Coexistence Gaps in Space via Interference Nulling for LTE-U/WiFi Coexistence

Suzan Bayhan, Anatolij Zubow, and Adam Wolisz TKN, TU Berlin http://www.tkn.tu-berlin.de/

IEEE WoWMoM 2018 Chania, Crete, Greece

LTE operators' interest in unlicensed operation

- Mobile network operators (MNO) can expand their capacity with unlicensed spectrum via carrier aggregation
- Bundling licensed+unlicensed spectrum: less over-provisioning needed
- No spectrum fees!
- Lots of capacity at 5 GHz
- LTE-unlicensed (LTE-U)

2

LTE operators' interest in unlicensed operation

- Mobile network operators (MNO) can expand their capacity with unlicensed spectrum via carrier aggregation
- Bundling licensed+unlicensed spectrum: less over-provisioning needed
- No spectrum fees!
- Lots of capacity at 5 GHz
- LTE-unlicensed (LTE-U)

A big challenge: Coexistence with the WiFi LTE-Unlicensed (LTE-U)

Why is coexistence a challenge?

LTE incompatible for unlicensed spectrum sharing

LTE	WiFi
 Scheduled access 	 Random access
 Continuous transmission 	 Listen before talk (LBT)

Why is coexistence a challenge?

LTE incompatible for unlicensed spectrum sharing

Why is coexistence a challenge?

LTE incompatible for unlicensed spectrum sharing

 Our idea: use precoding at LTE-U BS to achieve interference nulling towards WiFi node(s) while beamforming towards LTE-UE

 Our idea: use precoding at LTE-U BS to achieve interference nulling towards WiFi node(s) while beamforming towards LTE-UE

Interference nulling can enable concurrent LTE-U and WiFi transmissions: improved coexistence compared to separation of transmissions

Motivation

Cross-technology interference nulling based coexistence

- Challenge:
 - LTE-U BS needs to know:
 - locations of WiFi stations
 - its complex Channel State Information (CSI) towards WiFi station

- No communication channel bw. LTE-U BS and WiFi
- In this paper, we assume all information is available at the LTE-U BS

A brief overview of LTE-U

- LTE-U implements duty-cycling (no listen-before-talk before medium access)
- **CSAT**: Carrier-sense Adaptive Transmission by Qualcomm
 - LTE-U BS senses the medium
 - LTE-U must leave the medium for WiFi proportional to the number of WiFi nodes observed in the neighborhood (N_{cs}).
 - Airtime = LTE Ton/(Ton+Toff)

https://mentor.ieee.org/802.19/dcn/15/19-15-0057-00-0000-lte-u-forum-and-coexistence-overview.pdf

LTE-U airtime for fair coexistence

• Ncs: number of WiFi nodes in carrier sensing range (CSR) of the LTE-U BS

CSAT adaptation iteration number

LTE-U airtime for fair coexistence

• Ncs: number of WiFi nodes in carrier sensing range (CSR) of the LTE-U BS

Interference nulling moves the airtime figure above without violating the fairness notion

Motivation

Our proposal

Performance Analysis

Take-aways

Medium access under interference nulling

Motivation

Our proposal

How does nulling affect WiFi's medium access?

Caveats!

LTE-U uses some of its antenna resources (degrees of freedom) for nulling

- Nulling towards particular direction might lower the gain from beamforming towards its own UE (WiFi in a similar angular direction to UE)
- Increase in airtime vs. decrease in LTE-U DL SNR due to lower gain from beam forming
- Nulling may not always improve WiFi throughput
- Longer airtime for LTE during which WiFi has some DL traffic

Caveats!

