WiFi Coexistence Primer

LTE-U is being defined by the LTE-U forum [9] as the
first cellular solution operating in the unlicensed bands for the
downlink (DL) traffic. The LTE carrier aggregation framework
supports utilization of the unlicensed band as a secondary
cell in addition to the licensed anchor serving as the primary
cell. The LTE-U channel bandwidth is set to 20 MHz which
corresponds to the smallest channel width in WiFi. LTE-U
enables coexistence with WiFi by means of dynamic channel
selection and adaptive duty cycling. For the latter, a mech-
anism called carrier sense adaptive transmission (CSAT) is
used to adapt the duty cycle, by modifying the Ton , and Toff

values where Tcsat = Ton + Toff , to achieve fair sharing with
WiFi and other LTE-U networks. More specifically, LTE-U
adapts its Ton value according to the observed WiFi medium
utilization and number of WiFi nodes [10]. Note that the
LTE-U transmissions take place only during the Ton phase.
This is different to WiFi which applies a listen-before-talk
(LBT) scheme. According to [10], a CSAT period Tcsat of 40,
80, or 160 ms is recommended. Finally, the LTE-U transmis-
sions contain frequent gaps during the Ton phase (so called
subframe puncturing), which allow WiFi to transmit delay-
sensitive data. At least 2 ms puncturing has to be applied every
20 ms according to Qualcomm’s proposal [10]. Please refer to
[4] for more details on LTE in the unlicensed spectrum.

B. LtFi Primer

LtFi [6] is a system which enables to set-up a cross-
technology control channel (CTC) between co-located LTE-U
and WiFi networks for the purpose of cross-technology col-
laboration, e.g., radio resource and interference management.
It is fully compliant with LTE-U technology, and works with
WiFi commodity hardware by utilizing the spectrum scanning
capability of modern WiFi NICs (e.g. Atheros 802.11n/ac).

The LtFi architecture consists of two parts, namely an air and
a wired interface. The former is used for over-the-air broadcast
transmission of configuration parameters (i.e. IP address)
from LTE-U BSs to co-located WiFi APs which decode this
information by utilizing their spectrum scanning capabilities.
This configuration data is needed for the subsequent step to
set-up a bi-directional control channel between the WiFi nodes
and the corresponding LTE-U BSs over the wired backhaul,
e.g. Internet. Note that a WiFi node, i.e., LtFi receiver, can
measure on its air-interface the LTE-U signal’s power for each
WiFi OFDM subcarrier |hi|2 during both LTE-U’s Ton and
Toff phase. Please refer to [6] for more details on LtFi.

III. ILLUSTRATIVE EXAMPLE

We consider a coexistence setting as in Fig. 1 which consists
of an LTE-U network and a WiFi network both operating in
the same unlicensed spectrum. In this setting, our goal is to
enable LTE-U BS to apply beamforming towards its users
while nulling its interference on selected WiFi nodes 1. Before
going into details, let us explain XZero using an example.

The major challenge of applying cross-technology interfer-
ence nulling from LTE-U towards WiFi is the missing complex
channel state information (CSI) which cannot be obtained from
the LtFi CTC air-interface. Hence, XZero employs an indirect
approach using a random nulling scheme together with a tree
search. Fig. 2 shows how XZero estimates the nulling direction
(1◦ in this example) by performing a tree-based search where
the LTE-U BS is equipped with Uniform Linear Array (ULA)
with K = 8 antennas. It executes null sweeps in multiple steps.
Specifically, it starts with a “wide” null (beam) pattern to do a
tree search and narrow the beam in subsequent steps. In case
of symmetric ULA, we break at level 1 the range from -90◦ to
90◦ into three sectors. Each sector is again split up in smaller
sectors at the next level, e.g. at level 2 the range from -30◦ to
30◦ is split up into three sectors. Note that the number of nulls
at each level are different, i.e. 6, 4, 2, and 1. This is needed
to guide the null-beam search in the right subtree, i.e., there
is exactly one sector giving the lowest interference-to-noise
ratio (INR) at each tree level. A null beam configuration is kept
for the duration of a single LTE-U cycle period, Tcsat . After
testing all nulling configurations at a particular level, the WiFi
node reports the sector having the lowest INR to the LTE-U
BS through LtFi’s wired interface. Next, BS continues its null
search in the subtree of the reported nulling configuration.
The algorithm stops after testing all leaf nodes. Note that leaf
nodes have just a single null. Our tree-based search is similar
to [11] except that we search for null beams.

