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Abstract—Mobile network operators can expand their capacity
by aggregating their licensed spectrum with the spectrum discov-
ered opportunistically, i.e., spatiotemporally unused spectrum by
other primary users. For an accurate identification of the spectral
opportunities, the mobile network has to deploy multiple sensors
or it can offload this task to nearby nodes with sensing capabil-
ities, so called helpers. Unfortunately, incentives are limited for
helpers to perform energy-wasteful spectrum sensing. Instead, we
envision spectrum sensing as a service (Spass)1 in which a smart
contract running on a blockchain (BC) describes the required
sensing service parameters and the contracted helpers receive
payments only if they perform sensing accurately as agreed in
the contract. In this paper, we first introduce Spass and derive a
closed formula defining the profitability of a Spass-based business
as a function of the spectral efficiency, cost of helpers, and
cost of the service. Moreover, we propose two-threshold based
voting (TTBV) algorithm to ensure that the fraudulent helpers
are excluded from Spass. Via numerical analysis, we show that
TTBV causes almost zero false alarms and can exclude malicious
users from the contract after only a few iterations. Finally, we
develop a running prototype of Spass on Ethereum BC and share
the related source code on a publicly-available repository.

I. INTRODUCTION

With the increasing demand for bandwidth-hungry appli-
cations, the mobile network operators (MNOs) are under
pressure to meet efficiently demands for more capacity and
better quality-of-service (QoS). The continuous increase of
spectral efficiency is not enough — there is a clearly ar-
ticulated demand for more spectrum, e.g. in 5G [1]. Rather
than using only their licensed bands, operators can utilize also
unlicensed bands, e.g., as in LTE-unlicensed [2], and develop
new business models such as bundling in [3]. As unlicensed
spectrum has become also congested, another option known
as dynamic spectrum access (DSA) enables a secondary
user (SU) network2 increase its capacity by using the spectrum
holes in the licensed bands which correspond to the inactivity
times of the licensed transmitters of the band, i.e., primary
user (PU). However, the SU network has to ensure that it
can detect a reappearing PU traffic timely and with high
accuracy after which the SU network aborts its transmission
in the PU channel. To satisfy this requirement, as previous
research has experimentally [4] and theoretically [5] shown,
the SU network has to deploy multiple spectrum sensors rather
than single nodes sensing the spectrum. Instead of deploying
the sensors itself, the SU network can offload the sensing

1Spass means fun in German.
2A secondary user (SU) can refer to a single node or a network. Here, we

consider a network operator as an SU, hence will use the term “SU network".
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Fig. 1. Spass system model: SU network is interested in accessing the primary
user’s band opportunistically to serve its users. Helpers are the nodes offering
sensing service. The agreement and transactions are processed through the
smart contract defined in Ethereum blockchain.

task to nearby sensor nodes, called helpers, whose spectrum
observations can reflect accurately the spectrum state at the
SU’s neighborhood. Helpers can be any node ranging from
low-end sensors or mobile phones to more advanced spectrum
scanners, owned by individuals or by companies.

However, helper nodes, especially those with strict battery-
resources, are difficult to incentivize to perform spectrum
sensing for others. While the previous studies [6] explored
incentives as a result of social ties among the users of the
wireless devices, such social-tie based models are applicable
only to entities with trust relationship. Bringing cooperation
to everybody is crucial to unlock the power of the crowds.
To this end, blockchain (BC) paradigm is an enabler for trade
without either a trusted third party or a priori thrust relation
among the involved trading entities.

Particularly, smart contracts running on the BC [7] describe
the terms of a contract, e.g., requirements on the sensing
service and conditions for payment to the helpers. The idea of
using smart contracts for DSA has appeared in some recent
work [8]. However, none of these works has addressed the
following key questions: (i) what is the cost of running smart-
contract based spectrum discovery? and (ii) given that both
the helpers and the BC miners have to be paid, under which
conditions an SU network operator can sustain a profitable
business via smart-contract based spectrum discovery? Our
goal in this paper is to address these two questions. We can
list our key contributions in this paper as follows:

• We present spectrum sensing as a service (Spass) as a prac-
tical way of spectrum sensing offloading via smart contracts



which define how to execute the terms of an agreement
and how to handle the related divergence from the contract
terms, i.e., Service-Level-Agreements, SLAs. To the best of
our knowledge, this is the first study providing a complete
solution for smart-contract based spectrum discovery with a
running prototype implemented in Solidity on the Ethereum
BC. In contrast to the existing proposals, the task of the
smart contract in Spass is not only micropayment but also
acting as a trusted point where operations like deciding
on the number of helpers needed to meet regulatory re-
quirements, selection of helpers, and detection of malicious
helpers can be performed.

• Considering the economic aspects, e.g., spectrum cost and
cost of using Ethereum, we derive a closed formula to un-
derstand under which conditions Spass provides a profitable
business to the SU network.

• We propose two-threshold based voting (TTBV) to identify
malicious helpers in Spass. Via numerical evaluations, we
show that TTBV can identify all malicious helpers after a
few verification rounds and excludes them from participating
in Spass contracts. Most importantly, high success in mali-
cious helper identification does not come at the expense of
frequent false alarms, i.e, honest helpers being marked as
malicious and thereby denied payment, which is paramount
to provide a sustainable business model where nodes are
motivated to act as helpers.

