
An extensible light-weight XML-based monitoring system for sequence databases

Dieter Van de Craen¹ Frank Neven¹ Kerstin Koch¹

¹Hasselt University and Transnational University of Limburg

22 July 2006

Motivation

Question: Is there a gene with high similarity to my sequence ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation

Existing Solutions

- Alerting Systems
 - BioMail, Jade, Science Direct: literature
 - PubCrawler: PubMed, Genbank
- XML filtering systems
 - XFilter, YFilter, XMLTK: no full XPath

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Monitoring System

Goals

- Iight-weight: locally installed
- extensible: XML/XPath-based
- user-friendly: web-interface
- efficient

Outline

- Introduction to XML and XPath
- System Overview
- 4 Evaluation
 - Brute Force
 - XML Streaming
 - Query Containment
- 5 Experiments
- Incremental Maintenance

Conclusion

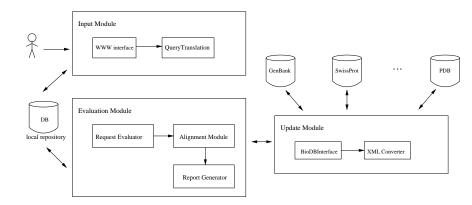
XML and XPath

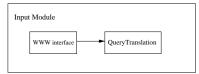
- eXtensible Markup Language:
 - standard for data exchange on the Web,
 - XML formats for biological data: BSML, GO-XML,...

```
<Feature-table title="Features">
```

```
<Qualifier value="genomic DNA" value-type="mol_type"/>
```

```
</Feature-table>
```

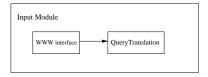

```
XPath:
```


. . .

. .

- XML pattern language for locating information in XML documents
- Examples:

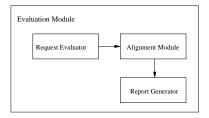
```
//Qualifier[@value-type="mol_type"]/@value
```



WWW Interface

Query Translator

Insert query concer	ning GenBank						
Fill in this form to	insert a new query. ?						
Sequence name :	MyTestSequence	Program :	Blast 💌				
E value :	10	Word Size :	11 -				
Size of Match :	20	Other Advance	d :	-			
Sequence							
Pattern : Fill in your query:							
	classi	fication 💌	contains 💌	fish			
AND	tissue	type 💌	🛛 🔤	brain			
AND 💌	▼ molec	ular type 🔄	equals 🛨	mRNA			
Add Query R	eset						



WWW Interface

Query Translator

Fill in this form to				
Second Contracts	MyTestSequence	Program :	Blast ¥1	
	pryrestsequence			
E value :		Word Size :	11 -	
Size of Match :	20	Other Advanced		
grægt greet grægt Læggrett cagaggt cocasact gat et ar	gggangriftignigi gatattittittigngto gacangtggggcatiog	ett ordinaaget vaa gat gegenget t	ynaroggal real e gl. ccarcoggil tao	
Cargeett cagaget	galtatitititigagi ga cangtggggcat cag	ett est es aget ess gat on opgge egit t agga est at agat ge	gaarggaterate georggaterate georgeorggatera	
gragt groot gragg taogrott cag aggt cocaract gat of ac	galtatitititigagi ga cangtggggcat cag	ett est es aget ess gat on opgge egit t agga est at agat ge	ynaroggal real e glocaroggit tao	
eragt groot grage targeet teagaggt cocasa et gat et ac Pattern :	ont aft titt gage on angligggg at ag	ett en en aget eau art en en agage egt t agge eet at agat ge heation <u>r</u>	gaarggaterate georggaterate georgeorggatera	nsh

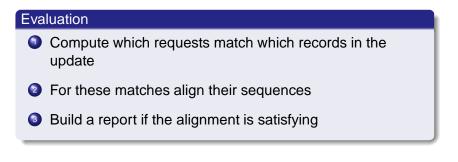
Blast								
ID	sequence	e Evalue	wordsize	Mate	chSize			
51	gcagtgcc.	10	11		20			
Mapping								
ID	variable	querytype	keywor	d	value			
51	v_51_1	contains	classifi ca	classifi cation				
51	v_51_2	contains tissue_type		brain				
51	v_51_3	equals	molecular_type		mRNA			
Query								
ID	userID	database	se formula					
51	8	genbank	v_51_1 & v_51_2 & v_51_3					