IV. SYSTEM MODEL

We consider a system consisting of a single LTE-U BS and
a colocated WiFi BSS (AP with multiple STAs) as depicted
in Fig. 1. BS and AP are connected to a wired backhaul
and are able to exchange messages over the backhaul with

1Note, we assume that the LTE-U BS has already decided on which nodes
to null and we concentrate on the actual step of nulling. Please refer to [5]
for more on how the nodes can be selected for nulling.
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Fig. 2. Illustrative example of XZero null search algorithm (K=8 antennas). The WiFi AP is to be nulled and it is located at 1◦ from the LTE-U BS.

a delay of τb ms. Both the LTE-U and the WiFi cell operate
on the same unlicensed channel with bandwidth of 20 MHz.
The BS is equipped with a Uniform Linear Array (ULA)
with K antenna elements. The AP is equipped with a single
antenna. The transmit power budget for the BS is Pl, i.e.,
transmit power after precoding sums up to Pl. For the BS,
we consider the DL case where it adjusts the transmitted
signal by means of precoding in order to achieve interference
nulling. The precoding weights can be assigned on a per Radio
Resource Block (RRB) level. The total number of RRBs is
NRRB. LTE-U applies adaptive duty cycling as described in
Section II-A. As mentioned in Section II-B, the AP is able to
measure the received signal power of frames sent over the CTC
air-interface on a per WiFi OFDM subcarrier granularity, i.e.,
|hs|2, s=1 . . .NSC, where NSC is the number of subcarriers.

V. XZERO’S ARCHITECTURE

A. Overview of XZero

The main objective of XZero is to improve the co-existence
between co-located LTE-U and WiFi networks. To this end,
it performs at the LTE-U BS interference nulling towards co-
located WiFi nodes (Fig. 1). As a consequence, the BS is able
to increase its CSAT duty cycle [5]. Another goal is to make
sure that the performance of both networks is not significantly
deteriorated during the null search. Hence, instead of searching
with a beam (e.g., in contrast to [11]) we are searching with

nulls to ensure that WiFi is not affected. To avoid degradation
in LTE network throughput during the null search, the signal
towards the LTE UE is always beamformed (cf. Fig. 1). Hence,
an LTE-UE can continue to receive its DL traffic while BS is
null searching. XZero requires no modifications to the WiFi
besides the support of LtFi CTC. On the BS side, we assume
the existence of an SDR platform which gives the possibility to
perform antenna precoding. All required signaling information
is exchanged using the LtFi system.

B. Precoding Vectors

As shown in the example from Section III, the BS performs
a tree-based null search to find the best nulling configuration.
In XZero, the precoding vector is computed using LCMV
beamformer [12] as it allows us to put the signal in the desired
direction (i.e., UE) and to place nulls into other directions,
i.e., WiFi nodes. The inputs to the LCMV are the direction
of arrival angles. In XZero, the precoding weight vectors
w ∈ C1×K are precomputed and stored in a tree data structure.
During the null-search the tree is traversed.

C. Power Correction

In free space environment without multipath reflections, the
so far described approach is able to find the correct nulling
angle (for each LTE-U RB/SC), i.e., good INR values after
nulling. However, this is not the case in a real environment



with significant multipath resulting in frequency-selective fad-
ing. This is because so far we do not take the geometry of the
environment into account.