II. PRIMER ON SPECTRUM SENSING AND ETHEREUM
SMART CONTRACTS

A. Spectrum Sensing in a Nutshell

In spectrum-sensing based DSA, the regulatory bodies, e.g.,
Ofcom in UK, assert that an SU willing to use the PU’s
idle spectrum opportunistically must meet certain sensing
reliability criteria: PU sensing accuracy and spectrum access
efficiency. The first criterion on sensing accuracy, known
as PU probability of detection (pd), defines the minimum
probability that an active PU will be detected by the secondary
network and thereby guarantees that an active PU will be
identified timely so that PU communications are not drastically
affected. The second criterion, known as probability of false
alarm (pf ), is related to spectrum discovery efficiency and
necessary to ensure that the spectrum resources are not wasted
by a high number of false alarms. The devices due to their
hardware capabilities or locations with respect to the PU
transmitter differ from each other by their sensing accuracy
and false alarm values.

An SU can sense spectrum locally, known as local spectrum
sensing. But, prior research [4], [5] has shown that sensing
with a single device may lead to incorrect conclusion of the
spectrum state and collaboration in sensing with other users
offers benefits to the SU, e.g., higher detection accuracy. In
cooperative sensing, during spectrum sensing period, each
sensing unit senses the spectrum and sends its decision, e.g., 1-
bit information, to the entity which will finalize the decision on
the spectrum’s occupancy state. The final decision on PU ac-
tivity is determined according to the decision fusion algorithm,

e.g., Majority logic, using the local sensing outcomes delivered
by the individual helpers. When the number of the cooperating
users increases, the sensing accuracy is expected to improve,
but at the cost of increased overhead for sensing and reporting
the sensing outcomes [9]. Moreover, collaboration might harm
the SU if there are malicious cooperators in the sensing group.
For example, sensing result might be falsified by malicious
users to block SU communications [10]. Incorrect sensing data
will lead to either waste of spectrum opportunities, e.g., false
alarms in case of PU inactivity during sensing, or excessive
interference to and from the active PU transmissions, e.g.,
failure to detect an active PU.

B. Ethereum Smart Contracts in a Nutshell

Ethereum [11] is a blockchain-based decentralized comput-
ing platform which executes and validates transactions by the
help of miners. As a compensation for their work, miners are
paid for each transaction, e.g., writing a transaction in a block
and performing other tasks such as tasks to keep transaction
data safe. In Ethereum, cost of an operation is measured in
gas, i.e., in units of “ether" (ETH) [11].

A smart contract, identified by a 160-bit unique address in
Ethereum, is a computer protocol running on the blockchain
to define, verify, and enforce the process of a contract [7],
[12]. Each smart contract has a storage space for relevant data.
Hence, smart contracts are stateful in Ethereum [7]. Ether can
be send from an external account to a smart contract. To be
able to make it, the contract needs to have a payable function.
Moreover, a contract can send ether to an account identified
by an external address.

III. SYSTEM MODEL

We consider a system as in Fig. 1 consisting of an SU
network and several spectrum sensing helpers. Below, we
present our model for each entity in the considered system.

PU model: We assume a time-slotted system with timeslot
duration of T . We model the traffic activity of a PU as a two-
state Markov chain. Let us denote by p0 the probability that
the PU channel is idle at an observed time. In stationary state,
probability of PU activity is p1 = (1− p0).

SU network model: The SU network is an operator interested
in opportunistically accessing the PU’s spectrum band to serve
its customers when the PU is not transmitting. Similar to the
business model in [3], the SU network might own also a
licensed spectrum and aggregate its capacity with opportunistic
spectrum discovered via Spass or it might use unlicensed
spectrum along with its licensed spectrum as in [2]. However,
we focus only on the discovered PU spectrum. To discover
spectrum holes, the SU network can buy sensing service from
other nodes, so called helpers, which are the nodes offering
sensing service. Note that a channel with only very low data
rate, e.g., ISM bands, is required between the helpers and the
SU network. This channel is used by both the SU network
to send information about its need for helpers and by the
helpers to notify the SU network about PU activity. As sensing



result of the helpers need to reflect the spectrum state at the
proximity of the SU network, our model considers a short-
range communication technology such as WiFi between the
SU and the helpers. Long-range communication technologies
can also be used for informing the helpers about the Spass con-
tract of the SU network. However, it would require a service
for location estimation in the helpers, e.g., GPS. We assume
that the SU network (e.g., its base station) and the helpers
access the Ethereum system via light-weight remote procedure
call (RPC) protocol using some other connection, e.g. wired
Internet. Note that Ethereum BC is an external service to
the helpers and the SU network, e.g., none of these entities
run compute-intensive BC verification tasks. After receiving
sensing data, SU applies a decision fusion rule, e.g., Majority.

Spass smart contract: The SU network specifies the require-
ments for the sensing service such as sensing rate Rs Hz or
required minimum sensing accuracy for each helper.

Helper model: Helpers are nodes with sensing capability
who are interested in getting monetary benefit by serving
as sensing units. Such functionality can be integrated into
sensing platforms like the Mobile Sensing Box [13] which
are used for monitoring environmental parameters like air
quality in metropolitan areas. Helper devices can be owned
by a multitude of parties, including individuals or companies,
e.g., micro or even nano-businesses. What matters for the SU
network is each helper’s sensing accuracy and associated price
of sensing. Each helper who has joined the contract after being
selected by the contract performs spectrum sensing with rate
Rs Hz resulting in Rs bps binary sensing data.

