
1

Topic SM
Maintenance

September 1, 2002
to do:

Include case study througout the
book and the larger example at the
end.

Lecture notes

DAAD project
“Joint Course on Software Engineering”
Humboldt University of Berlin, University of Novi Sad, University of Plovdiv,

University of Skopje, University of Belgrade, University of Niš, University of Kragujevac

Parts of this Chapter use material from the textbook
H. Balzert, “Software-Technik”, Vol. 1, 2nd ed., Spektrum Akademischer Verlag, 2001

DocID: D020521-E020530

2Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Literature

Braude: Software engineering – an object-oriented
perspective, Wiley, 2000.

2

3Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

SM. Maintenance

a) Activities and issues of software maintenance
b) Types of software maintenance
c) Maintenance techniques
d) Standardization
e) Management of maintenance
d) Metrics

4Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Software maintenance

The process of modifying a software system or
component after delivery to correct faults, improve
performance or other attributes, or adapt to a
changed environment [IEEE 610].
40% - 90% of the total life cycle costs is for
maintenance.
Maintenance does not normally involve major
changes to the system’s architecture
Changes are implemented by modifying existing
components and adding new components to the
system
Example: the year 2000 problem.

3

5Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Maintenance is inevitable

The system requirements are likely to change
while the system is being developed because
the environment is changing. Therefore a
delivered system won't meet its requirements!
Systems are tightly coupled with their
environment. When a system is installed in an
environment it changes that environment and
therefore changes the system requirements.
Systems MUST be maintained therefore if they
are to remain useful in an environment

6Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Servicing maintenance request - 1

Be prepared to keep required metrics. Include..
• … lines of code added
• … lines of code changed
• … time taken: 1. preparation 2. design 3. code 4. test

Ensure that the request has been approved
Understand the problem thoroughly
• reproduce the problem

- otherwise get clarification
Classify the MR as repair or enhancement
Decide whether the implementation requires a
redesign at a higher level
• if so, consider batching with other MR’s

Design the required modification
(i.e., incorporate the change)

4

7Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Servicing maintenance request - 2

Plan transition from current design
Assess change’s impact throughout the application
• small changes can have major impact!

Implement the changes
Perform unit testing on the changed parts
Perform regression testing
• ensure changes haven’t compromised existing capabilities

Perform system testing with new capabilities
Update the configuration, requirement, design and
test documentation

8Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Issues

Management
• Return on investment hard to define

Process
• Extensive coordination required to handle stream

of Maintenance Requests
Technical
• Covering full impact of changes
• Testing very expensive compared with the utility of

each change
- focused tests ideal but expensive
- regression testing still required

5

9Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Usually greater than development costs (2* to
100* depending on the application)
Affected by both technical and non-technical
factors
Increases as software is maintained.
Maintenance corrupts the software structure so
makes further maintenance more difficult.
Ageing software can have high support costs
(e.g. old languages, compilers etc.)

Maintenance costs

10Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Development/maintenance costs

6

11Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Team stability
• Maintenance costs are reduced if the same staff are involved

with them for some time
Contractual responsibility
• The developers of a system may have no contractual

responsibility for maintenance so there is no incentive to
design for future change

Staff skills
• Maintenance staff are often inexperienced and have limited

domain knowledge
Program age and structure
• As programs age, their structure is degraded and they

become harder to understand and change

Maintenance cost factors

12Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Activity Estimate
(person-days) Activity Estimate

(person-days)

1. Understand the problem and identify the
functions that must be modified or added. 2 - 5 6. Compile and integrate into

baseline 2 - 3

2. Design the changes 1 - 4 7. Test functionality of changes 2 - 4

3. Perform impact analysis 1 - 4 8. Perform regression testing 2 - 4

4. Implement changes in source code 1 - 4 9. Release new baseline and
report results 1

5. Change SRS, SDD, STP, configuration
status 2 - 6 TOTAL 14 - 35

Example: Estimating the Cost of Servicing a Maintenance Request

7

13Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

2. Determine main-
tenance scope
• all types?
• corrective only?
• limited corrective?

3. Identify maintainers
• in-house?
• contracted?

4. Develop maintenance plan
• Change control approval procedure
• Help desk
• etc.

5. Estimate costs 6. Perform maintenance

RoadMap to Establish Maintenance

1a. Design for maintainability
1b. Ensure supportability
1c. Plan for transition to
maintenance
1d. Plan post-delivery logistics

14Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

SM. Maintenance

a) Activities and issues of software maintenance
b) Types of software maintenance
c) Maintenance techniques
d) Standardization
e) Management of maintenance
d) Metrics

8

15Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Types of maintenance

Corrective
• defect identification and removal

Adaptive
• changes resulting from operating

system, hardware or DBMS changes
Perfective
• changes resulting from user requests

Preventative
• changes made to the software to make

it more maintainable

Fixing

Enhancing

16Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Distribution of maintenance effort

Software
adaption

(18%)

Fault repair
(17%)

Functionality
addition or

modification
(65%)

9

17Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

SM. Maintenance

a) Activities and issues of software maintenance
b) Types of software maintenance
c) Maintenance techniques
d) Standardization
e) Management of maintenance
d) Metrics

18Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Maintenance techniques

Impact analysis
Reverse engineering
Reengineering
• Refactoring

Legacy applications
Updating documentation

10

19Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Impact analysis

19% of defects emanated from requirements
phase, 52% from design, 7% from programming
[Weiss].

20Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Possible impacts - corrections
Requirements

Architecture

System code

Interface specs

Detailed design

Function code

Module (e.g., package) code

Requirements

Architecture

System code

Interface specs

Detailed design

Function code

Module (e.g., package) code

11

21Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Maintenance without reengineering

The Beginning Product Expansion Without Reengineering

Added
1/98

Added
7/99

Added
7/98

Added
1/99

22Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Maintenance with reengineering

The Beginning Product Reengineered Expansion

12

23Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Legacy system structure

Ideally, for distribution, there should be a clear
separation between the user interface, the
system services and the system data
management

In practice, these are usually intermingled in
older legacy systems

24Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Legacy system structure (2)

13

25Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Legacy applications
Continue to maintain
Discontinue maintenance and --
1. Replace

- buy replacement
- OR build replacement

• reverse engineer legacy system
• or develop new architecture
• possibly replace in phases

2. Incorporate as integral part of new application
- freeze maintenance

3. Encapsulate and use as server
- consider using Adapter design pattern

26Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Legacy system distribution

14

27Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Distribution options

The more that is distributed from the server to the
client, the higher the costs of architectural
evolution
The simplest distribution model is UI distribution
where only the user interface is implemented on
the server
The most complex option is where the server
simply provides data management and
application services are implemented on the
client

28Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Distribution option spectrum

15

29Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

22. Maintenance

a) Activities and issues of software maintenance
b) Types of software maintenance
c) Maintenance techniques
d) Standardization
e) Management of maintenance
d) Metrics

30Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

IEEE Standard 840-1994
1. Problem identification
1.1 Input 1.2 Process
1.3 Control 1.4 Output
1.5 Quality factors
1.6 Metrics

2. Analysis
2.1 Input
2.2 Process

2.2.1 Feasibility analysis
2.2.2 Detailed analysis

2.3-2.6 Control, Output,
Quality factors, Metrics.

3. Design
3.1-3.6 Input, Process, Control,
Output, Quality factors, Metrics.

4. Implementation
4.1 Input
4.2 Process

4.2.1 Coding and & testing
4.2.3 Risk analysis & review
4.2.4 Test-readiness review

4.3-4.6 Control, Output,
Quality factors, Metrics.