Hence, before performing the actual null-search, we mea-
sure the power on each antenna path independently. Therefore,
the BS is transmitting its signal on each transmitter antenna
alternately. The WiFi node to be nulled estimates the receive
power |hks |2 of each antenna path k on each WiFi OFDM
subcarrier s. This information is feedbacked to the LTE-U BS
which is using it to correct the precoding values so that the
power in each antenna path stays the same. However, the dif-
ference between the WiFi and LTE PHY layer, i.e., subcarrier
and RB orientation, poses a challenge for XZero in this step.
In WiFi, each 20 MHz channel accommodates 64 subcarriers
each with 312.5 kHz bandwidth whereas an LTE channel with
20 MHz bandwidth consists of RBs with 180 kHz bandwidth
and 15 kHz subcarriers. To have a mapping between the
measured signal at the WiFi receiver and LTE transmitter RB,
we find the subcarrier ŝ that has the closest central frequency to
that of the LTE RB r, i.e., ŝ = arg mins∈NSC |fc(r)− fc(s)|
where fc(·) gives the center frequency of a WiFi subcarrier
or RRB. Note that one could apply other methods for a more
accurate estimation, e.g., extrapolation from 312.5 kHz to 180
kHz values. However, this aspect is out of scope for this paper.

Let W denote the BS’s actual precoding weight matrix:
W ∈ CK×NRRB, where NRRB is the total number of LTE
RRBs. Then, we calculate the column r corresponding to RRB
r of the corrected weight matrix as follows:

Wr=w �
(
|h0s|2

|hs|2

) 1
2

, where s= arg min
s∈NSC

|fc(r)−fc(s)| (1)

where w is the precomputed precoding vector (Sec. V-B) and
� being the element-wise multiplication.

In a final step, we normalize to ensure power after precoding
sums up to the transmit power budget:

W ∗r =
Wr

‖Wr‖F
(2)

where ‖ · ‖F denotes the Frobenius norm.

D. Standard Mode of Operation

Fig. 3 shows the standard operation of XZero. The LTE-U
and WiFi networks collaborate over the LtFi wired control
channel. In case the decision was made to null the WiFi
node, the power measurement phase starts at the end of which
the BS knows the power on each antenna path and hence is
able to correct the precomputed precoding values as described
in Sec. V-C. Note that during that phase no precoding is
applied. The subsequent step is tree-based null beam search
during which the BS performs different nulling configurations.
WiFi AP feedbacks the ID of the configuration having the
lowest INR value. The search stops after testing the single
null configurations, i.e., leaves. Finally, from all tested nulling
configurations, the one achieving the lowest INR value is used.
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Fig. 3. The LTE-U and WiFi networks are collaborating with each other over
the LtFi wired control channel. The process starts when the decision to null a
particular WiFi node is made. Before the actual null-search, there is a phase
where the receive power on each antenna path is measured.

Fig. 4. Searching multiple users. Only the black nodes are visited.

E. Null Beam Search for Multiple Stations

In case there are multiple users to be nulled at the WiFi
cell, XZero can search in parallel to incur a lower recon-
figuration delay compared to sequential search for multiple
users. Fig. 4 shows how the tree search is executed for nulling
four stations— STA1 to STA4. In this example, STA1 and
STA2 are in a similar angular location relative to the LTE-BS
and STA-4 is at a separate angular orientation compared to
the remaining three stations. Here, we can see that multiple
subtrees are expanded in parallel. This is especially beneficial
in case multiple WiFi nodes are co-located, i.e., at the same
angular direction, where XZero achieves faster configuration
than sequential execution of tree-search for each user. Unfor-
tunately, in the multi-user searching case the proposed power
correction (Sec. V-C) cannot be applied resulting in slight
degradation in INR per user (Sec. VII).

F. Extensions to LtFi

For the purpose of XZero additional frame types were
introduced in LtFi: i) power measurement and ii) null-beam
search. The former is sent by the BS in preparation of
the actual null-beam search to measure the power on each
antenna path so that the precomputed precoding vectors can
be corrected as suggested in Sec. V-C. The null-beam search



frame marks the start of the tree-based during which different
null-beam configurations are tested.

VI. IMPLEMENTATION DETAILS

We present details of our XZero prototype implementation.