We consider two types of helpers regarding their trust-
worthiness: honest and malicious. A helper is considered
honest if it performs spectrum sensing and meets the accuracy
requirements as agreed in the contract. But, a malicious helper,
instead of performing sensing, acts as a free rider: it fabricates
the sensing data and reports that the channel is busy with
probability α1. Strategy of malicious helper is to save energy
by going into sleep mode and waking up from time to time
to report some artificial data to the SU network and also
to the smart contract. Overhearing transmissions of other
helpers is possible but not promising as overhearing creates
the same amount of cost for the helper as performing the
actual sensing, i.e., replay attack is not promising. Another
attack known as spoofing attack is also not promising as there
is a significant initial cost for the helper to contact/register in
the smart contract. We will discuss this case in Section VII-D.
We assume that dishonest helpers act independently without
cooperating with each other for further benefit. Moreover,
a malicious helper does not change its strategy over time,
e.g., sensing accuracy remains the same. We assume identical
sensing accuracy in each helper category. For honest helpers,
the probability of false alarm and detection are phf and phd ,
respectively. Malicious helpers, despite generating artificial
data, might by chance correctly state that the PU is active. The
corresponding detection probability for malicious helpers is
pmd = (1−p0)α1 and the false alarm probability is pmf = p0α1
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Fig. 2. Interaction between entities in Spass.

where p0 is the probability that PU channel is idle.

Ethereum cost model: While the exact charging model of
Ethereum for running computation inside a smart contract
depends on many factors, we assume a simplified model
according to which we only consider write operations to the
contract. The rationale behind this is that the cost of a smart
contract is dominated by the amount of data written to it as
only write operations need to be written and mined into the
BC. Hence for each write task, the cost is calculated as the unit
cost of write operation (µeth Euro/bps) multiplied by the rate
of data written to the Ethereum contract (Reth bps): µethReth.

IV. SPECTRUM SENSING AS A SERVICE (SPASS)
ARCHITECTURE

Two design goals for Spass architecture are as follows. First,
Spass must be practically implemented without the need of
a trusted third party. This property is crucial to enable any
party with spectrum sensing capability to join the proposed
system and offer its service without going through slow or
cumbersome authentication process. Second, Spass must be
resilient against malicious helpers. To satisfy the first goal, we
use Ethereum smart contracts whereas we design a punishment
mechanism relying on malicious helper identification inside
the Ethereum smart contract for the second goal. We will
use Ethereum as our smart-contract environment, but our
framework is a general one for any smart contract system.

While Spass is no different than cooperative spectrum sens-
ing in cognitive radio networks, it exhibits several peculiarities
when considered from a business perspective. For a profitable
business, SU network has to ensure that the profit via the
spectrum discovered by Spass must outweigh the cost due to
Spass service which consists of smart-contract related costs
and payment to sensing helpers. Upon invoking the contract,
all computation in Ethereum is subject to some fee to avoid
abuse of the Ethereum system [11]. For instance, if a helper



is requested to report its sensing data (or some part of it)
to Ethereum for verification purposes, then the helper has
to pay the Ethereum for this operation as the caller of the
function. Eventually, the SU network buying sensing service
has to compensate this cost (in addition to paying the helper
for its work) to make helpers eager to participate in the
contract. Also, the SU network must meet the sensing relia-
bility requirements asserted by the regulators, e.g., successful
detection of a reappearing PU. Hence, while Spass should
employ multiple helpers for higher PU detection success [14],
from both technical and economics perspective, Spass should
identify malicious helpers whose sensing accuracy do not meet
the required accuracy stated in the smart contract.

Fig. 2 shows the interaction between all entities involved in
Spass after the SU network creates a contract in the Ethereum
BC. In Step 1, the SU informs co-located sensing nodes about
its willingness to offload spectrum sensing by broadcasting the
smart contract address using the SU-helper communication
link, e.g., ISM channel. A helper can access the Ethereum
smart contract using the announced address (Step 2). Based
on the received SLA describing the required minimum sens-
ing accuracy for a helper in terms of pf and pd, a helper
checks whether it is able to meet the SLA (Step 3). After
acceptance, the helper registers to the contract by telling its
sensing price (Step 4). Next, Spass determines the number of
helpers (H) that is required for meeting the sensing accuracy
asserted by the regulator.3 Then, from the set of registered
helpers, Spass selects H helpers (Step 5) for sensing, e.g., the
cheapest ones. If a helper is selected (Step 6), it starts sensing
with the required sensing rate. Sensing outcome is 1-bit data
which is calculated based on for example energy detection.
Each helper, after each sensing event, sends its sensing data
to the SU network through the helper-SU link (Step 7).

