Einführung in die Theoretische Informatik Tutorium XI

Michael R. Jung

13. & 14. 01. 2015

1 Kodierungen

2 LOOP-, WHILE- und GOTO-Berechenbarkeit

3 Satz von Rice

num(x), str(n)

Sei $\Sigma = \{a_0, \ldots, a_{m-1}\}$, also $|\Sigma| = m$ und sei $x = a_{i_1} a_{i_2} \ldots a_{i_n} \in \Sigma^n \subseteq \Sigma^*$.

- Nun ist $\operatorname{num}_{\Sigma}(x) := \sum_{j=0}^{n-1} m^j + \sum_{j=1}^n i_j m^{n-j} = \frac{m^n-1}{m-1} + (i_1 \dots i_n)_m$, dabei gibt $\frac{m^n-1}{m-1}$ den Offset für Wörter der Länge n an und man addiert $k = (i_1 \dots i_n)_m$, d.h. x ist einfach das lexikographisch (k+1)-te Wort der Länge n.
- Da $\operatorname{num}_{\Sigma}: \Sigma^* \to \mathbb{N}$ bijektiv ist, können wir $\operatorname{str}_{\Sigma}: \mathbb{N} \to \Sigma^*$ definieren als $\operatorname{str}_{\Sigma}(n) := \operatorname{num}_{\Sigma}^{-1}(n)$.

Wenn Σ aus dem Zusammenhang klar ist, schreiben wir statt num Σ oder str Σ nur num bzw. str.

Beispiele für $\Sigma = \{0,1\}$:

Sei
$$\Sigma = \{0, 1, \dots, 9\}.$$

Aufgabe 1

Geben Sie str(3), str(17), str(100), str(120) sowie num(0), num(1), num(10), num(100), num(1000) an.

Lösung:

Aufgabe 2

Geben Sie jeweils ein LOOP-, WHILE- und GOTO-Programm für die Funktion

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ f(a,b) := a^b$$

an.

Besser: Teilprobleme lösen, auf die man zurückgreifen kann.

END

Dann kann man ein LOOP-Programm für $f(a, b) = a^b$ folgendermaßen schreiben:

Frage: Wie kann ich eine While-Schleife der Form

WHILE r != 0 DO

Ρ

END

in eine Schleife der Form

WHILE r' = 0 DO

Ρ

END

umwandeln?

Lösung:

```
IF r=0 THEN r'=1 ELSE r'=0;
WHILE r' = 0 DO
   P;
IF r=0 THEN r'=1 ELSE r'=0
END
```


WHILE-Berechenbarkeit

Nun kann man ein WHILE-Programm für $f(a, b) = a^b$ folgendermaßen schreiben:

```
r_0=r_0+1;

WHILE r_2 != 0 D0

r_0=r_0*r_1;

r_2=r_2-1

END
```


GOTO-Berechenbarkeit

$$+(a,b):$$

2: IF
$$r_2 = 0$$
 THEN GOTO 6

1: IF
$$r_2 = 0$$
 THEN GOTO 5

Nun kann man ein GOTO-Programm für $f(a, b) = a^b$ folgendermaßen schreiben:

2: IF
$$r_2 = 0$$
 THEN GOTO 6

Satz (Satz von Rice)

Sei F eine Klasse von Funktionen und sei

$$L_{\mathcal{F}}:=\{w\in\{0,1\}^*|\textit{M}_{\textit{w}} \text{ berechnet eine Funktion in } \mathcal{F}\}.$$

Gilt $\varnothing \subset L_{\mathcal{F}} \subset \{0,1\}^*$, so ist $L_{\mathcal{F}}$ unentscheidbar.

Satz (Satz von Rice für Sprachen)

Sei S eine Klasse von Sprachen und sei

$$L_{\mathcal{S}} := \{ w \in \{0,1\}^* | L(M_w) \in \mathcal{S} \}.$$

Gilt $\varnothing \subset L_{\mathcal{S}} \subset \{0,1\}^*$, so ist $L_{\mathcal{S}}$ unentscheidbar.

