Software Engineering for Future Computer Architectures

Novica Nosovic ETF Sarajevo

7th Workshop
"Software Engineering Education and Reverse Engineering"
Risan, Montenegro, 8 - 15 September 2007

Moore's Law: 2X transistors / "year"

- "Cramming More Components onto Integrated Circuits"
- Gordon Moore, Electronics, 1965
- \# on transistors / cost-effective integrated circuit double every N months ($\mathbf{1 2 \leq N \leq 2 4)}$

Why there is no 20 GHz processor today!

Walls all around!

- power wall,
- memory wall,
- transistor wall...

Tracking Technology Performance Trends

- 4 technologies - key components:
- Disks,
- Memory,
- Network,
- Processors
- Compare ~1980 Archaic vs. ~2000 Modern
- Performance Milestones in each technology
- Compare for Bandwidth vs. Latency improvements in performance over time
- Bandwidth: number of events per unit time
- E.g., M bits / second over network, M bytes / second from disk
- Latency: elapsed time for a single event
- E.g., one-way network delay in microseconds, average disk access time in milliseconds

Disks: Archaic v. Modern

- CDC Wren I, 1983
- 3600 RPM
- 0.03 GBytes
- Tracks/Inch: 800
- Bits/Inch: 9550
- Three 5.25" platters
- Bandwidth: 0.6 MBytes/sec
- Latency: 48.3 ms
- Cache: none
- Seagate 373453, 2003
- 15000 RPM (4X)
- 73.4 GBytes (2500X)
- Tracks/Inch: 64000 (80X)
- Bits/Inch: 533,000 (60X)
- Four 2.5" platters (in 3.5" form factor)
- Bandwidth: 86 MBytes/sec (140X)
- Latency: 5.7 ms
- Cache: 8 MBytes

Memory: Archaic v. Modern

- 1980 DRAM (asynchronous)
- 0.06 Mbits/chip
- 64,000 xtors, $35 \mathrm{~mm}^{2}$
- 16-bit data bus per module, 16 pins/chip
- 13 Mbytes/sec
- Latency: 225 ns
- (no block transfer)
- 2000 Double Data Rate Synchronous DRAM
- 256.00 Mbits/chip (4000X)
- 256,000,000 xtors, 204 mm 2
- 64-bit data bus per DIMM, 66 pins/chip
- 1600 Mbytes/sec (120X)
- Latency: 52 ns (4X)
- Block transfers (page mode)

LANs: Archaic v. Modern

- Ethernet 802.3
- Year of Standard: 1978
- 10 Mbits/s link speed
- Latency: $3000 \mu \mathrm{sec}$
- Shared media
- Coaxial cable

Coaxial Cable:

- Ethernet 802.3ae
- Year of Standard: 2003
- 10,000 Mbits/s(1000X) link speed
- Latency: $190 \mu \mathrm{sec}(15 \mathrm{X})$
- Switched media
- Category 5 copper wire
"Cat 5" is 4 twisted pairs in bundle Twisted Pair:

Copper, 1 mm thick, twisted to avoid antenna effect

CPUs: Archaic v. Modern

- 1982 Intel 80286
- 12.5 MHz
- 2 MIPS (peak)
- Latency 320 ns
- 134,000 xtors, $47 \mathrm{~mm}^{2}$
- 16-bit data bus, 68 pins
- Microcode interpreter, separate FPU chip
- (no caches)

- 2001 Intel Pentium 4
- 1500 MHz (120X)
- 4500 MIPS (peak) (2250X)
- Latency 15 ns (20X)
- 42,000,000 xtors, $217 \mathrm{~mm}^{2}$
- 64-bit data bus, 423 pins
- 3-way superscalar, Dynamic translate to RISC, Superpipelined (22 stage), Out-of-Order execution
- On-chip 8KB Data caches, 96KB Instr. Trace cache, 256KB L2 cache

Rule of Thumb for Latency Lagging BW

- In the time that bandwidth doubles, latency improves by no more than a factor of 1.2 to 1.4 (and capacity improves faster than bandwidth)
- Stated alternatively: Bandwidth improves by more than the square of the improvement in Latency

Summary of Technology Trends

- For disk, LAN, memory, and microprocessor, bandwidth improves by square of latency improvement
- In the time that bandwidth doubles, latency improves by no more than 1.2X to 1.4X
- Lag probably even larger in real systems, as bandwidth gains multiplied by replicated components
- Multiple processors in a cluster or even in a chip
- Multiple disks in a disk array
- Multiple memory modules in a large memory
- Simultaneous communication in switched LAN
- HW and SW developers should innovate assuming Latency Lags Bandwidth
- If everything improves at the same rate, then nothing really changes
- When rates vary, require real innovation

Amdahl's Law

$$
\begin{array}{|l|l}
\hline \text { SEQUENTIAL } & \text { PARALLELIZABLE }
\end{array}
$$

$$
\text { speedup }=\frac{1}{S \frac{P}{N}}
$$

20 years of "free lunch"

- no need for more processors
- just wait a year and the processor gets faster
- Intel and AMD sell multicore only!
- first multicore - two processors on a chip (slap together), not very tightly integrated
- four-core chips where it's really a redesign

Manycore to come

- Not only cores that double like chromosomes
- communication network on chip
- very tightly coupled
- memory architecture is changing bandwidth has increased dramatically
- GPUs, Cell... different memory model and cache coherency

Software is not ready!!!

- traditional model - threads! works well with shared memory
- distributed memory ... threads do not do...
- but VM! like JVM!?
- VM manages processors, distributed memory... for photo editing, multimedia on desktop, speech recognition (lacks floating point footage!!)

The bigest wall!

- How can SE keep pace with these evolving HW that are rendering the existing application base obsolete?
- Eentirely different way to program is needed
- It is not something developers are used to
- There is a real void in the tools world on how to program

For Java lovers!

- So we're starting to move to processors that have distributed memory...
- ...where that thread shared memory model doesn't work

Which way to go?