Additionally, each helper communicates infrequently its
sensing data, which is possibly compressed (details in
Sec.V-C), to the smart contract in the Ethereum network (Step
8). Based on the collected helper reports, the clearing, i.e.,
verification of data and transfer of money, happens inside the
smart contract (Step 8). We refer to the time between the
helpers joining the contract and the time clearing takes place as
a verification round (V ). Please recall that the communication
between the helpers and the SU network takes place just
after each sensing period whereas the communication between
the helpers and the Ethereum is in a much longer timescale
determined by V . This design is motivated by two reasons.
First, communication at the time granularity of spectrum
sensing (in the order of msecs) task would be unrealistic
in Ethereum due to the mining and block processing la-
tency (in the order of minutes) in blockchain systems. Second,
helpers need to send the Ethereum the batches of compressed
sensing data (yet sufficient number of bits for successful
detection of malicious helpers) to keep the smart contract
and communication overhead low. As Fig. 3 depicts, after

3Either SU network specifies the regulatory requirement for pf and pd in
the contract or Spass retrieves these values from the regulator directly.
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Fig. 3. Spass runs malicious helper identification algorithm at the end
of each verification round.

each verification round, the contract runs malicious helper
identification algorithm (Sec.VI) which aims at discovering
the helpers whose sensing accuracy do not meet the agreed
accuracy. Such helpers are blacklisted as malicious helpers
and will be exempted from further service in Spass. The rest
will be paid for their service during the previous verification
round and can be selected as helper in the next round.

V. SPASS-BASED SU OPERATION

In this section, we address the two questions we raised in
Section I: what is the cost of using Spass and under which con-
ditions Spass provides a profitable business to the SU network.
First, we compute the spectrum sensing accuracy of Spass in
the existence of malicious helpers in the candidate helpers set.
Next, we derive the sensing accuracy under OR, AND, and
Majority decision rules and find the number of helpers needed
for meeting the regulatory requirements. Finally, we focus on
economic aspects of Spass to address the raised questions.

A. Sensing accuracy of Spass

Let us define the utility of the SU network in getting service
from Spass (USpass) as the spectrum discovery efficiency, i.e.,
probability of successfully discovering the spectrum holes by
the helpers involved in Spass. Obviously, to calculate USpass,
we need to know total number of helpers, number of malicious
helpers, and the decision fusion rule. Let us first overview a
generic decision rule K-of-N which can act as a generator for
OR, Majority, and AND rules by tuning its parameter K [15].
Here, K-of-N states that at least K out of N users must agree
on the sensed phenomena. Setting K to {1, N, dN2 e} gives
OR, AND, and Majority rule, respectively.

Let H be the number of sensing helpers, pmf (i) be the
probability of i out of M malicious helpers giving a false
alarm, and phf (j) be the probability of exactly j honest helpers
giving false alarm. We calculate pmf (i) and phf (j) as below:

pmf (i) =

(
M

i

)
(pmf )i(1−pmf )M−i (1)

phf (j) =

(
H −M

j

)
(phf )j(1−phf )H−M−j . (2)

For majority logic, we can derive the false alarm probability
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Fig. 4. Expected PU detection probability under malicious helpers where ψ represents the probability that a node is malicious.
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Fig. 5. Expected false alarm probability under malicious helpers where ψ represents the probability that a node is malicious.

under M malicious helpers and total H helpers as follows:

pf (H,M) =

H∑
K=dH2 e

min(K,M)∑
i=0

pmf (i)phf (K − i). (3)

Similarly, we calculate the probability of detection pd(H,M):

pd(H,M) =

H∑
K=dH2 e

min(K,M)∑
i=0

pmd (i)phd(K − i). (4)

Next, with selected K values, we calculate USpass as follows:

USpass = p0(1− pf (H,M)). (5)

B. How many helpers are needed?

An SU network desires that Spass minimizes the number
of helpers as each helper will be paid for its sensing service.
However, sensing with more helpers might help decreasing
false alarm probability and thereby might increase utility in
(5). Moreover, Spass has to ensure that the PU detection
probability is larger than the limit set by the regulator. Let
us denote the regulator-asserted false alarm and detection
probability by p∗f and p∗d, respectively. Then, Spass has to
ensure pd(H) > p∗d and pf (H) 6 p∗f , where pd(H) and
pf (H) are expected sensing accuracies under H helpers. If a
node acts maliciously with probability ψ, the expected value
of pd and pf under H helpers are calculated as follows:

pd(H) =

H∑
M=0

ψM (1− ψ)H−Mpd(H,M), (6)

pf (H) =

H∑
M=0

ψM (1− ψ)H−Mpf (H,M). (7)

Fig. 4 and Fig. 5 show pd(H) and pf (H) for OR, Majority,
and AND logic. We used the following parameters: p0 = 0.6,
phf = 0.05, phd = 0.90, α1 = (1 − p0) = 0.4. Figures show
that OR and Majority rules are better in identifying the PU
activity compared to AND logic, which is a very conservative
policy. All rules lose their accuracy with increasing number
of malicious helpers. Comparing pf of OR and Majority, we
observe that Majority is more robust against malicious helpers
as false alarms are unlikely in a network with more honest
helpers than malicious helpers. Different than Majority and
AND rules, adding new helpers does not help decreasing pf
in OR rule as shown in Fig.5a. In that case, each helper might
give a false alarm and changes the final decision to a false
alarm, which leads to higher pf with increasing number of
helpers. Therefore, the SU network should consider Majority
logic in its fusion operation.