5. System test
5.1-5.6 Input, Process, Control,
Output, Quality factors, Metrics.

6. Acceptance test
6.1-6.6 Input, Process, Control,
Output, Quality factors, Metrics.

7. Delivery
7.1-7.6 Input, Process, Control,
Output, Quality factors, Metrics.

16

31Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Five Attributes of Each Maintenance Step
(IEEE)

1. Problem identification

2. Analysis

3. Design

4. Implementation

5. System test

6. Acceptance test

7. Delivery

Step Attributes

a. Input life cycle arti-facts for
this step

b. Process required for this
step

c. How the process is
controlled

d. Output life cycle artifacts
e. Process quality factors

involved
f. Metrics for this step

32Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

IEEE 1219-1992
Maintenance phase 1: Problem Identification

a. Input
•The Maintenance Request (MR)

b. Process

•Assign change number
•Classify by type and severity etc.
•Accept or reject change
•Make preliminary cost estimate
•Prioritize

c. Control
•Identify MR uniquely
•Enter MR into repository

d. Output
•Validated MR

e. Selected quality
factors •Clarity of the MR

•Correctness of the MR (e.g., type)

f. Selected metrics
•Number of omissions in the MR
•Number of MR submissions to date
•Number of duplicate MR's
•Time expected to confirm the problem

17

33Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

IEEE 1219-1992
Maintenance phase 4: Implementation

a. Input •Original source code
•Original project documentation
•Detailed design from previous phase

b. Process
•Make code changes and additions
•Perform unit tests
•Review readiness for system testing

c. Control
•Inspect code
•Verify

CM control of new code
Traceability of new code

d. Output
•Updated …

…software
…unit test reports
…user documents

e. Selected quality
factors

•Flexibility
•Traceability
•Comprehensibility
•Maintainability
•Reliability

f. Selected metrics
•Lines of code
•Error rate

34Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

22. Maintenance

a) Activities and issues of software maintenance
b) Types of software maintenance
c) Maintenance techniques
d) Standardization
e) Management of maintenance
d) Metrics

18

35Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

A Typical Maintenance Flow

Approved
M. R.’s

Modified source
& documentation

Rejected
MR’s

Proposed
M. R.’s

Written
MR’s

Marketing

Customer

Help desk

nominal
path

Current source
& documentation

Maintenance
engineer

Change control board

Maintenance
manager

Graphics reproduced with permission from Corel.

36Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Maintenance and patching

Help desk

1. Interface with customer

Complaints Marketing

Patch
(optional)

Execute
with
patch

Docu-
ment
patch

19

37Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Maintenance
and patching1. Get maintenance request

Test changesImplement

4. Change code and documentation

3. Plan changes

2. Approve changes

Assess
impact Coordinate

Update documentationRelease

Create
patch

Docu-
ment
patch

optional

Execute
with
patch

Remove patch

Document
patch removal

38Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

disadvantages

Keeps customers
satisfied in the
short run
Enables continued
operation and
testing without
repeated
prevalence of the
defect
Avoids masking
other defects
Enables test of fix

Duplicates work
• patch and final fix both

implemented
Sometimes never replaced
• proper fix deferred forever!

Complicates final fix
• must remove

Complicates
documentation process

advantages
Maintenance Patches

20

39Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Ranked Problems in Maintenance (Deklava)

1. Changing priorities
2. Testing methods
3. Performance

measurement
3. Incomplete or non-

existent system
documentation

5. Adapting to changing
business requirements

6. Backlog size

7. Measurement of
contributions

8. Low morale due to lack
of recognition or respect

9. Lack of personnel,
especially experienced

10. Lack of maintenance
methodology, standards,
procedures and tools . . .
. .

40Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Examples of Changing Priorities

Top priority . . .
. . . at release :

Make this most bug-free game on the market
• action: eliminate as many defects as possible

. . . two months after release:
Add more features than our leading
competitor
• action: add enhancements rapidly

. . . six months after release:
Reduce spiraling cost of maintenance
• action: eliminate most severe defects only

21

41Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

22. Maintenance

a) Activities and issues of software maintenance
b) Types of software maintenance
c) Maintenance techniques
d) Standardization
e) Management of maintenance
d) Metrics

42Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Maintenance Metrics

Number of lines of code under maintenance

Person-months to perform various maintenance

tasks

Defect count

22

43Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Goal Question Selected Corresponding Metrics
Note: The numbered metrics are from the IEEE.

Maximize customer
satisfaction

How many problems are
affecting the customer?

•(1) Fault density
•(30) Mean time to failure
•Break / fix ratio

[Number of defects introduced by maintenance actions] / [Number of defects
repaired]

How long does it take to
fix a problem?

•Fault closure
Average time required to correct a defect, from start of correction work.