Bemerkung:

Es gilt $\varnothing \subset L_{\mathcal{S}} \subset \{0,1\}^* \Leftrightarrow \varnothing \subset (\mathcal{S} \cap RE) \subset RE$.

Aufgabe 3

Gilt für die folgenden Sprachklassen S_i , dass L_{S_i} entscheidbar ist?

- 1 $S_1 := REC$
- 2 $S_2 := RE$
- $3 \mathcal{S}_3 := \{L|\bar{H} \leq L\}$

Lösungen:

- Nein, denn $REC \subseteq RE$, $\{a\} \in REC$, $H \notin REC$, $H \in RE$ und somit ist S_1 nicht trivial und L_{S_1} unentscheidbar.
- 2 $S_2 = RE$ ist trivial und hier ist $L_{S_2} = \{0,1\}^* \in REG \subset REC$, da per definitionem jede von einer TM akzeptierte Sprache semientscheidbar ist.
- 3 $S_3 \cap RE = \emptyset$, da kein semi-entscheidbares Problem co-RE-schwer sein kann und S_3 genau die Klasse der co-RE-schweren Sprachen ist. Somit ist $L_{S_3} = \emptyset \in REC$.

Aufgabe 4

Sind folgende Sprachen entscheidbar?

1
$$L_1 := \{ w \in \{0,1\}^* | \exists w' \in \{0,1\}^* : M_w(w') = w' \}$$

2
$$L_2 := \{ w \in \{0,1\}^* | \exists w' \in \{0,1\}^* : M_{w'}(w) = w \}$$

3
$$L_3 := \{ w \in \{0,1\}^* | M_w(0) = w \}.$$

Lösungen:

1 Betrachte $\mathcal{F} := \{f | \exists w' \in \{0,1\}^* : f(w') = w'\}.$ Es ist $\mathrm{id}_{\Sigma^*} \in \mathcal{F}$ (Identität) und $+: \Sigma^* \to \Sigma^*, +(x) := \operatorname{str}_{\Sigma}(\operatorname{num}_{\Sigma}(x) + 1) \notin \mathcal{F}$ (lexikographischer Nachfolger). Somit ist \mathcal{F} nicht trivial und $L_{\mathcal{F}}$ nicht entscheidbar. L_1 ist aber semientscheidbar. Betrachte eine TM M, die bei Eingabe w in der k-ten Runde $M_{\rm w}$ nacheinander auf allen Eingabe der Länge $\leq k$ simuliert, und dies k Schritte lang. Sollte also ein Wort w', |w'| = n existieren, mit $M_w(w') = w'$

und M_w benötigt für die Rechnung m Schritte, so wird M w

in der $(\max\{m, n\})$ -ten Runde akzeptieren.

2 Betrachte die berechenbare Funktion id_{Σ^*} . Sei M eine Turingmaschine die id_{Σ^*} berechnet und sei w' ihre Kodierung. Somit existiert für alle Wörter w über $\{0,1\}$ ein w' mit $M_{w'}(w)=w$, also ist $L_2=\Sigma^*\in REC$.

3 ACHTUNG: Hier ist der Satz von Rice nicht anwendbar, da die Zugehörigkeit eines Wortes w zu L₃ nicht nur von der durch M_w berechneten Funktion abhängt, sondern auch von der Kodierung w selbst. Das soll heißen, es könnte Wörter w ≠ w' geben mit ∀x ∈ {0,1}*: M_w(x) = M_{w'}(x) (also M_w und M_{w'} berechnen dieselbe Funktion), aber z.B. w ∈ L₃, w' ∉ L₃, da M_w(0) = M_{w'}(0) = w.

 $W \in L_3, W \notin L_3, \text{ da } M_W(0) = M_W(0) = W.$

 L_3 ist unentscheidbar, da sich z.B. das spezielle Halteproblem darauf reduzieren lässt via $w\mapsto w'$ mit:

 $M_{w'}$ vergisst zunächst ihre Eingabe, simuliert dann $M_w(w)$. Zum Schluss, falls die Simulation endet, gibt sie w' aus. Nunsist $w \in K \Leftrightarrow w' \in L_3$.

EThl - Tutorium XI