LTE-U uses some of its antenna resources (degrees of freedom) for nulling

- Nulling towards particular direction might lower the gain from beamforming towards its own UE (WiFi in a similar angular direction to UE)
- Increase in airtime vs. decrease in LTE-U DL SNR due to lower gain from beam forming
- Nulling may not always improve WiFi throughput
- Longer airtime for LTE during which WiFi has some DL traffic

Best trade-off: both LTE and WiFi does not decrease performance over no-nulling case

Motivation

Motivation Problem statement Our proposal Performance Analysis Take-aways

STA1 hard to separate from UE, i.e. nulling STA1 will reduce gain of beamforming towards UE

Motivation

Problem statement

Our proposal

Performance Analysis

Take-aways

12

STA1 hard to separate from UE, i.e. nulling STA1 will reduce gain of beamforming towards UE

Motivation

Our proposal

Performance Analysis

Throughput for WiFi nodes

Case 1: Only time-domain gaps (No LTE interference)

Case 2: Time and space-domain gaps: (LTE interference during LTE-on period)

Throughput for LTE UE

We assume that LTE scheduler first decides which UE to serve in the DL

WiFi interference when AP is unblocked (nulled or LTE-BS is outside AP's sensing range)

Optimisation problem: please see the details in the paper

Greedy WiFi node selection for nulling

- Under a given # of antennas (K):
 - select the WiFi node which gives highest gain in the metric (LTE, WiFi, sum capacity)
 - add nodes till max.nulls (#antennas-1) are reached or no increase in gain

Complexity of the selection algorithm: $O((N + 1)^2)$, N is number of WiFi stations in CSR of LTE-U BS

Motivation

Performance analysis

- Python simulations, Matlab's Phased Array system toolbox
- LCMV beamformer
- Baseline: no nulling, duty-cycling, i.e., LTE-U CSAT
- Parameters to investigate:
 - distance between LTE and WiFi cells
 - number of antennas at LTE-U BS
 - number of WiFi users
- Performance metrics:
 - Throughput gain in LTE, gain in WiFi
 - Medium access delay for LTE and WiFi

Motivation Problem statement Our proposal Performance Analysis Take-aways

Motivation Problem statement Our proposal Performance Analysis Take-aways

()

C

- Throughput increase for LTE/WiFi: up to 221%, 44%
- Significant improvement: inter-technology hidden node distances

How does airtime and SNIR change by nulling?

- Slight decrease in LTE SNIR, but huge increase in its airtime
- WiFi only slightly affected

How does airtime and SNIR change by nulling?

- Slight decrease in LTE SNIR, but huge increase in its airtime
- WiFi only slightly affected

How does airtime and SNIR change by nulling?

- Slight decrease in LTE SNIR, but huge increase in its airtime
- WiFi only slightly affected

Medium access delay decreases

Interference nulling decreases medium access delay

Key take-aways

- Interference nulling for improving coexistence: coexistence gaps in space and time
- Promising gains in throughput, medium access delay
- LTE benefits more from nulling than WiFi:
 - future research on how to change our formula to make it fair
- We assumed existence of perfect CSI at LTE-U BS towards each WiFi node
 - practically hard to obtain because of incompatible PHYs
 - our recent paper addresses this problem
 - Anatolij Zubow, Piotr Gawłowicz, Suzan Bayhan, On Practical Coexistence Gaps in Space for LTE-U/WiFi Coexistence, European Wireless 2018.
 - Piotr Gawłowicz, Anatolij Zubow, Suzan Bayhan, Demo: Cross-Technology Interference Nulling for Improved LTE-U/WiFi Coexistence, ACM Mobisys *Demo* 2018.

Key take-aways

- Interference nulling for improving coexistence: coexistence gaps in space and time
- Promising gains in throughput, medium access delay
- LTE benefits more from nulling than WiFi:
 - future research on how to change our formula to make it fair
- We assumed existence of perfect CSI at LTE-U BS towards each WiFi node
 - practically hard to obtain because of incompatible PHYs
 - our recent paper addresses this problem
 - Anatolij Zubow, Piotr Gawłowicz, Suzan Bayhan, On Practical Coexistence Gaps in Space for LTE-U/WiFi Coexistence, European Wireless 2018.
 - Piotr Gawłowicz, Anatolij Zubow, Suzan Bayhan, Demo: Cross-Technology Interference Nulling for Improved LTE-U/WiFi Coexistence, ACM Mobisys *Demo* 2018.

Thank you, Suzan Bayhan. <u>suzanbayhan.github.io</u>