LTE-U BS: The LTE-U BS was implemented on Ubuntu
16.04 LTS using srsLTE [13], the open-source software-based
LTE stack implementation, running on top of USRP software-
defined radio platform, namely X310.2 In particular, we
modified srsLTE to implement LTE-U’s duty-cycled channel
access scheme, where we provide an API to program the
duration of Ton and Toff of single LTE-U period as well
as the relative position of the puncturing during Ton phase.
Moreover, the API allows setting the antenna precoding per
RRB to be used during the LTE-U’s Ton phase in real-time
using UniFlex [14] control framework. We implemented LtFi
and the actual functionality of XZero, i.e., the tree-based null
search, as Python-based applications.

WiFi AP: At the WiFi side, we use Ubuntu 16.04 LTS and
commodity hardware, namely Atheros AR928X wireless NIC,
that allows spectrum scanning at a very fine granularity.3

We sample with frequency of 5-50 kHz4 and pass this data
to LtFi receiver component which is implemented entirely
in Python. Note that we disabled Atheros Adaptive Noise
Immunity (ANI). The LtFi receiver component reports the INR
values measured during the LTE-U’s Ton and Toff phases to
the XZero component. From the set of measured INR values,
the XZero component estimates the nulling configuration with
minimum INR which is sent to the XZero component at the
LTE-U BS through the wired LtFi interface. Finally, regarding
the beamforming/nulling, no changes were needed on the WiFi
as the interference nulling is fully transparent to the receiver.

VII. PERFORMANCE EVALUATION

We evaluate the performance of XZero by means of ex-
periments. As performance metric, we report INR at the
WiFi node, with and without nulling. We calculate the INR
as the ratio between the received power during the LTE-U
on (PTon

) and off (PToff
) phases: INR = PTon

/PToff
, where

PTon is the interference from the DL LTE-U signal and PToff

corresponds to the noise in the environment as no LTE signal is
transmitted during the off-period. Subsequently, we calculate
the interference reduction due to nulling as ∆INR.

In the following, we have two sets of experiments: (i) over-
the-cable experiments in our lab to mimic a controlled wireless
channel where there are no multipath effects and (ii) over-
the-air experiments in the ORBIT grid testbed representing
a realistic wireless scenario. Our aim is to understand the
performance difference between XZero’s tree and linear search
in terms of reconfiguration delay, i.e., due to mobility or
joining/leaving of WiFi nodes, and the achieved ∆INR at
the nulled WiFi nodes. Moreover, we compare XZero with
a baseline without interference nulling.

2https://kb.ettus.com/X300/X310
3https://wireless.wiki.kernel.org/en/users/drivers/ath9k/spectral scan
4We used the maximum sample rate which is a chipset-specific value.
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after nulling for various USRP transmit power level, i.e. 0 to 27 dB, (lower).

A. Over cable experiments

In this scenario, we aim to understand the upper bound in
∆INR XZero can provide under optimal conditions. Hence, we
use a wired (i.e. frequency flat) channel. We mix the output
of BS’s K=2 antenna ports using a channel combiner (Fig. 5,
upper). Next, the combined signal was transmitted over coaxial
cable to single WiFi node and the INR was measured. Since
the noise floor depends on the BS’s (USRP) transmit gain, it
was measured each time during the LTE-U off-phase.

Fig. 5 plots the measured INR values before and after
nulling for different transmission power levels. As the figure
shows, the measurement points are clustered below the x = y
line and close to x-axis, meaning that the INR before nulling is
significantly higher than the INR after XZero’s nulling opera-
tion. On average, the interference is reduced by ∆INR=25 dB.