Based on the knowledge of ψ, the contract can decide on the
number of helpers. In case the expected sensing reliabilities are
not sufficient for regulations, e.g., due to insufficient number of
helpers, Spass informs the SU network about the failure of the
sensing service. Otherwise, the contract becomes active. In the
next section, we provide a model to decide when our proposal
becomes a profitable business model for an SU network.

C. When does Spass provide a profitable business model?

Let the spectral efficiency of the SU network be κ
bits/(seconds×Hertz). The SU network charges its customers
µ e/bps for each second of service. Then, the SU network’s
revenue by serving its users via opportunistic spectrum access
on a spectrum band with bandwidth B Hertz equals to:

Υ+ = µ× κ× USpass ×B e per second. (8)



However, if the SU network uses Spass for discovering idle
spectrum, it has to pay for the Ethereum smart contract use
and for the sensing service of helpers. Let us denote euro-
equivalent cost of using Ethereum smart contract by µeth e per
bps. Here, we assume that the Ethereum cost is dominated by
the cost of write operation to the Ethereum BC. In case H
helpers are selected in the contract and each helper writes
Reth bps to Ethereum for verification of sensing data, the cost
of using Spass equals to µeth ×H × Reth. As a helper also
spends its energy resources for sensing, it must be paid also for
its sensing service. We denote by µs the price of sensing per
bps. Note that sampling rate of sensing might be larger than
the rate at which the sensing data is written to the Ethereum
smart contract, i.e., Rs > Reth. To represent this fact, we refer
to the ratio as compression factor where:

β =
Rs

Reth
and β > 1.

Adding these cost terms that SU network has to pay for, we
define the cost of Spass as follows:

Υ− = (µeth
Rs

β
+ µsRs)×H e per second. (9)

For the SU network to maintain a profitable business by
using Spass, its profit must be positive: ∆Υ = Υ+−Υ−>0.
For this inequality to hold, we can derive the minimum spectral
efficiency required for an SU network under a given cost
model, i.e., µs and µeth, as follows:

κ >
Rs(µeth/β + µs)×H

µ× USpass ×B
. (10)

Hence, the minimum spectral efficiency κmin corresponds to
the point where the above inequality operator is set to equality
operator. Similarly, using (10), we can calculate the minimum
price µmin the SU network has to charge its customers. As we
observe in (10), the SU network prefers keeping the amount
of data written to the smart contract low while maintaining a
high utility USpass. Hence, Spass contract includes a malicious
helper identification scheme to leave out malicious helpers
whose inaccurate sensing data might decrease spectrum access
efficiency. Also, the SU network desires high compression of
the sensing data so that the rate at which data is written to the
contract Rs/β becomes small.

Fig. 6 shows the impact of the number of helpers on κmin

that is required to make Spass-based operation profitable for
the SU network. We plot the results under various number of
malicious helpers for µeth = 0.1, µs = 0.05, and µ = 1.
From Fig. 6a, we observe that higher number of malicious
helpers requires slightly higher spectral efficiency for the same
number of helpers. Generally speaking, contracting a higher
number of helpers requires a higher spectral efficiency of the
SU network because all helpers have to be paid. However,
recall that the SU can also increase its sensing performance
with higher number of helpers (i.e., PU detection and false
alarm performance). When there are more malicious helpers,
the required spectral efficiency increases slightly as utility
might decrease with increasing number of malicious helpers.
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Fig. 6. Min. spectral efficiency required for the SU to profit from Spass.

Fig 6b draws κmin with increasing compression factor β. An
SU network with a lower spectral efficiency can still operate
based on Spass by using a high compression factor or a higher
price µ charged to its customers. With these insights from our
model, we conclude that an SU network desires that Spass can
avoid malicious helpers and can work reliably under a high
compression factor value.

VI. TWO-THRESHOLD BASED VOTING (TTBV): AN
APPROACH FOR IDENTIFICATION OF MALICIOUS HELPERS

Denote the sensing outcomes of helper i (hi) by a time
series X = {Xt,i} where Xt,i is the PU’s channel state
observed by hi at time t. We are interested in developing
an algorithm for detecting malicious helpers based on the
data collected at the smart contract in Ethereum (Fig. 3). Let
Y (hi) denote the reported data of hi and f be a function,
e.g., average, taking the sensing outcomes as its input and
returning Yi. Then, we define the collected helper data at the
smart contract as follows: Y = {Yi|Yi = f({Xt,i}), hi ∈ H}
where H is the set of sensing helpers. Our goal is to design f
which can achieve a high malicious helper detection accuracy
while maintaining a high compression value measured by
β = |Y|/|X |. We define malicious helper detection accuracy
by the ratio of number of correctly identified malicious helpers
over all malicious helpers participating in the smart contract.
Note that misclassifications are possible, i.e., honest helpers
being identified as malicious, and should be kept to minimum.