•Fault open duration
Average time from defect detection to validated correction.

Where are the
bottlenecks?

•Staff utilization per task type:
Average person-months to (a) detect each defect and (b) repair each defect.

•Computer utilization
Average time / CPU time per defect.

Optimize effort
and schedule

Where are resources
being used?

Effort and time spent, per defect and per severity category …
o… planning
o… reproducing customer finding
o… reporting error
o… repairing
o… enhancing

Minimize defects
(continue focused
development-type

testing)

Where are defects most
likely to be found? •(13) Number of entries and exits per module

•(16) Cyclotomic complexity

Maintenance Metrics Classified by Goal

44Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Predicting Relative Maintenance Effort

0

10

20

30

40

50

60

70

80

90

Accounts
Received

Timesheet Sick day
recorder

Benefits
reporter

Module size as % of total l.o.c.

% non-commented l.o.c. in
module

Expect high
maintenance

costs

Expect low
maintenance

costs

Modules:

23

45Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Managing Maintenance
Example profile of “fixing”-type MR’s

0

100

200

300

400

500

600

700

800

1993 1994 1995 1996

MR's received
MR's completed
MR's cancelled
MR's open

46Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Profiles of Open Maintenance Requests

Ja
nuar

y
Feb

ru
ar

y
M

ar
ch

April

M
ay Ju
ne

Ju
ly

Augu
st

“Fixing”
MR’s

Enhancement
MR’s

weeks
open

5

10

E.g., in April, the average
enhancement MR had
been open for 8 weeks.

24

47Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Profiles of Open Maintenance Requests

Ja
nuar

y
Feb

ru
ar

y
M

ar
ch

April

M
ay Ju
ne

Ju
ly

Augu
st

“Fixing”
MR’s

Enhancement
MR’s

weeks
open

5

10

E.g., in April, the average
enhancement MR had
been open for 8 weeks.

48Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

SYSTEM COMPONENT

CONTROL STRUCTURE

SYSTEM COMPONENT

INFORMATION
STRUCTURE

SYSTEM COMPONENT

CODE DETAIL

SOURCE CODE

Effects on Maintainability of Source Code Properties

Taken from Oman [Om1]

. . . .

25

49Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Effects on Maintainability of
Source Code Properties

• statement formatting
-- affects a product’s
maintainability, (but more is
not necessarily better)

• vertical spacing
• horizontal spacing
• + intra-module
commenting -- usually,
more comments with the code
make a product more
maintainable

The maintainability of a product
is affected by this property.

“+” means that more of this
property usually makes an
application more maintainable;

“-” means that more of the
property usually makes an
application less maintainable.

SYSTEM COMPONENT

CONTROL STRUCTURE

SYSTEM COMPONENT

INFORMATION
STRUCTURE

SYSTEM COMPONENT

CODE DETAIL

SOURCE CODE Aspects of source code

Taken from Oman [Om1]

50Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

SYSTEM COMPONENT

CONTROL STRUCTURE

SYSTEM COMPONENT

INFORMATION
STRUCTURE

SYSTEM COMPONENT

CODE DETAIL

SOURCE CODEEffects on Maintainability of Source
Code Properties

+modularity
-complexity
+consistency
-nesting
-control
coupling
+encapsu-
lation
+module
re-use

-complexity
+use of
structured
constructs
-use of un-
conditional
branching
-nesting
+cohesion

-global data
types
-global data
structures
+data flow
consistency
+data type
consistency
-nesting
-I/O
complexity

-local data
types
-local data
structures
-span of
data
+data
initialized

+overall
program
formatting
+overall
program
commen-
ting
+module
separation
naming
symbol and
case

statement
formatting
vertical
spacing
horizontal
spacing
+intra-
module
commen-
ting

From Oman [Om1]

+modularity + means greater modularity usually makes an application more maintainable;
-span of data means that the greater the scope of data structures, the less maintainable.

Examples:

26

51Zoran Budimac, Univ. of Novi Sad. Parts adapted from Software Engineering: An Object-Oriented Perspective by E.Braude (Wiley 2001), with permission.

Examples - to do

Examples for all four types from case study (here
or at the end)

