Inhaltsverzeichnis

1	W	ahrscheinlichkeitsrechnung	5
	1	Grundbegriffe	6
		1.1 Einleitung, Geschichte	6
		1.2 Zufällige Ereignisse	10
		1.3 Ereignisfelder	19
		1.4 Kolmogoroff'sches Axiomensystem	22
		1.5 Folgerungen	
		1.6 Die klassische Definition der Wahrschein-	
		lichkeit	40
	2	Kombinatorik	43
		2.1 Klassische kombinatorische Probleme	43
		2.2 Beispiele	48
		2.3 Arithmetische Beziehungen zwischen den	
		Binomialkoeffizienten	
		2.4 Die Stirling Formel	59
	3	Bedingte Wahrscheinlichkeit, Unabhängigkeit	
		von Ereignissen	67
	4	Anwendung bedingter Wahrscheinlichkeiten	77
	5	Klassische Wahrscheinlichkeitsräume	
		5.1 Binomiale Wahrscheinlichkeiten	
		5.2 Multinomiale Wahrscheinlichkeiten	95
		5.3 Poisson–Wahrscheinlichkeiten	96

2	Zı	ufallsvariablen	99
	1	Grundbegriffe	100
	2	Eigenschaften der Verteilungsfunktion	118
	3	Diskrete zufällige Variablen	122
	4	Charakteristika von Verteilungsfunktionen	142
		4.1 Der Erwartungswert	
		4.2 Moment und Varianz	154
		4.3 Schiefe und Exzeß4.4 Charakteristische Funktionen	168
		4.4 Charakteristische Funktionen	169
	5	Die Exponentialverteilung	175
		5.1 Einführung	175
		5.1 Einführung	179
		5.3 Zuverlässigkeitsmodelle	186
	6	Die Normalverteilung	204
		6.1 Standard-Normalverteilung	204
		6.2 Berechnen von Wahrscheinlichkeiten	206
		6.3 $k \cdot \sigma$ -Intervalle	210
		6.4 Besonderheiten der Normalverteilung	213
		Transformation von Zufallsvariablen	
	8	Mehrdimensionale Zufallsvariablen	
		8.1 Begriffe	229
		8.2 Unabhängigkeit von Zufallsgrößen	244
		8.3 Transformationssatz für Zufallsvektoren	248
		8.4 Korrelation	268
	~		
3		renzwertsätze	277
	1	Ungleichungen	278
	2	Das Gesetz der großen Zahlen	285
	3	Der Satz von GLIVENKO-CANTELLI	291
		Konvergenz von Folgen zufälliger Variablen	
	5	Der zentrale Grenzwertsatz	306

4	G		325
	1	Einführung Erzeugung von Zufallszahlen 2.1 Exakte Methoden von Hand	326
	2	Erzeugung von Zufallszahlen	329
		2.1 Exakte Methoden von Hand	329
		2.2 Elektronische Erzeugung	332
		2.3 Mathematische Erzeugung2.4 Eigenschaften von PseudozufallszahlenStatistische Tests von Pseudozufallszahlen	332
		2.4 Eigenschaften von Pseudozufallszahlen.	336
	3	Statistische Tests von Pseudozufallszahlen	342
		3.1 Test auf Gleichverteilung	347
		3.2 Test auf Unabhängigkeit	356
	4	Erzeugung spezieller Verteilungen	363
		4.1 Erzeugung diskreter Zufallsvariablen	363
		4.2 Erzeugung stetiger Zufallsvariablen 4.3 Weitere Simulationen	364
		4.3 Weitere Simulationen	380
5	Μ	larkoff'sche Ketten	389
•	1	Definitionen und einfache Zusammenhänge	
	$\bar{2}$	Klassifikation der Zustände	400
	3	Rekurrente und transiente Zustände	
	4	Grenzverteilungen	417
	5	Klassische Beispiele	435
		5.1 Ruin des Spielers	435
		5.2 Irrfahrten	444
	6	Simulated Annealing	450
		6.1 Einführung	450
		6.1 Einführung	459
		6.1 Einführung	459
		6.1 Einführung	459

Literatur

- Mathar, R. und Pfeiffer, D. (1990) Stochastik für Informatiker, Stuttgart
- Pflug, G. (1986). Stochastische Modelle in der Informatik, Stuttgart
- Greiner, M. und Tinhofer, G. (1996) Stochastik für Studienanfänger der Informatik, München
- Rosanov, J.A. (1970). Wahrscheinlichkeitstheorie, Berlin
- Flachsmeyer, J. (1970). Kombinatorik, Berlin

