
1

Humboldt University Berlin, University of Novi Sad, University of Plovdiv,
University of Skopje, University of Belgrade, University of Niš, University of Kragujevac

DAAD Project
“Joint Course on Software Engineering”

Version: Sept. 4, 2004

Topic A2
Service Oriented Architecture

2DAAD project „Joint Course on Software Engineering“ ©

A2. Service Oriented Architecture (SOA)

a) Definition

b) History

c) SOA vs. Distributed Objects

d) Web Services and Protocols

e) New Developments

f) Resources

2

3DAAD project „Joint Course on Software Engineering“ ©

What is SOA? (1)

« A design style for developing cross-patform, standards-
oriented, loosely coupled distributed-application
environments »
« An architectural style that promotes business process
orchestration of enterprise-level business services »
« SOA is an architectural style whose goal is to achieve
loose coupling among interacting software agents »
« An SOA is a distributed software model »
« SOA presents the big picture of what you can do with
Web services »
« … an important new paradigm that supports
modularized implementation of solutions within a middle
tier »
« SOA is about unleashing the shared business services
that are currently bound up in monolithic and often isolated
applications »

4DAAD project „Joint Course on Software Engineering“ ©

What is SOA (2)

“A means of developing distributed systems where the
components are stand-alone services”
“An open, agile, extensible, federated, composable
architecture comprised of autonomous, QoS capable,
vendor diverse, interoperable, discoverable, and
potentially reusable services, implemented as Web
services”
“SOA can establish an abstraction of business logic and
technology, resulting in a loose coupling between these
domains.”
“SOA is an evolution of past platforms, preserving
successful characteristics of traditional architectures…”

3

5DAAD project „Joint Course on Software Engineering“ ©

SOA – The big picture

6DAAD project „Joint Course on Software Engineering“ ©

SOA – benefits and disadvantages
+ Provides location independence: Services need not be associated with a particular

system on a particular network
+ Protocol-independent communication framework renders code reusability
+ Offers better adaptability and faster response rate to changing business requirements
+ Allows easier application development, run-time deployment and better service

management
+ Loosely coupled system architecture allows easy integration by composition of

applications, processes, or more complex services from other less complex services
+ Provides authentication and authorization of Service consumers, and all security

functionality via Services interfaces rather than tightly-coupled mechanisms
+ Allows service consumers (ex. Web Services) to find and connect to available Services

dynamically

- For a stable or homogeneous enterprise IT environment, SOA may not be
important or cost effective to implement

- If an organization is not offering software functionality as services to external
parties or not using external services, which require flexibility and standard-
based accessibility, SOA may not be useful.

- SOA is not desirable in case of real time requirements because SOA relies
on loosely coupled asynchronous communication.

4

7DAAD project „Joint Course on Software Engineering“ ©

A2. Service Oriented Architecture (SOA)

a) Definition

b) History

c) SOA vs. Distributed Objects

d) Web Services and Protocols

e) New Developments

f) Resources

8DAAD project „Joint Course on Software Engineering“ ©

The Software Bus

SOA is not new in principle, the idea of a software bus
existed for a long time (almost 30 years)
Attempts to create the software bus: DCE, COM/DCOM,
CORBA, J2EE, .NET
The main problem: tight coupling, despite continuos
improvements

5

9DAAD project „Joint Course on Software Engineering“ ©

A2. Service Oriented Architecture (SOA)

a) Defintion

b) History

c) SOA vs. Distributed Objects

d) Web Services and Protocols

e) New Developments

f) Resources

10DAAD project „Joint Course on Software Engineering“ ©

Tight coupling vs. Loose coupling

Self describing, explicitBy prior agreement, implicitContracts

DistributedCentrally managedCoordination

AdaptivePlannedBehaviour

Adaptability, InteroperabilityCorrectness, EfficiencyMotivation

LazyEagerEvaluation(Sequencing)

