Distributed Spectrum Allocation for Autonomous Cognitive Radio Networks

A. Zubow, <u>M. Döring</u>, A. Wolisz

Telecommunication Networks Group Technische Universität Berlin

Motivation

- System model / Problem description
- Proposed solution for spectrum allocation
- Performance evaluation & Results
- Conclusions

Telecommunication

Networks Group

Motivation

- Given a Cognitive Radio Network (CRN) consisting of Primary Users (PU) and Secondary Users (SU)
- In the future we expect that numerous groups of SUs will access the secondary spectrum simultaneously
- This requires an intelligent and efficient link layer mechanism
 - Collision free access between SU groups,
 - No interference towards PUs
- PHY Layer: Non-Contiguous OFDM (NC-OFDM) allows use of fragmented spectrum in an efficient way

System Model

- Focus: co-existence of multiple overlapping SU cells
- Each cell consists of a base station (CR-BS) and associated client stations (CR-STA)
- Spectrum access within the cell is coordinated by CR-BS
- CR-BS has up-to-date PU spectrum information

System Model – cont'ed

- All nodes are equipped with half-duplex wideband
 NC-OFDM transceivers
- Total spectrum f₀... f_{max} is divided into NSC subcarriers (including spectrum used by PUs)
- CR-BSs exchange beacons in-band, used for neighbor discovery
- All nodes are time synchronized, e.g. by GPS, needed for beacon exchange
- PUs are completely unaware of SUs

Problem Formulation

Problem description:

- Find optimal allocation of secondary spectrum among SUs, which is not claimed by PUs
- Ensure interference avoidance between co-located CR-BSs and strictly towards PUs
- Problem: high computational complexity (NP-complete) requires heuristic

Instance:

- Set of CR-BSs
- Interference represented by two interference matrices
 - 1. between CR-BSs,
 - 2. from CR-BSs towards PUs

Problem Description - Objective

 Goal is to find a valid assignment of subcarriers to CR-BSs:

 $A_{v,s} = \begin{cases} 1, & \text{if subcarrier } s \text{ is assigned to node } v \\ 0, & \text{otherwise} \end{cases}$

under constraint of achieving max-min fairness:

$$A = \arg\max_{A} \min_{v \in \mathcal{V}} \left(\sum_{s \in S} A_{v,s} \right)$$

7

Telecommunication

Networks Group

Interference avoidance between CR-BSs

If
$$A_{v,s} = 1$$
 then $\forall u : (v,u) \in E_{\mathrm{SU}} \to A_{u,s} = 0$

Outage avoidance

$$\exists s : A_{v,s} = 1, \forall v$$

PU protection

If
$$A_{v,s} = 1$$
 then $\forall u \in \mathcal{P} : (v,u) \notin E_{\mathrm{PU}}$

Proposed Spectrum Allocation Solution

European Wireless 2014

Collision-free Assignment w/ respect to CR-BS

Estimating the interference graph

- Assumption: interference range is twice the wireless communication range
- Re-use of spectrum beyond two-hop neighborhood
- Calculating the spectrum share
 - Every CR-BS calculates a **ranking number** (r_v) which is unique in its two-hop neighborhood,
 - CR-BSs **exchange** their ranking number and the highest so far known ranking number (r_v^{max}) with neighboring CR-BS using beacons,
 - From both numbers each CR-BS can calculate its **specific spectrum share in the total spectrum (including primary spectrum)** $\left(\left\lceil \frac{\Delta f \times (r_v - 1)}{r_v^{\max}} \right\rceil + 1, \left\lceil \frac{\Delta f \times r_v}{r_v^{\max}} \right\rceil \right)_{\Delta f}$

10

Illustrative Example

European Wireless 2014

11

Networks Group

PU Protection by excluding Subcarriers

Spectrum occupied by PUs is excluded from assigned secondary spectrum

Problem:

- It is likely that spectrum used by a PU is continuous
- Hence, a SU can be fully blocked.

Solution:

- To avoid complete blocking of SUs by PUs a distributed subchannel permutation scheme is applied
- Each PU is scattered over the spectrum of all CR-BSs

12

Illustrative Example

European Wireless 2014

13

Performance Evaluation

- Simulation in Matlab
- Comparison with optimal solution (Gurobi solver)
- Different scenarios concerning
 - Optimal number of subcarriers per subchannel,
 - Impact of PUs,
 - Comparison with global optimum.

Optimal number of subcarriers per subchannel

Node degree (α =2–8) / No. of subcarriers per subch. (8–256)

Impact of PUs on spectrum assignment

Node degree (α =2–8) / Spectrum used by PUs (0–50%)

Relative Performance of Proposed Algorithm to the global optimum

າcy

Networks Group

Conclusions

- A **fully distributed algorithm** for spectrum allocation in autonomous CRNs was proposed:
 - Low computational complexity,
 - Low communication overhead,
 - Achieving fairness, i.e. available spectrum is split equally among spatially co-located SU groups,
 - No need of a Common Control Channel

Paper: Anatolij Zubow, Michael Döring and Adam Wolisz, "Distributed Spectrum Allocation for Autonomous Cognitive Radio Networks", *European Wireless*, Barcelona, Spain, 2014

Acknowledgment: This work has been supported by the COUWBAT project of the German Federal Ministry of Education and Research (BMBF 16KIS0029).

BACKUP

TKN

Algorithm extension

- Number of neighbors is not homogenous for the whole network, there exist sparse and dense parts
- Edge nodes have often lower number of neighbors
- Problem: usable spectrum is unused
- Optimization: Utilize unused spectrum
- In addition a second set of ranking numbers is needed and reported to all its two-hop neighbors

Gain from Algorithm Extension

Number of nodes (50–200) / Optimization (1=enabled)

22