Let us define the distance between two sensing reports by:

di,j =
D(Yi, Yj)

|Yi|
, (11)

where D is the Hamming distance between two vectors. We
can interpret di,j as the probability that hi and hj would differ
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in a randomly picked bit of their sensing report. We expect a
high distance between a malicious helper report and that of the
honest helpers. However, as honest helpers might experience
sensing imperfections due to the noise in the sensing process,
sensing report of two honest helpers might also differ from
each other. Using the approach of [16], we calculate the
expected distance between two honest helpers as follows:

dh,h = 2p0p
h
f (1− phf ) + 2(1− p0)phd(1− phd). (12)

Next, we calculate the expected distance between a honest and
a malicious helper [16]:

dh,m =p0
(
phf (1− pmf ) + (1− phf )pmf

)
+ (1− p0)

(
phd(1− pmd ) + (1− phd)pmd

)
. (13)

Using these two distance values, the smart contract applies
a voting scheme for determining the state of each helper as
in Fig. 8. First, it calculates pairwise distance values. Next,
for each helper hj , the smart contract checks what the other
helpers data conclude about hj’s state based on the distance
metric. Vote of hi denoted by wi,j can be interpreted as the
probability that hj is seen as malicious from the perspective
of hi. Then, the smart contract sets wi,j as follows:

wi,j =


0 if di,j 6 dh,h

1/(H − 1) if di,j > dh,m

di,j−dh,h

(dh,m−dh,h)×(H−1) ow.

Briefly, if di,j 6 dh,h, hi thinks that hj is a honest helper
and its decision is wi,j = 0. When dh,h < di,j < dh,m, hi is
not sure and therefore its decision is 0 6 wi,j < 1/(H − 1)

and we set this weight as follows: di,j−dh,h

(dh,m−dh,h)×(H−1) . Since
there are (H − 1) helpers voting for helper j, we normalize
each helper’s vote by (H − 1). Summing all wi,j , we find
the probability that hj is expected to be malicious. Setting
wth > 0.5, the smart contract finalizes its decision as follows:

State of hj =

{
Malicious if

∑
i,i 6=j wi,j > wth

Honest else.

Note that TTBV should identify malicious helpers without
resulting in too high false alarms, since a blacklisted helper is
excluded from Spass and is not paid for its sensing service.
A solution with a high false alarm decreases incentives for
honest helpers to participate in Spass. By tuning wth through
Monte-Carlo simulations, we can provide a trade-off between
false alarms and identification success of malicious helpers.
Finally, computational complexity of TTBV is O(H2).

VII. PERFORMANCE EVALUATION

To evaluate the performance of TTBV, we simulate our sys-
tem using our custom Python-based discrete-event simulator.
We report the average statistics of 104 repetitions of each
scenario for statistical significance. We set total number of
nodes to 20, M = 5, H = 8, and assume identical sensing
price for each helper. Spass runs the verification algorithm
for 15 rounds and each verification round consists of 5000
timeslots. We set phf = 0.05, phd = 0.90, p0 = 0.6, α1 = 0.6,
and sensing rate Rs is 1 Hz.

We use the following performance metrics in our analysis.
Let M denote the set of all malicious helpers, MSpass be
the set of malicious helpers selected for sensing, and M̃ be
the set of helpers claimed to be malicious by TTBV. The
malicious helper fraction in a contract is: |M

Spass|
|HSpass| where

HSpass is the set of helpers participating in the contract.
Then, identification success in a single verification round
with id k is: |Mk∩M̃k|

|Mk| where Mk is the set of malicious
helpers participating in Spass at round k. The fraction of
identified malicious helpers till the current verification round

K is
|
⋃

k6KMk∩M̃|
M . Similarly, we calculate the fraction of

blacklisted honest helpers.

A. Impact of compression factor on the performance of TTBV

Fig. 7 plots the performance metrics with increasing round
number under various β values. As Fig. 7a shows, TTBV can
identify malicious helpers with high accuracy even under
β = 100. When there is low compression, TTBV can
almost perfectly detect all malicious helpers in the helper
set. After each round, these malicious helpers are blacklisted
and excluded from Spass. Fig. 7b shows the change in the
fraction of malicious helpers in each sensing helpers set with
increasing round index. After 6-7 rounds, all malicious helpers
are identified for β = {1, 10, 100} (Fig. 7c) resulting in no
malicious helpers in the helper set as seen in Fig. 7b. For
β = 1000, it takes longer to blacklist all malicious helpers,
e.g., 11 rounds. Moreover, such a compression value results
in higher false alarms as observed in Fig. 7d. Over time, more
honest helpers are incorrectly added to the blacklisted helpers
when β = 1000. This behavior is undesirable and must be
avoided. On the other hand, for lower β, TTBV does not result
in false alarms, e.g., no honest helpers blacklisted in Fig. 7d.
Hence, under these settings, an SU network can define in its
contract the compression factor as 100 6 β < 1000.

As for sensing accuracy, since majority logic is robust to
malicious helpers, we see a less visible difference among dif-
ferent β values. With increasing round number, the malicious
helpers are excluded from helper set and therefore we observe
an improvement in sensing accuracy. Under all values, sensing
accuracy is high with low false alarms in Fig. 7e and almost
100 percent detection success in Fig. 7f.

B. Practical Feasibility

Here, we discuss the practical feasibility of the proposed
system taking real values. In this example, we assume that
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Fig. 7. Performance of two-threshold based identification with wth = 0.8.

the sensing helpers are devices with a lifetime of 10 years
and a total cost of operation during the lifetime of 100e.
Moreover, four helpers are selected for sensing and the SLA of
the contract requires a sensing interval of 10 Hz. Regarding the
costs for provisioning of the Ethereum smart contract, we use
the following simplified model according to which the amount
of data stored in the contract dominates the cost whereas
the computational effort within the contract is negligible.
According to [11], storing a kilobyte of data in a smart contract
consumes 640k of gas. The lowest possible gas price at the
time of writing is around 1 Gwei (109 Gwei = 1 ETH) whereas
the market price of 1 ETH is 500e. In contrast to the fixed
payout to the sensing helpers, the cost of the smart contract
depends on the used compression as with higher compression
less information need to be stored in the smart contract.