BrokersDirectInteraction

Higher orderFirst-orderSchema

Pub & SubPoint to pointCommunication

Self describingBy prior agreementOntology

DynamicStaticTyping

AsynchronousSynchronousSynchronization

Document PassingProcedure callMessaging

Fixed verbsClass and MethodsInterface

Loose couplingTight coupling

6

11DAAD project „Joint Course on Software Engineering“ ©

A2. Service Oriented Architecture (SOA)

a) Defintion

b) History

c) SOA vs. Distributed Objects

d) Web Services and Protocols

e) New Developments

f) Resources

12DAAD project „Joint Course on Software Engineering“ ©

What are Web Services?
Basically, Web Services are a means of allowing
applications to talk to one another using XML (Extensible
Markup Language) messages sent via the standard Web
protocol of HTTP (HyperText Transfer Protocol is used to
request Web pages from Web servers, and combines it
with XML to pass structured information back and forth
between computers).
distributed system
in which applications communicate with applications
via XML messages
using 3 standard protocols: SOAP(messaging),
WSDL(description), UDDI(discovery)

7

13DAAD project „Joint Course on Software Engineering“ ©

SOAP

Defines:
• Message construction (envelope, header, body)
• Message exchange patterns and how to define more
• Processing model for messages: originator,

intermediaries, destination
• Extensibility mechanism and mustUnderstand attribute
• Fault system
• Binding to transport protocols (HTTP, SMTP, etc.)

14DAAD project „Joint Course on Software Engineering“ ©

WSDL

A WSDL document describes a service:
message(s) accepted and emitted: abstract description
(XML Schema)
network protocol(s) and message format(s)
operation: exchange of messages
port type: collection of operations
port: implementation of a port type
service: collection of ports
N.B. operations are atomic response+request pairs, not
transition networks or state machines. Rules of operation
are not captured completely.
Controversy over general vs specific interfaces.

8

15DAAD project „Joint Course on Software Engineering“ ©

Structure of a WSDL specification

Intro

Abstract interface

Concrete
implementation

WSDL service definition

XML namespace declarations

Type declarations
Interface declarations
Message declarations

Binding declarat ions
Endpoint declarations

16DAAD project „Joint Course on Software Engineering“ ©

A WSDL description fragment (1)

Define some of the types used. Assume that the namespace prefixes ‘ws’ refers to
the namespace URI for XML schemas and the namespace prefix associated with
this definition is weathns.

<types>
 <xs: schema targetNameSpace = “http ://.../weathns”
 xmlns: weathns = “http://…/weathns” >
 <xs:element name = “PlaceAndDate” type = “pdrec” />
 <xs:element name = “MaxMinTem p” type = “mmtrec” />
 <xs: element name = “InDataFault ” type = “errmess” />

 <xs: complexType name = “pdrec”
 <xs: sequen ce>
 <xs:element name = “tow n” type = “xs:string”/>
 <xs:element name = “country ” type = “xs:string”/>
 <xs:element name = “day” type = “xs:date” />
 </xs:complexTyp e>

 Definitions of MaxMinType and InDataFault here
 </schema>
</types>

9

17DAAD project „Joint Course on Software Engineering“ ©

A WSDL description fragment (2)

Now define the inte rface and its operations. In this case, there is only a single
operation to return maximum and minimum temperatures

<interface name = “weatherInfo” >
 <operation name = “getMaxMinTemps” pattern = “wsdlns: in-out”>
 <input messageLabel = “In” element = “weathns: PlaceAndDate” />
 <output messageLabel = “Out” element = “weathns:MaxMinTemp” />
 <outfault messageLabel = “Out” element = “weathns:InDataFault” />
</operation>
</interface>

18DAAD project „Joint Course on Software Engineering“ ©

UDDI

Universal description, discovery, and integration
registry system
business entities, business services, specifications,
service types
standard taxonomies to describe businesses, services,
and service types
“The UDDI Business Registry is intended to serve as a
global, all-inclusive listing of businesses and their
services. The UDDI Business Registry does not contain
detailed specifications about business services. It points to
other sources that contain the service specifications.”
private registries also possible
UDDI began as ad hoc consortium; now housed at OASIS.

10

19DAAD project „Joint Course on Software Engineering“ ©

A2. Service Oriented Architecture (SOA)

a) Defintion

b) History

c) SOA vs. Distributed Objects

d) Web Services and Protocols

e) New Developments

f) Resources

20DAAD project „Joint Course on Software Engineering“ ©

Service oriented software engineering

Existing approaches to software engineering have
to evolve to reflect the service-oriented approach
to software development
• Service engineering. The development of dependable,

reusable services
- Software development for reuse

• Software development with services. The development
of dependable software where services are the
fundamental components

- Software development with reuse

11

21DAAD project „Joint Course on Software Engineering“ ©

Services as reusable components

A service can be defined as:
• A loosely-coupled, reusable software component that

encapsulates discrete functionality which may be
distributed and programmatically accessed. A web
service is a service that is accessed using standard
Internet and XML-based protocols