B. Over-the-air experiment in ORBIT testbed

While the interference reduction achieved by XZero in the
previous scenario is very promising, unfortunately such a high
reduction in INR may not be achievable in the existence of
multipath effects that would occur in a real wireless channel.
To evaluate the robustness of XZero against multipath effects,
we perform an over-the-air experiment under real conditions
with severe multipath (i.e. frequency selective fading) channel.
As an example, Fig. 6 (upper) shows the received power at a
randomly selected WiFi node from each BS’s transmit antenna.
We see very strong frequency selectivity of up to 12 dB, which
may hamper the operation of XZero as interference nulling
becomes difficult in such a channel. Hence, in XZero we
perform power correction (Sec. V-C). The receiver power
after correction is shown in Fig. 6 (lower). Here, all antenna
paths have similar receive signal strength and the total emitted
power over all transmit antennas stays the same after power
correction, i.e., some paths are strengthened others weakened.

The BS’s transmitter hardware used during this experiment
is shown in Fig. 7 (upper). We selected K=4 transmit antennas
arranged along a line (ULA) with spacing of 7.18 cm. The RF
center frequency was selected as 2.412 GHz (WiFi channel 1
in ISM band) as the antenna spacing was fixed in the ORBIT
grid and too large for 5 GHz UNII band.
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For the experiment, we randomly selected 27 WiFi nodes
equipped with Atheros 802.11n NIC from the ORBIT
grid (orbit-lab.org). The placement of the BS and the location
of the WiFi nodes are shown in Fig. 7 (lower). Next, we
executed the two null search algorithms, namely XZero’s tree
and linear search, and recorded the reduction in INR (∆INR)
due to nulling as compared to baseline without nulling. As
Fig. 8 shows, we observe significant reduction in INR for both
schemes. More specifically, the average ∆INR for XZero is
15.7 dB while for some nodes the INR reduction can be up
to 30 dB. However, XZero’s tree-search achieves in general
a slightly lower ∆INR compared to that of linear search.
We attribute this difference to possible wrong decisions made
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Fig. 9. INR reduction due to power correction.

during the tree search, i.e. wrong subtree traversed. However,
as we show in the next section, the reconfiguration delay of
XZero is up to 10× lower than that of the linear search. This
results in a tradeoff between null search speed and achieved
∆INR.

Moreover, in a wireless channel with strong multipath
XZero places multiple nulls even for single users as it chooses
the best configuration from the tested nulling configurations.
Hence, it is possible that in some situations, a nulling configu-
ration from an inner node of the tree achieves better INR than
those tested in the leaf nodes. In our experiment XZero uses
2.7 nulls on average for a single user, i.e. WiFi node, to be
nulled. Again, we have a tradeoff between null-beam search
speed and the required number of nulls.

Finally, Fig. 9 shows the advantage from the proposed
power correction (Sec. V-C). We see that on average 3.7 dB is
achieved compared to when power correction is not applied.

C. Reconfiguration delay

Null search has to be performed both at the time of network
booting and also upon a change in network topology, e.g., due
to node mobility as well as when WiFi nodes join or leave the
network. XZero can support nomadic or even mobile WiFi
nodes by reconfiguring the nulling configuration. Even when
nodes are stationary, fast reconfiguration capability is desirable
as the environment is not static, e.g. moving people.

As described in Sec. V-D, the LTE-U BS tests different
nulling configurations during XZero’s tree-based null search.
That is, during a single LTE-U CSAT cycle, Tcsat , we can
test multiple nulling configurations. This is because we are
able to sample the receive signal power at a high sample
rate of up to 50 kHz at the WiFi receiver side (Sec. VI).
From our experiments, we found out that for every 2 ms of
LTE-U Ton phase a single nulling configuration can be tested
with sufficient accuracy, i.e., averaging over 100 measured
INR values. Moreover, at each level of the search tree, the
WiFi node informs the LTE-U BS about the best nulling
configuration using the wired backbone so that the searching
can continue in the proper subtree. Hence, both the LTE-U
duty cycle, λdc , as well as the latency of the wired backhaul,
τb, affect the reconfiguration delay.