Kapitel 1

Wahrscheinlichkeitsrechnung

Contents	
1	Grundbegriffe 6
2	Kombinatorik 43
3	Bedingte Wahrscheinlichkeit, Unabhängig- keit von Ereignissen 67
4	Anwendung bedingter Wahrscheinlich- keiten
5	Klassische Wahrscheinlichkeitsräume 91

1 Grundbegriffe

- 1.1 Einleitung, Geschichte
- 1.2 Zufällige Ereignisse
- 1.3 Ereignisfelder
- 1.4 Kolmogorov'sches Axiomensystem
- 1.5. Folgerungen
- 1.6. Klassische Definition der Wahrscheinlichkeit

1.1 Einleitung, Geschichte

• antikes Griechenland

Begriff der Wkt.

Naturgesetze drücken sich durch eine Vielzahl von zufälligen Erscheinungen aus.

Stäbchenspiel

• 1654, Chevalier de Mere, Pascal

Würfelspiele, Würfe mit 2 Würfeln. Wenn in 25 Würfen einmal eine Doppelsechs so hat C.d.M. gewonnen, sonst sein Gegner.

• Pascal, Fermat (Briefwechsel)

2 Personen-Spiele. Gespielt wird eine Serie von Partien, z.B. Schach (nur 0,1). Gewinnen soll der Spieler, der zuerst S Partien gewonnen hat, d.h. dieser Spieler erhält den vollen Einsatz.

Abbruch des Spiels (z.B. wegen Zeitmangel)

A hat a Gewinnpartien, a < S

B hat b Gewinnpartien, b < S

Wie ist der Einsatz nach dem Abbruch gerecht zu verteilen?

Variante: $\frac{a}{b}$, aber S wird nicht berücksichtigt! Es wäre also der weitere mögliche Verlauf nach dem Abbruch zu analysieren.

• 1662, Graunt; 1693 Halley

Sterlichkeitstafeln (Überlebenswkt. in Abhängigkeit vom Lebensalter) → Rentenberechnung Schiffsversicherung • 1713, Jacob Bernoulli

"Ars conjectandi": 1. Lehrbuch der Wkt.rechnung Bernoulli-Gesetz der Großen Zahlen, p=P(A) $h_n(A)=\frac{1}{n}\#$ Auftreten v. $A,\,h_n(A)-p\to_{n\to\infty}0$

• 1733, Moivre

Grenzwertsatz von Moivre-Laplace

$$\sqrt{n} \frac{\overline{X} - \mu}{\sigma} \to \mathcal{N}(0, 1)$$

• 1812, Laplace

klassische Definition der Wkt.

$$P(A) = \frac{\# \text{für A günstige Ereignisse}}{\# \text{m\"{o}gliche Ereignisse}}$$

- 1800, Laplace, Gauss
 Untersuchung von Beobachtungsfehlern
 Kleinste Quadrat-Schätzung
- Ende 19. Jh., Tschebyscheff, Markov, Ljapunov
- 1900, David Hilbert (2. Intern.Mathematikerkongress Paris) 23 Probleme der Mathematik, u.a. Axiomatik der Wkt.rechnung.

• 1919 R.v. Mises

statistische Definition der Wkt,

Erfahrung: $P(A) := \lim_{n \to \infty} h_n(A)$

Existiert der Grenzwert?

• 1933, A.N. Kolmogorov

Axiomsystem der Wkt.rechnung

Statistik:

Gesamtheit aller Methoden zur Analyse zufallsbehafteter Datenmengen

- → Aussagen über die zugrundeliegende Grundgesamtheit treffen.
- + Wahrscheinlichkeitsrechnung:

gegebene Grundgesamtheit (Verteilung)

→ Aussagen über Realisierungen einer Zufallsvariablen treffen.

= Stochastik

(grch.: im Rechnen geschickt).

1.2 Zufällige Ereignisse

Def. 1.1 Ein zufälliger Versuch (Experiment) ist ein Versuch mit ungewissem Ausgang.

Beispiel: Glücksspiele.