Fig. 9 shows the daily payouts to the two parties for different
compression factors β. Here, the amount of payments to the
sensing helpers corresponds to the minimum amount required
to cover their operation costs, i.e. 0.11e per day and helper.
We see that for low compression factors the total payment
is dominated by the payouts to the Ethereum network while
the cost of operation of the sensing helper is negligible. For
β > 1e4, the situation is exactly the opposite where the cost
of the smart contract becomes negligible.

Using the above data, we calculate the amount the SU
network has to charge its customers, i.e., µ in (10), to cover
the cost of Spass. In our analysis, we do not include the
cost of operating the SU network itself, e.g., OPEX. We
assume an average spectral efficiency of 5 bits/s/Hz for the
SU and 20 MHz bandwidth for the PU channel. Under these
assumptions, Fig. 10 shows the minimum price the SU has to
charge from its customers for delivering 1 Mbps to be able to
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Fig. 9. SU’s payouts to sensing helpers and Ethereum network.
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Fig. 10. Cost of Spass for delivering 1 Mbps per day.

cover the cost of sensing helpers and Ethereum network. For
a compression factor of 100, it is 0.03e per Mbps and day.

C. Ethereum Contract

We have also implemented Spass in Solidity to understand
the actual cost of each function invocation in Ethereum BC.
Fig. 11 illustrates the UML class diagram representing the
interactions with the contract. Moreover, we also present in
the below listing our implementation to give an idea about
how Spass can be represented in Solidity 4.

After running this contract in Ethereum, we measure the
gas consumption of each function call (refer to Table I).

4Source code is available under: https://github.com/zubow/Spass_contract
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TABLE I
COST OF FUNCTION INVOCATION IN CONTRACT (H=HELPERS).

Function Caller Cyclic TX (gas) Ex. (gas) e

<create contract> SU no 1638213 1223229 8.33
increaseFunds SU no 21579 307 0.06
init SU no 68630 46270 0.34
registerSensingHelper H no 178506 154994 0.98
waitForOtherHelpers H no 22995 1723 0.07
reportSensingData H yes 56814 32406 0.26
clearing SU yes 54372 32908 0.26
withdraw H no 19426 13154 0.10

Moreover, we see the price for each call at today’s market price
of Ethereum and SafeLow (<30 min) confirmation time. We
use the following configuration for the contract initialization:
sensing rate Rs of 10 Hz (sens_f), compression factor β of
100 (cp_f=100) and a verification round duration V of 15 min
(round_s), i.e., 15 Bytes of sensing data in each round. We see
that, besides the new contract generation, the registration of a
new sensing helper is also costly. This is desirable to prevent
spoofing attacks. In contrast, the cost for invocation of function
being called periodically, i.e. reportSensingData and clearing,
is sufficiently low to make the Spass a profitable business.
We do not consider the cost for detection of malicious helpers
in reportSensingData as we can assume that TTBV removes
malicious helpers from the contract only after a few rounds.
pragma solidity ^0.4.0;
contract Spass {

struct Helper { // relevant sensing helper parameter
uint id; uint p_f; uint p_d; uint priceSenseBit;
uint last_report_seq; bytes data; bool toBlock;

}
address public owner; // of this contract -> the SU
mapping(address => Helper) shMap; address[] shLst;
mapping (address => uint) public pendingWithdrawals;
uint sens_f; uint round_s; // sens. sampling, round len
uint data_b; // size of sensing report in bytes
uint max_p_f; uint min_p_d; // per 1000; req. quality
uint curr_seq; // the current expected seq
/* Create new Spass contract */
function Spass() { owner = msg.sender; }
/* Called by contract owner (SU) to initialize it */
function init(uint _sens_f, uint _round_s, uint _cp_f,

uint _max_p_f, uint _min_p_d) public ownerOnly {
sens_f = _sens_f; round_s = _round_s;
max_p_f = _max_p_f; min_p_d = _min_p_d;
data_b = _round_s * _sens_f / _cp_f / 8 + 1;

}
/* Add new helper to the contract; called by H */
function registerSensingHelper(address _sHelper, uint

_id, uint _priceSenseBit, uint _p_f, uint _p_d)
public returns(bool) {
if (shMap[_sHelper].priceSenseBit != 0)

return false; // already registered

if (rejectHelper(_priceSenseBit, _p_f, _p_d))
return false; // reject helper, e.g. high price

shMap[_sHelper] = Helper({id: _id, p_f: _p_f, p_d:
_p_d, priceSenseBit: _priceSenseBit,
last_report_seq: 0, data: new bytes(data_b),
toBlock: false

}); shLst.push(_sHelper); return true;
}
/* Check if sufficient Hs available; called by H */
function waitForOtherHelpers() public returns(bool) {

if (sufficientRegisteredHelpers()) return false;
return true;