Fig. 10 shows the reconfiguration delay for different LTE-U
duty cycles, i.e. 5 and 20% respectively. The length of the
CSAT period was fixed to Tcsat = 40 ms. Corresponding
Ton duration is 2 ms and 8 ms for these two λdc values,
respectively. Hence, during a single Tcsat period, XZero can
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Fig. 8. INR reduction after nulling for both XZero’s tree-search and exhaustive linear search.
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Fig. 10. Reconfiguration delay for a single WiFi user (Tcsat = 40ms).

test one and all three configurations 5 for λdc of 5 % and
20 %, respectively. We can see that λdc has a huge impact on
linear search as with smaller value less nulling configurations
can be tested during a single LTE-U cycle. In contrast, its
impact is marginal in XZero. Unsurprisingly, latency of the
wired backhaul has a significant impact on XZero as the WiFi
node sends its feedback over the wired backhaul for null
search. Nevertheless, the proposed tree-based null search can
be completed in just 1.1 s even under a high backhaul latency
of τb=105 ms, i.e. Internet backhaul over different ISPs, and
short LTE-U duty cycle of λdc=5 %. This value is much faster
compared to 6.6 s needed for scanning the whole space, i.e.,
linear search. For λdc=20 %, the tree search is completed in
just 0.65 s. The speed-up against linear search is 10×. Finally,
under optimal conditions with a very fast backhaul of τb=5 ms
XZero requires 0.23 s for reconfiguration. Moreover, XZero is
less sensitive to λdc and hence to the LTE-U network load.

Finally, Fig. 11 shows reconfiguration delay in case of
multiple WiFi nodes to be nulled. We clearly see the speed-
up due to the use of proposed parallel search compared to
sequentially running the tree search for each user one by one.

D. Discussion

The reconfiguration delay is very low with XZero at the
cost of slightly increased INR and the usage of more than a
single null. Hence, in a mobile environment XZero should
be preferred over exhaustive linear search. Given the fact
that massive MIMO is becoming a reality, we expect the
disadvantage of having to place multiple nulls per user to
become insignificant. We have not detailed how to design
the search tree. The tree’s fanout, i.e. node degree, is one of

5In each LTE-U cycle, XZero can test at most three configurations as the
search tree has a fanout of three. Hence, it cannot benefit from very long Ton .
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Fig. 11. Multi-user reconfiguration delay, Tcsat =40 ms, τb=50 ms, λdc=5%.

the factors determining the reconfiguration latency. Another is
the sampling frequency at the WiFi nodes which determines
the time needed (τs) for measuring INR under a nulling
configuration. For a given Ton, XZero can test bTon/τsc
configurations. Then, XZero can adapt its tree search’s fanout
to fully utilize LTE-U on-period by setting it to bTon/τsc.
Alternatively, it can apply speculative branching in which
bTon/τsc nodes are visited in each step of the tree search.

VIII. RELATED WORK

XZero is a practical solution aiming to improve inter-
technology coexistence between LTE-U and WiFi networks.
While the literature on this general scope is very rich (e.g.,
[15]), practical solutions are only a few [16]. We identify two
groups of research as the most related ones to XZero: MIMO-
based interference coordination and beam searching methods.
Interference Coordination: The classical approach to enable
coexistence is to avoid interference via spectrum isolation in
either time, frequency, code, or space. In contrast, XZero be-
longs to the category of interference coordination, where
multiple transmissions can co-exist without isolation [17].
(a) Cross technology Interference: TIMO [7] uses interfer-
ence nulling at the WiFi transmitter and cross-technology
decoding at the WiFi receiver to enable cross-technology
coexistence with other unlicensed technologies (e.g., with
wireless baby monitors or cordless phones). For nulling, a
WiFi transmitter needs channel state information (CSI) to
the colocated receiver of the other wireless technology which
is obtained by utilizing channel reciprocity. To achieve ro-
bustness in channel estimation, TIMO needs to sample the
interferer’s signal for a few seconds, which makes it difficult
to apply in mobile settings. To tackle the same challenge,
XZero performs a quick null search rather than trying to
estimate the channel between the two network nodes (i.e.,