Wichtig bei solchen Experimenten ist:

- die Beschreibung des Experiments (Kartenspiele, Münzwurf),
- die Erfassung der Menge aller möglichen Ausgänge des Experiments.

Def. 1.2 (Grundbegriffe)

- Elementarereignis: möglicher Versuchsausgang, Bez.: ω .
- Ereignis: Menge von El.ereignissen, $A \subset \Omega$
- sicheres Ereignis: Menge aller El.ereignisse, Bez: Ω .
- unmögiches Ereignis: Ø.
- Komplementärereignis: $\overline{A} = \Omega \setminus A$

Ein Experiment kann diskret sein, d.h. endlich oder abzählbar viele Ausgänge besitzen, oder es kann überabzählbar viele Ausgänge haben.

Bsp. 1.1 : Experimente mit einer endlichen Anzahl von Elementarereignissen

a) Münzwurf

Folgende Ereignisse können auftreten:

- zwei Elementarereignisse: {Zahl (z)}, {Wappen (w)};
- das unmögliche Ereignis $\emptyset = \{z\} \cap \{w\};$
- das sichere Ereignis $\Omega := \{z, w\}$. Das bedeutet, daß Zahl oder Wappen eintreten.

Die Menge der auftretenden Ereignisse ist

$$\mathcal{P}(\Omega) := \{\emptyset, \{z\}, \{w\}, \Omega\},\$$

die Potenzmenge von Ω *.*

b) Würfeln (1 mal)

Die Elementarereignisse sind $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}$ und $\{6\}$, d.h. $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Damit erhalten wir für paarweise verschiedene $i, j, k, l, m \in \{1, 2, 3, 4, 5, 6\}$ die möglichen Ereig-

nisse:

Ereignistyp Anzahl
$$\emptyset$$
 1 $\{i\}$ 6 $\{i,j,k\}$ 20 $\{i,j,k,l\}$ 15 $\{i,j,k,l,m\}$ 6 Ω 1 insgesamt $2^6 = 64$

Menge der auftretenden Ereignisse ist die Potenzmenge von Ω .

Bsp. 1.2 : Experimente mit abzählbar vielen Elementarereignissen)

1. Werfen einer Münze, bis zum ersten Mal die Zahl fällt

$$\Omega = \{z, wz, wwz, wwz, wwwz, \ldots\}.$$

2. Anzahl der ankommenden Fahrzeuge an einer Kreuzung in einem bestimmten Zeitbereich

$$\Omega = \{0, 1, 2, \ldots\}.$$

Bsp. 1.3 : Experimente mit überabzählbar vielen Elementarereignissen

1. Lebensdauer einer Glühbirne

$$\Omega = [0, \infty[= \mathbb{R}^+.$$

Ereignisse sind bei diesem Experiment z.B. Intervalle und Punkte.

Es gilt beispielsweise: $\emptyset = [0, 1] \cap [3, 5]$.

Das Ereignis $A = \{[0.4, 3.1], \{7\}\}$ bedeutet, daß die Glühbirne eine Lebensdauer von 7s oder eine Lebensdauer zwischen 0.4s und 3.1s hat.

2. Messung einer physikalischen Konstante

$$y = m + \varepsilon$$
Meßwert Konstante Meßfehler

Die Meßfehler sind die Elementarereignisse. Ereignisse sind beispielsweise Intervalle. Begriff des Ereignisfeldes (grob): Ein Ereignisfeld \mathcal{E} ist ein System von Teilmengen der Menge Ω . Es gilt: $\mathcal{E} \subseteq \mathcal{P}(\Omega)$.

Bem.: Es seien $A_1 \in \mathcal{E}$ und $A_2 \in \mathcal{E}$ Ereignisse. Dann ist:

- $A_3 := A_1 \cap A_2 = \{ \omega \in \Omega \colon \omega \in A_1 \text{ und } \omega \in A_2 \}$ das Ereignis, bei dem A_1 und A_2 eintreten;
- $A_3 := A_1 \cup A_2 = \{ \omega \in \Omega : \omega \in A_1 \text{ oder } \omega \in A_2 \}$ das Ereignis, bei dem A_1 oder A_2 eintreten;
- $\overline{A_1} = \Omega \setminus A_1 = \{ \omega \in \Omega \colon \omega \notin A_1 \}$ das zu A_1 komplementäre Ereignis.

