
1

1

A case study in 
Test-Driven Development

The Huffman coding

M.Ganaj, L.Jubica

2

Agenda

The Huffman code
Red/Green/Refactor
Implementation
Statistics
Conclusions



2

3

The Huffman code

The encoding has 4 steps
1. Count the characters’ occurrences
2. Build the Huffman tree
3. Get the new binary representation for each 

character
4. Represent the text with the new codes

4

The Huffman code (Step 1)

Our plain text is “test_driven_development”

t e s d r v n _ l o m pi

3 5 1 2 1 1 2 2 2 1 1 1 1



3

5

The Huffman code (Step 2)
Build the Huffman tree 

Sort the table
Join the last two items in a node
Sort again

t es dr vn _lom i

3 51 21 1 22 2111

p

1

6

The Huffman code (Step 2)
Join the last two items in a node

t es dr vn _lom i

3 51 21 1 22 2111

p

1
2

Sort again
Join the last two items in a node

t es dr vn _lo i

3 51 21 1 22 211

mp

22



4

7

The Huffman code (Step 2)

t edr vn _li

3 521 1 22 21

mp

2

s o

22

t ed vn _l

3 52 22 21

mp

2

s o

2

r i

23

Sort again
Join the last two items in a node

Sort again
Join the last two items in a node

8

The Huffman code (Step 2)

ev

52

mp

2

s o

2

r i

2

d_

4

4

nl

3

t

3

Sort again
Join the last two items in a node

ed v_

52 22

mp

2

s o

2

r i

2

nl

34

t

3

Sort again
Join the last two items in a node



5

9

The Huffman code (Step 2)

e

5

s o

2

r i

2

d_

4

v

2

mp

2

44

nl

3

t

3

Sort again
Join the last two items in a node

10

The Huffman code (Step 2)

e

5

d_

4

v

2

mp

2

4

s o

2

r i

2

46

nl

3

t

3

Sort again
Join the last two items in a node



6

11

The Huffman code (Step 2)

e

5

d_

4

v

2

mp

2

4

s o

2

r i

2

4 6

nl

3

t

3

8

Sort again
Join the last two items in a node

12

The Huffman code (Step 2)

e

5

s o

2

r i

2

4 6

nl

3

t

3

d_

4

v

2

mp

2

4

89

Sort again
Join the last two items in a node



7

13

The Huffman code (Step 2)

6

nl

3

t

3

d_

4

v

2

mp

2

4

8

e

5

s o

2

r i

2

4

9

14

Sort again
Join the last two items in a node

14

The Huffman code (Step 2)

e

5

s o

2

r i

2

4

9

6

nl

3

t

3

d_

4

v

2

mp

2

4

8

14

23Sort again
Join the last 
two items in a 
node



8

15

Red/Green/Refactor

Create a list of tests
Implement a few just to see the tests fail 
(Red)
Implement just to pass the test (Green)
Refactor the code (Refactor)
Run the tests to see you did not break 
anything

16

Implementation
List of tests

1. Create the Huffman class verify it can be 
created

2. Set the plain text, verify the class returns it
3. Verify the sum of frequences of all 

characters to be 23 
4. Verify the frequency table is :

t e s d r v n _ l o m pi

3 5 1 2 1 1 2 2 2 1 1 1 1



9

17

Implementation (cont.)
Test 1 
<Test()> Public Sub TestCreation ()

Dim cHuffman as new HuffmanCode
Assert.AreNotSame(Nothing, cHuffman)

End Sub

Test 2

<Test()> Public Sub TestPassText()
Dim cHuffman as new HuffmanCode
cHuffman.plainText="test_driven_development" 

Assert.AreEqual(cHuffman.plainText,"test_driven_development")

End Sub

18

Red



10

19

Implementation (cont.)