LTE-U BS and WiFi node) directly. TIMO requires substantial
changes to the WiFi receivers to facilitate cross-technology
signal decoding under strong interference. Moreover, the WiFi
nodes have to be equipped with at least two antennas. On
the contrary, XZero achieves nulling much faster compared
to TIMO and without any significant changes to neither to
LTE UEs nor to WiFi nodes. Moreover, XZero can operate
under moderate node mobility. On the other hand, our desire
to keep the receivers unmodified may result in interference at
the UEs from nulled WiFi nodes. While XZero can avoid this
challenge by carefully selecting the WiFi nodes to be nulled,
e.g., they must be distant and angularly separated from UEs,
we plan to enhance XZero by implementing some receiver-
side solutions in future work. Nevertheless, XZero and TIMO
can complement each other: the former being implemented at
the LTE-U BS and the latter at the WiFi AP.

Yun et al. [16] were first to consider cross-technology
MIMO for supporting LTE and WiFi coexistence. Similar
to TIMO [7], they proposed a decoding scheme where LTE
and WiFi transmitters are sending together and the receivers
equipped with multiple antennas decode the overlapping (in-
terfering) OFDM transmissions. However, they assumed the
extreme case where LTE is transmitting continuous so that
a special algorithm is needed to obtain the cross-technology
channel state without the need to estimate a clean reference
signal. This is not needed as LTE-U uses duty cycled channel
access. Finally, the approach from [16] shares the same dis-
advantages with TIMO, e.g. modifications needed at receiver
side (LTE-UE and WiFi STA) for complex signal processing.
(a) Intra-technology Interference: OpenRF [18] shares in
essence the same goals as XZero. But, in contrast to XZero,
OpenRF does not have to tackle the challenges of cross-
technology communication as it is a solution for managing
intra-network interference of Enterprise 802.11 WiFi net-
works. We believe that XZero and OpenRF can complement
each other as the former aims to coordinate the coexistence of
heterogeneous technologies, i.e. mitigation of inter-technology
interference, and the latter of homogeneous technologies, i.e.
mitigation of intra-technology interference.

In short, while XZero shares some goals and design prin-
ciples with the above-listed MIMO interference coordination
schemes, it is unique as it can be easily integrated with both
the LTE-U and IEEE 802.11 standards. Moreover, receiver side
can be implemented using existing commodity WiFi hardware.

Beam Searching Methods: Agile-Link [19] aims to find
the correct beam alignment for an mmWave link which is
frequently needed at the BS due to disruptions by beam
misalignment, node mobility, or link blockage. Similar to
XZero’s tree search, Agile-Link applies a multi-step steer
search instead of sequentially testing all beam directions to de-
crease beam-alignment time, e.g., typically multiple seconds.
More specifically, Agile-Link eliminates the bins which do not
accommodate a high-energy level. XZero has the same spirit
as Agile-Link, however, the way it achieves its goals differs
from the latter, i.e. tree-based search vs. beam hashing.

IX. CONCLUSIONS

In this paper, we have developed a practical system, XZero,
for improving the coexistence between co-located LTE-U and
WiFi networks. Developing coexistence schemes is nontrivial
due to the difference between LTE and WiFi medium access
rules, and the lack of coordination mechanisms between these
two networks. XZero tackles the first challenge by exploiting
multiple antennas at the LTE BS to suppress the interference
at the WiFi nodes while continuing its downlink transmis-
sion, in addition to the existing duty-cycling in LTE-U. For
the latter challenge, XZero extends an existing solution for
cross-technology communication between LTE-U and WiFi
networks. To the best of our knowledge, XZero is the first of
its kind: a low-complexity practical system performing cross-
technology interference-nulling between LTE-U and WiFi net-
works by applying a tree search to find the proper nulling con-
figurations via feedback from the WiFi network. Experimental
analysis on the developed prototype shows that XZero can
achieve a significant interference reduction on the nulled WiFi
nodes. Moreover the null search is very fast compared to
exhaustive linear search. However, this comes at the cost
of nulling multiple angles simultaneously in an environment
with multipath fading. Given that massive MIMO is becoming
viable, we expect this limitation to become insignificant.
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