Es gilt offenbar:

- $A \cup \overline{A} = \Omega$ (sicheres Ereignis),
- $A \cap \overline{A} = \emptyset$ (unmögliches Ereignis).

Satz 1.1 (Rechenregeln für Ereignisse)

- (i) $A \cup B = B \cup A$ (Kommutativgesetz)
- (ii) $(A \cup B) \cup C = A \cup (B \cup C)$ (Assoziativgesetz)
- (iii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributiv-)
- (iv) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (gesetze)
- (v) (De'Morgansche Regeln)

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$
$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

Def. 1.3 Seien A_1, \ldots, A_n, \ldots Ereignisse.

Die <u>Vereinigung</u> $\bigcup_{i=1}^{\infty} A_i$ ist das Ereignis, das eintritt, wenn mindestens eines Ereignisse A_1, \ldots, A_n, \ldots eintritt.

Der <u>Durchschnitt</u> $\bigcap_{i=1}^{\infty} A_i$ ist das Ereignis, das eintritt, wenn alle Ereignisse A_1, \ldots, A_n, \ldots eintreten.

Satz 1.2 (Verallgemeinerungen)

Seien A, A_1, \dots Ereignisse.

(iii)
$$A \cap (\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} (A \cap A_i)$$

(iv)
$$A \cup (\bigcap_{i=1}^{\infty} A_i) = \bigcap_{i=1}^{\infty} (A \cup A_i)$$

(v)

$$\frac{\overline{\bigcup_{i=1}^{\infty} A_i}}{\bigcap_{i=1}^{\infty} A_i} = \bigcap_{i=1}^{\infty} \overline{A_i}$$

$$\bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \overline{A_i}$$

1.3 Ereignisfelder

Def. 1.4 Sei Ω die Menge aller Elementarereignisse eines zufälligen Experiments, so heißt $\mathcal{E} \subseteq \mathcal{P}(\Omega)$ <u>Ereignisfeld</u> (σ -Algebra) über Ω , falls folgendes gilt:

- 1. $\Omega \in \mathcal{E}$;
- 2. Gilt $A_i \in \mathcal{E}$ für $i \in \mathbb{N}$, dann folgt $\bigcap_{i=1}^{\infty} A_i \in \mathcal{E}$;
- $3. A \in \mathcal{E} \Longrightarrow \overline{A} \in \mathcal{E}.$

Bem.: 3 grundlegende Eigenschaften:

- Elementarereignisse schließen sich gegenseitig aus.
- Es tritt immer nur genau ein Elementarereignis ein.
- Ein Ereignis tritt genau dann ein, wenn eines seiner Elementarereignisse eintritt.

Folg. 1

- a) Ist $A_i \in \mathcal{E} \quad \forall i \in \mathbb{N}$, so folgt daraus: $\bigcup_{i=1}^{\infty} A_i \in \mathcal{E}$.
- b) Für das unmögliche Ereignis gilt: $\emptyset \in \mathcal{E}$.

Beweis:

a)

$$A_i \in \mathcal{E}, \ \forall i \in \mathbf{N} \implies \overline{A_i} \in \mathcal{E}, \ \forall i \in \mathbf{N} \ (\text{Def. 1.4.3})$$

$$\implies \bigcap_{i=1}^{\infty} \overline{A_i} \in \mathcal{E} \ (\text{Def. 1.4.2})$$

$$\implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{E} \ (\text{de Morgan'sche Regeln})$$

$$\implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{E} \ (\text{Def. 1.4.3})$$

b) Nach Def. 1.4.1 gilt: $\Omega \in \mathcal{E}$. Wegen $\emptyset = \overline{\Omega}$ und Definition 1.4 3) folgt dann: $\emptyset \in \mathcal{E}$.

Def. 1.5 Zwei Ereignisse $A_1, A_2 \in \mathcal{E}$ heißen <u>unvereinbar</u> (<u>disjunkt</u>), falls $A_1 \cap A_2 = \emptyset$ gilt. Wir sagen dann auch, diese beiden Ereignisse schließen einander aus.

1.4 Kolmogoroff'sches Axiomensystem

Def. 1.6 Sei \mathcal{E} ein Ereignisfeld.