Implement Class

Public Class HuffmanCode
‘Just pass the test

Public Shared plainText As String

End Class

20

Green



11

21

Refactoring
Implement Class

Public Class HuffmanCode
‘Just pass the test

Private Shared plainText As String

Public Shared Sub setPlainText(ByVal Text As String)
plainText = Text

End Sub
Public Shared Function getPlainText() As String

getPlainText = plainText
End Function

End Class

22

Test 3

<Test()> Public Sub TestSumFrequency()

Dim sumFreq As Integer
Dim i As Integer

HuffmanCode.generateFrequenceTable()

sumFreq = 0
For i = 0 To HuffmanCode.frequencyTable.Length - 1

sumFreq = sumFreq + HuffmanCode.frequencyTable(i).Frequency
Next
Assert.AreEqual(HuffmanCode.getPlainText.Length, sumFreq)

End Sub



12

23

Oh Red Again!!

24

Public Class treeNode
Public Frequency As Integer

End class

Public Class HuffmanCode
‘Just pass the test

Private Shared plainText As String
Public Shared frequencyTable() As treeNode

Public Shared Sub setPlainText(ByVal Text As String)
plainText = Text

End Sub

Public Shared Function getPlainText() As String
getPlainText = plainText

End Function

Public Shared Sub generateFrequenceTable()
‘applied to the plaintext
end sub

End Class

Focus on this 
method to pass 
the test



13

25

Public Shared Sub generateFrequenceTable()
Dim tempresult(-1) As treeNode

Dim i As Integer
Dim j As Integer
Dim found As Boolean
For i = 0 To plainText.Length - 1

found = False
For j = 0 To tempresult.Length - 1

If Not IsNothing(tempresult(j)) Then
If plainText.Chars(i).ToString = tempresult(j).Character Then

found = True
tempresult(j).Frequency += 1

End If
End If

Next
If Not found Then

ReDim Preserve tempresult(tempresult.Length)
tempresult(tempresult.Length - 1) = New treeNode(plainText.Chars(i).ToString, 1)

End If
Next

frequencyTable = tempresult

End Sub

Public Class treeNode
Public Character As String
Public Frequency As Integer
End class

Public Class treeNode
Public Sub New(ByVal Character As String, 
ByVal Frequency As Integer)

Me.Character = character
Me.Frequency = Frequency

End Sub

26

Tests passed, next test…



14

27

Test list
Create the Huffman class verify it can be 
created………done
Set the plain text, verify the class returns 
it……….done 
Verify the sum of frequences of all 
characters to be 23……..done
Verify the frequency table is
t e s d r v n _ l o m pi

3 5 1 2 1 1 2 2 2 1 1 1 1

28

Test 4

<Test()> Public Sub TestStringFrequency()
Dim i As Integer
Dim j As Integer
Dim FrequencyTable() As treeNode
FrequencyTable = cHuffman.frequencyTable
Assert.AreEqual(VerifyTable.Length, FrequencyTable.Length)
For i = 0 To VerifyTable.Length - 1

For j = 0 To FrequencyTable.Length - 1
If VerifyTable(i).Character = FrequencyTable(j).Character Then

Assert.AreEqual(FrequencyTable(j).Frequency,VerifyTable(i).Frequency)
End If

Next
Next

End Sub



15

29

Green

30

Some more tests

5. Verify the tree created is not nothing
6. Verify the character with 100% frequency is 

coded with 1 bit
7. Verify the coding of “p” is 10011 
8. Verify the decoding of “10011” is “p”
9. Verify the text coding of 

”test_driven_development” is the known value
10. Verify the text decoding of the known value is 

”test_driven_development”



16

31

All Green

32

Statistics

9 test cases
81 lines of code for the test
141 lines for the implementation
4 hours for the whole process



17

33

Conclusions

A little bit strange at the beginning
What to test?? Which first?? How to test?
May be the TDD must be introduced early 
in the programmer education 
Anyway at the end you have a very good 
feeling about your software

34

To whom it may concern:

THANK YOU !