A critical distinction between a service and a
component as defined in CBSE is that services
are independent
• Services do not have a ‘requires’ interface
• Services rely on message-based communication with

messages expressed in XML

22DAAD project „Joint Course on Software Engineering“ ©

Service engineering

The process of developing services for reuse in
service-oriented applications
The service has to be designed as a reusable
abstraction that can be used in different systems
Involves
• Service candidate identification
• Service design
• Service implementation

12

23DAAD project „Joint Course on Software Engineering“ ©

The service engineering process

Service design
Service

candidate
identif ication

Service
implementat ion
and deployment

Service
requirements

Service inter face
specificat ion

Validated and
deployed service

24DAAD project „Joint Course on Software Engineering“ ©

Software development with services

Existing services are composed and configured to
create new composite services and applications
The basis for service composition is often a
workflow
• Workflows are logical sequences of activities that,

together, model a coherent business process
• For example, provide a travel reservation services

which allows flights, car hire and hotel bookings to be
coordinated

13

25DAAD project „Joint Course on Software Engineering“ ©

Workflow design and implementation

WS-BPEL is an XML-standard for workflow
specification. However, WS-BPEL descriptions
are long and unreadable
Graphical workflow notations, such as BPMN, are
more readable and WS-BPEL can be generated
from them
In inter-organisational systems, separate
workflows are created for each organisation and
linked through message exchange

26DAAD project „Joint Course on Software Engineering“ ©

Interacting workflows

Request
processor

Setup job
parameters

Download
data

Start
computation

Store
results

Report
complet ion

Restart

Fail

Check
Availability

Allocate
resources

Initialise Compute

Return
results

OK

No processor

OK

14

27DAAD project „Joint Course on Software Engineering“ ©

Service testing

Testing is intended to find defects and
demonstrate that a system meets its functional
and non-functional requirements
Service testing is difficult as (external) services
are ‘black-boxes’. Testing techniques that rely on
the program source code cannot be used

28DAAD project „Joint Course on Software Engineering“ ©

Service testing problems

External services may be modified by the service provider
thus invalidating tests which have been completed
Dynamic binding means that the service used in an
application may vary - the application tests are not,
therefore, reliable
The non-functional behaviour of the service is
unpredictable because it depends on load
If services have to be paid for as used, testing a service
may be expensive
It may be difficult to invoke compensating actions in
external services as these may rely on the failure of other
services which cannot be simulated

15

29DAAD project „Joint Course on Software Engineering“ ©

Service-Oriented Architecture Implementation
Framework

Service-Oriented Architecture Implementation
Framework (SOAIF) provides the run-time
deployment infrastructure for SOA across the
network by incorporating all the software required
to develop, deploy, secure, manage, and extend
service-oriented processes and solutions.

30DAAD project „Joint Course on Software Engineering“ ©

SOAIF

16

31DAAD project „Joint Course on Software Engineering“ ©

A2. Service Oriented Architecture (SOA)

a) Defintion

b) History

c) SOA vs. Distributed Objects

d) Web Services and Protocols

e) New Developments

f) Resources

32DAAD project „Joint Course on Software Engineering“ ©

References

http://www.w3.org/2002/ws - Web Services
http://www.sys-con.com/webservices/archives - online
journal « Web Services »
Jeff Hanson, Coarse-grained Interfaces Enable Service
Composition in SOA, JavaOne, August 29, 2003
ZapThink White Paper, The Complete Vision of Service-
Oriented Enterprise Management, December 2003
Jason Bloomberg, The SOA Implementation Framework,
http://www.zapthink.com, April 2004
Jason Bloomberg, When Not to Use an SOA,
http://www.zapthink.com
IBM White Paper, New to SOA and Web Services,
http://www.DeveloperWorks.com

17

33DAAD project „Joint Course on Software Engineering“ ©

Resources (2)

Thomas Earl: “Service-Oriented Architecture.
Concepts, technology, and Design”, Prentice Hall,
2005, ISBN 0-13-185858-0
Thomas Earl: “Service-Oriented Architecture. A
Field Guide to Integrating XML and Web
Services”, Prentice Hall, 2004, ISBN 0-13-
142898-5
Ian Sommerville: “Software Engineering”, 8th

edition, Addison-Wesley, 2006, ISBN 0321313798