Eine Abbildung $P \colon \mathcal{E} \longrightarrow \mathbb{R}$ heißt <u>Wahrscheinlichkeit</u>, falls sie die folgenden Eigenschaften hat:

- 1. Für alle $A \in \mathcal{E}$ gilt: $0 \leq P(A) \leq 1$;
- 2. $P(\Omega) = 1$;
- 3. Sind die Ereignisse A_1, A_2, \ldots paarweise unvereinbar (d.h. $A_i \cap A_j = \emptyset$ für $i \neq j, i, j \in \mathbb{N}$), so gilt die sogenannte σ -Additivitätseigenschaft:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

Def. 1.7 Sei Ω die Menge der Elementarereignisse, \mathcal{E} ein Ereignisfeld über Ω ($\mathcal{E} \subseteq \mathcal{P}(\Omega)$) und P genüge den KOLMOGOROFF-Axiomen, dann heißt das Tripel (Ω, \mathcal{E}, P) Wahrscheinlichkeitsraum.

Mittels dieses Begriffes ist eine vollständige Beschreibung eines zufälligen Experimentes möglich.

Wir betrachten nun $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, ein System von Teilmengen der Menge Ω . Dann können wir die folgende Menge bilden:

$$\mathcal{E}(\mathcal{A}) = \{\mathcal{E} \colon \mathcal{A} \subseteq \mathcal{E}, \mathcal{E} \text{ ist Ereignisfeld} \} \ .$$

Dann ist die Menge

$$\mathcal{E}_{\mathcal{A}} = \bigcap_{\mathcal{E} \in \mathcal{E}(\mathcal{A})} \mathcal{E}$$

die von \mathcal{A} erzeugte σ -Algebra (Ereignisfeld) bzw. die kleinste σ -Algebra über Ω , die \mathcal{A} enthält.

Bsp. 1.4 Beispiele für Wahrscheinlichkeitsräume (Ω, \mathcal{E}, P) .

1. Klassische Wahrscheinlichkeitsräume

$$\Omega = \{\omega_1, \dots, \omega_N\}, \quad \mathcal{E} = \mathcal{P}(\Omega).$$

$$P(\omega_i) = P(\{\omega_i\}) = \frac{1}{N} \quad \forall i = 1, \dots, N. \ \textit{D.h. alle}$$
Elementarereignisse sind gleichwahrscheinlich.

Def. 1.8 (klassische **Def. der Wkt.**) $Sei A \in \mathcal{E}$.

$$P(A) = \frac{\#\{\omega, \omega \in A\}}{N} = \frac{\#f\ddot{u}rA\ g\ddot{u}nstigen\ El.\ ereign.}{\#m\ddot{o}glichen\ El.ereignisse}$$

2. Es sei $\Omega = \mathbb{R}$ und

$$\mathcal{A} = \{ [a, b] : -\infty < a < b < \infty \} \subseteq \mathcal{P}(\Omega).$$

die Menge der halboffenen Intervalle. Dann ist $\mathcal{B}^1:=$ $\mathcal{E}_{\mathcal{A}}$ die σ -Algebra der BOREL-Mengen. $(\mathbb{R}, \mathcal{B}^1, P)$ ist dann ein Wahrscheinlichkeitsraum mit irgendeiner Wahrscheinlichkeit P.

3. Es sei $\Omega = [0, 1]$. Weiterhin betrachten wir:

$$\mathcal{E} = \{ A \colon A = B \cap [0, 1], B \in \mathcal{B}^1 \}.$$

Für alle Mengen $A \in \mathcal{E}$ definieren wir die Wahrscheinlichkeit:

(a)
$$P: A \longrightarrow \mathbb{R} \text{ mit } P(A) := \int_A dx$$
.

Dann ist:

$$P(\Omega) = \int_0^1 dx = 1$$

$$P\left(\left[\frac{1}{2}, \frac{3}{4}\right]\right) = \frac{1}{4}$$

$$P\left(\left\{\frac{1}{2}\right\}\right) = \int_{\frac{1}{2}}^{\frac{1}{2}} dx = 0$$

(b)
$$Q: A \longrightarrow \mathbb{R}$$
 mit $Q(A) := \int_A 1, 5(1-x^2) dx$.

Dann ist:

$$Q(\Omega) = \int_0^1 1, 5(1 - x^2) dx$$
$$= 1, 5\left(x - \frac{x^3}{3}\right)\Big|_0^1$$
$$= 1$$

 (Ω, \mathcal{E}, P) und (Ω, \mathcal{E}, Q) sind Wahrscheinlichkeitsräume.