}
/* Periodically called by Hs to report sensing data */
function reportSensingData(address _sHelper, uint _id,

uint _seq, bytes _data) public returns(bool) {
if (shMap[_sHelper].priceSenseBit == 0)

return false; // unknown helper
if ( (shMap[_sHelper].last_report_seq + 1) != _seq)

return false; // outdated sensing data
for (uint i=0; i<data_b; i++) {

shMap[_sHelper].data[i] = _data[i];
} shMap[_sHelper].last_report_seq = _seq;
return true;

}
/* At end of each round SU makes payments to Hs */
function clearing(uint _seq) public ownerOnly returns(

bool) {
if (curr_seq != _seq) return false;
markMaliciousNodes(); // mark cheaters
for (uint i=0; i<shLst.length; i++) {

if (shMap[shLst[i]].toBlock == true) {
blockSensingHelper(shLst[i]);

} else { notifyPayment(shLst[i]); }
} curr_seq++; /* next round */ return true;

}
/* Notify H of its credit for amount of sensing. */
function notifyPayment(address _sHelper) ownerOnly

private returns(bool) {
uint payment = shMap[_sHelper].priceSenseBit * (

round_s * sens_f); // Pay agreed price
pendingWithdrawals[_sHelper] += payment;
return true;

}
/* Allows H to withdraw any outstanding credit */
function withdraw() public returns(bool) {

uint amount = pendingWithdrawals[msg.sender];
if (amount <= 0) return false;
pendingWithdrawals[msg.sender] = 0;
if (msg.sender.send(amount)) { return true;
} else {

pendingWithdrawals[msg.sender] = amount;
return false; }

}
/* Send ETH to contract so Hs can withdraw funds. */
function increaseFunds() payable {}

}

D. Discussion

Two other knobs the SU network can play with for tun-
ing its operation are sensing rate Rs and verification round
duration V . Increasing either of these parameters results in
more sensing bits to be used in verification which in return
increases the accuracy of malicious helper detection. However,
the amount of payment to an uncaught malicious helper is also
an increasing function of total sensing bits. Hence, there is an
optimal setting, i.e., Rs and V , minimizing the total cost. We
leave optimal setting of parameters to a further work. To avoid
cases where the malicious helpers earn money with cheating,
another improvement to our model could be introducing a
rule in the contract that a helper will be paid only after a
certain number of rounds (e.g., 6-7 considering Fig. 7c) if it
still remains in the system without being blacklisted. This is
to ensure that malicious behavior would become irrational as



acting that way would not provide any profit to the helper
given that our heuristic can identify all malicious helpers after
a certain number of rounds. Moreover, such a rule prevents
also spoofing attacks as a malicious helper rejoining the system
with a new id has to wait for at least a minimum number of
rounds to receive a benefit.

VIII. RELATED WORK

We can categorize the related literature into two as follows.
Abnormal user identification in spectrum sensing: The most
relevant work to ours is [16] which proposes an abnormal
sensing node identification using the pairwise similarity of
sensing results of helpers. While our solution is inspired by
[16], we cannot directly apply the proposed approach as our
malicious helper model differs from that of [16]. Moreover,
our goal is also to achieve high compression value due to the
cost of Ethereum while it is not a concern of [16]. Outlier
detection methods in sensor networks, e.g., [17], are also
relevant to our work. While we do not claim that our approach
overperforms the existing approaches, we emphasize that the
existing schemes should be tailored for our scenario especially
considering the cost of Ethereum usage and related latency for
running an operation in the contract.
Usage of blockchain in resource sharing concepts: Steer-
ing [18] proposed to use blockchain as a way to reduce trans-
action costs in the Citizens Broadband Radio Service through
automatization of complex business-to-business workflows in
contracting and brokering a data exchange. Different use cases
were described including sensing-as-a-service. However, no
details were provided on the design of such a service. Simi-
larly, [19] proposes to use blockchain for dynamic spectrum
sharing for vehicular CRs and introduces a virtual currency
to pay for spectrum access. The work in [20] is motivated by
the trend towards Small-Cell-as-a-Service, a scenario where
an individual home or business user can become a service
provider for MNOs. In particular, the authors proposed using
Ethereum smart contracts to implement simple SLAs between
small cell providers and MNOs. While our idea is in this line
of works promoting the use of blockchain for practical DSA,
our work differs from all its predecessors as we model the
technical as well as economic aspects of such a smart-contract
based spectrum access system.

IX. CONCLUSIONS

We have introduced spectrum sensing as a service (Spass)
which is a smart-contract based solution facilitating a network
operator (referred to as SU network) to buy sensing service
from the helpers in its neighborhood. In our model, the SU
network publishes its requirements for sensing in the contract
and the helpers who agree on the specified terms join the smart
contract. In such a system, two key questions we raised were:
what is the cost of using smart contracts and under which
conditions an SU network can profit from this business model?
To address these questions, we first derived the expected spec-
trum sensing accuracy and cost of Spass under the existence

of malicious helpers, whose goal is to receive payment from
the contract without actually performing sensing. We pro-
posed a malicious helper identification scheme whose accuracy
remains high even when the sensing reports submitted to
the contract are much sparser than the actual sensing data.
As future work, we plan to work on optimizing verification
rounds as well as sensing rate to minimize monetary cost of
Spass while ensuring a certain spectrum sensing accuracy.
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