Towards a Model of Provenance and User Views in Scientific Workflows

Shirley Cohen **Sarah Cohen-Boulakia** Susan Davidson

University of Pennsylvania

Cyberinfrastructure for Phylogenetic RESearch

DILS'06 July, 22nd

Biologist's workspace 2

Scientific Analysis

- Explosion of biological data, must be analyzed to create knowledge
- Scientific analysis is complex
- Reproducing, interpreting results depends on the provenance of the data (how, where, who...)
- Workflow systems
 - Support scientists in their analysis
 - **Trace** the data used / generated at each step
 - Are heterogeneous
 - Different graph-based models
 - Different technologies

➔ Need a generic model of provenance

Provenance

- Provenance is an increasingly important topic
 - specialized workshops, survey papers...
- Models for data provenance exist in the database community
 - E.g. [Buneman *et al.*,01], [Bhagwat *et al.*,04], [Widom *et al.*,06]
- However, several features of scientific workflows are not addressed
 - Data are derived by chaining and composing analytical tools
 - Steps are black boxes
 - Different views of a given workflow (sub-steps) may be considered
 - Model of provenance for scientific workflows must incorporate these features

Motivation

• Case study: Tree Inference

Model for provenance and user views

Querying provenance

Conclusion

Tree Inference Workflow

- Designed in the context of the CIPRES project
- Represents how phylogeneticists analyze data
- Terminology
 - Nodes are step-classes (static)
 - Edges capture the flow of data between step-classes
 Loops are possible
 - An execution of a workflow generates a partial order of steps (dynamic)
 - Instances of step classes
 - Each step has **input** and **output** data

Tree Inference Workflow, cont.

- A step-class may itself be a workflow
- Users may zoom-in to the boxes
 - Kepler, myGrid...
- Different user views can be considered
 - Am I allowed to zoom in S4?

Querying Provenance

- From what **immediate data products** did this tree originate?
- What are all the data products which have been used to produce this tree?
- What **step** produced this tree?
- What **sequence of steps** produced this tree?

Data vs step provenanceImmediate vs deep provenance

Motivation

Case study: Tree Inference

Model for provenance and user views

Querying provenance

Conclusion

Model of Provenance: Logs

- A log is a sequence of entries
 - Input(sid,iid,ts) sid takes iid as input at time ts
 - Output(sid,did,ts) sid produces did at time ts
- o Immediate provenance
 - All the data and steps directly used to produce did ImmProv(did,sid,iid):- Input(sid,iid,tsi) ^

 $Output(sid,did,tso) \land tsi \leq tso$

Input

SID IID TSI

Imm**D**Prov and Imm**S**Prov are also defined

S1 I1 Output S1 I2 SID DID TSO S2 S1 2 Each input/output S2 $\mathbf{O1}$ 4 data is stored!

Imm. Provenance of O1

ImmDProv: D

DILS'06 July, 22nd ImmSProv: S2

Deep Provenance

Recursive definition

 Deep Data provenance (D): DProv(did, iid):- ImmProv(did,_, iid)
 DProv(did, iid):- ImmProv(did,_, x) ∧ DProv(x, iid)

Deep Step provenance (S):
 SProv(did, sid):- ImmProv(did, sid,_)
 SProv(did, sid):- ImmProv(did,_, x) ^ Sprov(x,sid)

DProv for O1: [{D}, {I1, I2}] SProv for O1: [{S2}, {S1}]

Composition and User Views

• What is the immediate data provenance of O4?

- If I can zoom into S4 → O4c
- Otherwise \rightarrow O3
- UserView(U): set of the lowest level step classes that U is entitled to see.
- Ordering on user views: $U2 >_u U1$

U2 is finer than U1 (sees provenance in more detail)

User Views

• What are User views?

- Level of **detail** the user wishes to track
- Permissions given to the user
- Ability of the user to see / know the sub-steps (distributed computation)
- Similar to **checkpoints** in logs

• Why use User Views?

- Throw away unimportant intermediate results
- **Reduce** the amount of work to be redone

→ Storage efficiency

Reasoning with User Views

- Logging occurs at lowest level steps
- Reasoning uses information from
 - Workflow: Step-classes containment and user views
 - Cinput(sid,idid,tsi), Coutput(sid,idid,tso) calculated from log
- Immediate user-provenance
 - ImmUserProv(u,did,sid,idid):- Cinput(sid,idid,tsi) ∧ → ImmUserSProv
 Coutput(sid,did,tso) ∧ tsi≤ tso ∧ userView(u,sid)

CInput COutput Scc Sc SID IDID TSI SID DID TSO (black box) O1**S1** S2 I1 S1 T1 1 S1 D 2 **U2 S2** 01 4 Sc 11 12 0253 Sc 01 4 Scc **T1** 1 U3 (admin) Scc 01 4 **S**3 12 1 **S**3 02 5 Scc 12 1

S2

ImmUserDProv for O1 viewed by U2: ${I1}$

ImmUserDProv for O1 viewed by U3: {D}

User Deep provenance is analogously defined

02

Scc

3

D

5

→ ImmUser**D**Prov

Reasoning with User Views (cont.)

• A finer **user view** allows

- more data and steps to be seen
- more precise reasoning about data provenance

o Lemma

Given a data object did and two user views u1 and u2 such that u1 $<_u$ u2 and *did* is *visible* in *u1*. Then

Prov-visible(u1,u1,did) \supseteq **Prov-visible(u1,u2,did)**

- ➔ Different granularity levels of provenance
- ➔ Storage efficiency

Motivation

o Tree Inference use case

• Model for provenance

Ouerying Provenance

Conclusion

Querying Provenance

- From what direct data products did this tree originate? ImmUserDProv (U1,O4): O3 ImmUserDProv (U2,O4): O4c
- What are all the data products which have been used to produce this tree?

userDProv (U1,O4): O3,O2,O1,G userDProv (U2,O4): O4c,O4b,O4a,O3,O2,O1,G

 What sequence of steps produced this tree? userSProv (U1,O4): S4,S3,S2,S1 userSProv (U2,O4): S4d,S4c,S4b,S4a,S3,S2,S1

Conclusion

Model of provenance

- Based on study of user requirements (Tree Inference Workflow)
- Uses generic and minimal information
 - Based on careful studies of workflow systems (Kepler, MyGrid, Chimera)
- Definitions include
 - Data and Step provenance
 - Immediate and Deep provenance
- User Views
 - Multi-granularity levels of provenance
 - Only visible and necessary data are kept
 - → Efficiency in storage
- Model is rich enough to answer the collected queries

Ongoing Work

- Experiment with the expressiveness of the language
 - Queries over concurrent and partial executions
 - Use an object-oriented data model (JDBC/Oracle)
- **Implement** the model (efficiently)
 - Experiment with storage models
 - Collect real scientific logging information
 - Study use within in real workflow system
 Collaboration with the Kepler group

Acknowledgements

• Kepler Group

- Shawn Bowers
- Bertram Ludascher
- Timothy McPhillips
- Biologists from the CIPRES project
- Members from the Database group, University of Pennsylvania
- This work is supported by NSF grants IIS0513778 and IIS0415810