HUMBOLDT-UNIVERSITAT ZU BERLIN

Common Platform Architecture

A Simple and Clean Architecture for Participation in SPL and Simulation 3D

Al Group, Institute of Informatics, Humboldt Universitat zu Berlin
nao-team@informatik.hu-berlin.de
www.naoth.de

An appropriate architecture, I1.e., framework, Is the base of each successful heterogeneous software project. It enables a group of develop-
ers to work at the same project and to organize their solutions. From this point of view, the artificial intelligence and/or robotics related re-
search projects are usually more complicated, since the actual result of the project is often not clear. In particular, a strong organization of
the software Is necessary If the project is involved in education. In this project we developed a flexible, multi platform architecture aiming
to approach the needs of those research groups.

Requirements

- the target of the project is not precisely defined

- different (concurrent) implementations for the same problem

- changing team members with different level of education
- volunteer team members (students)

- different operation systems

- cooperation between many researchers (spatially separated)

- limited computational resources of the robot

- real time requirements

Module Manager

Black Board

Color Table

Ball Percept £
Ball Model =

NECTTE
-

J
- J

Image Processor

Ball Locator

Behavior Executor

AN/

Module Framework

A blackboard architecture allows for an ef-
ficient data flow and exchangeable mod-
ules. It Is always clear which module Is
reading or writing which data
(transparency). The access Is realized by
references, so there is only minimal over-
head (efficiency). Parallel solutions and

Design principles

modularity: the particular solutions for different (or the same) problems shouldn't affect
each other and be easily exchangeable;

as fast (small, simple) as possible: the program should run in real-time on the robot and the
framework should be simple enough to be maintained by future generation of students;

easy to use and easy to test: students with basic programming knowledge should be able
to implement and test their algorithms;

multi-platforms: the resulting program should run on different platforms (e.qg., simulation,
Nao, etc.) and on different operation systems (Windows, Linux, etc.);

transparency: it should be possible to inspect the state of the program at any time during
the runtime (e.g., which data is accessed by which module);

Platform Interface

A unified platform interface allows the
usage of the same codebase at several
robotic platforms, e.g., a real Nao robot,
Webots simulator, Simspark simulator,
Logplayer. This interface Is transparent for
the Core containing the actual algorithms,
and thus it becomes independent of the
particular platform used.

Core

|

Call-Back Functions

ping

get_image DebugCommandServer

T~
/

set_number_of sth

High Level Runtime Debug
Flexible debug architecture allows an
easy Implementation of runtime debug-
ging concepts. A call-back architecture
allows for an implementation of various
high level debugging concepts. Some of
the implemented examples are:
debug requests (activating or deactivat-

Platform Interface]

! ! ! !

Webots

INng code parts), modify (allowing a modi-
fication of a variable), stopwatches,

experimental code can be dynamically (
switched on and off (independence). !

Robot Nao SimSpark Webcam LogPlayer

Communication

A generic communication infrastructure
allows to transfer the information be-
tween the robots and debugging / moni-
toring tools. A particular implementation
of the transport layer is dependent on
the actual platform.

drawings (allows visualization in 2D/3D).

Logging

Record the state of the agent, e.g.,
Images, and replay them with using the
LogSimulator. Thereby, all data on the
blackboard can be recoded and re-

played in the LogSimulator selectively.

http://www.naoth.de

Testing

Testing Infrastructure which allows to
Implement and run automated tests has
been implemented based on Google-
Testing framework. Thereby, tests for
single functions as well as for whole
modules can be realized.