- Request Evaluator: evaluates metadata constraints of the requests on the update
- Alignment Module: alings every selected sequence with the corresponding source sequences
- Report Generator

System Overview

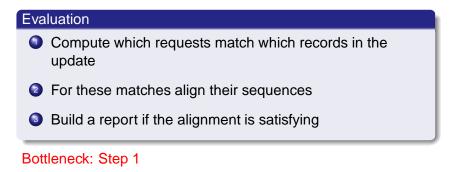
- BioDBInterface: checks availability of updates
- XML Converter

Outline


- Introduction to XML and XPath
- 3 System Overview
- 4 Evaluation
 - Brute Force
 - XML Streaming
 - Query Containment
- 5 Experiments
- Incremental Maintenance

Conclusion

Evaluation


Input: set of monitoring requests, set of records in the update

Evaluation

Input: set of monitoring requests, set of records in the update

Evaluation

Evaluation Strategies:

Brute force

2 XML Streaming

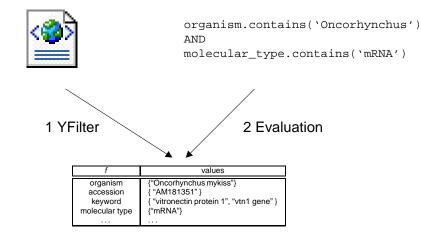
Query Containment

Brute Force

 Test every metadata constraint for every entry in the update

• Evaluation of the XPath expressions: Xalan

XML Streaming


XML stream query processing systems offer efficient XPath evaluation, but support a limited fragment

Idea: proceed in two steps:

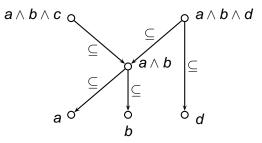
- retreive all the values for search fields for a record in the update using YFilter
 complex value representation
- evaluate the metadata constraints on this complex value representation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

XML Streaming

Query Containment

Idea: related topics of research will lead to related metadata constraints


⇒ query containment: a constraint $p \subseteq$ a constraint p' if a record *r* satisfies *p*, *r* will also satisfy p'Example:

organism.equals('Oncorhynchus mykiss') AND molecular_type.contains('mRNA')

⊆ organism.contains('Oncorhynchus')

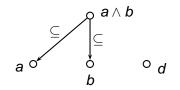
Query containment reduces to unsatisfiability of propositional logical formulas: coNP-complete \implies Limmat

Containment DAG

- node: set of equivalent constraints
- edge (n) → (n) if every contraint in *n* is contained in every constraint in *n*'

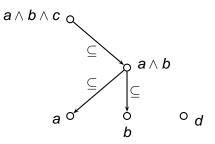
metadata constraints: *a*, *b*, *d*, $a \land b$, $a \land b \land c$ and $a \land b \land d$

Containment DAG

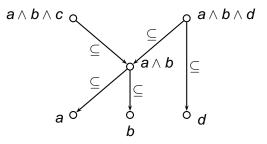

metadata constraints: *a*, *b*, *d*, $a \land b$, $a \land b \land c$ and $a \land b \land d$

a°°′d b

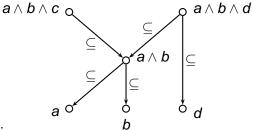
▲ロト▲聞ト▲国ト▲国ト 国 のQで


Containment DAG

metadata constraints: *a*, *b*, *d*, $a \land b$, $a \land b \land c$ and $a \land b \land d$

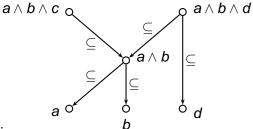

Containment DAG

metadata constraints: *a*, *b*, *d*, $a \land b$, $a \land b \land c$ and $a \land b \land d$



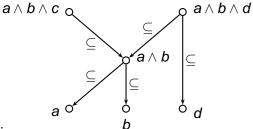
Containment DAG

metadata constraints: *a*, *b*, *d*, $a \land b$, $a \land b \land c$ and $a \land b \land d$


metadata constraints: *a*, *b*, *d*, $a \land b$, $a \land b \land c$ and $a \land b \land d$

Observations:

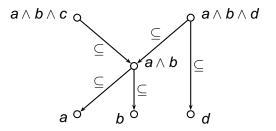
- only one constraint is evaluated for a set of equivalent constraints
- if a record r matches a constraint in node n then all constraints in descendant nodes of n match r
- if a record r does not match a constraint in node n then all constraints in ancestor nodes of n do not match r


metadata constraints: *a*, *b*, *d*, $a \land b$, $a \land b \land c$ and $a \land b \land d$

Observations:

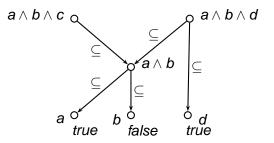
- only one constraint is evaluated for a set of equivalent constraints
- if a record r matches a constraint in node n then all constraints in descendant nodes of n match r
- if a record r does not match a constraint in node n then all constraints in ancestor nodes of n do not match r

metadata constraints: *a*, *b*, *d*, $a \land b$, $a \land b \land c$ and $a \land b \land d$

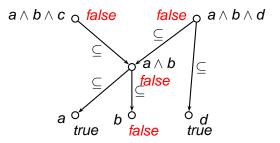


Observations:

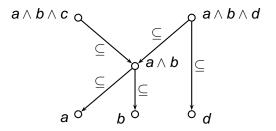
- only one constraint is evaluated for a set of equivalent constraints
- if a record r matches a constraint in node n then all constraints in descendant nodes of n match r
- if a record r does not match a constraint in node n then all constraints in ancestor nodes of n do not match r



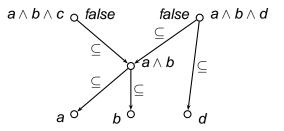
- false propagation: start at the sinks, if a node does not match a record propagate this to its ancestors
- true propagation: start at the sources, if a node matches a record propagate this to its descendants

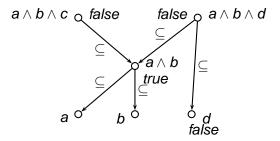


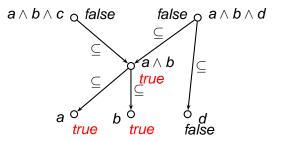
- false propagation: start at the sinks, if a node does not match a record propagate this to its ancestors
- true propagation: start at the sources, if a node matches a record propagate this to its descendants



Optimizations


- false propagation: start at the sinks, if a node does not match a record propagate this to its ancestors
- true propagation: start at the sources, if a node matches a record propagate this to its descendants


- false propagation: start at the sinks, if a node does not match a record propagate this to its ancestors
- true propagation: start at the sources, if a node matches a record propagate this to its descendants


- false propagation: start at the sinks, if a node does not match a record propagate this to its ancestors
- true propagation: start at the sources, if a node matches a record propagate this to its descendants

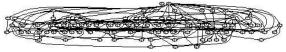
- false propagation: start at the sinks, if a node does not match a record propagate this to its ancestors
- true propagation: start at the sources, if a node matches a record propagate this to its descendants

- false propagation: start at the sinks, if a node does not match a record propagate this to its ancestors
- true propagation: start at the sources, if a node matches a record propagate this to its descendants

Outline

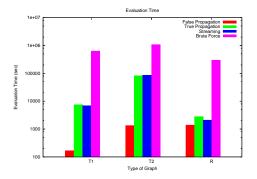
- Introduction to XML and XPath
- 3 System Overview
- 4 Evaluation
 - Brute Force
 - XML Streaming
 - Query Containment
- 5 Experiments
- Incremental Maintenance

Conclusion


Experiments

- 3 types of containment DAGs:
 - T1: for false propagation, sinks are the most general, upwards subsequently refi ned, only AND

T2: for true propagation, sources are the most restricted, downwards subsequently relaxed, only AND



R: created by random constraints, AND, OR, NOT, ()

- constraints created by extracting values out of updates
- number of requests: 1000 till 5000

Experimental Results: 5000 monitoring requests, update of 10⁵ records

	T1	T2	R
False propagation	0.5%	52%	38%
True propagation	99%	99%	93%
Streaming	100%	100%	100%
Brute force	100%	100%	100%

Figure: Average evaluation time in seconds

Figure: Average percentage of evaluated nodes in the DAG

Comparison with a relational database approach

Idea: parse the XML into a relational database and use the database mechanisms for querying

- Queries: 1000 random queries in CNF
 - # clauses: 1 to 5
 - # literals per clause: 1 to 3
 - constraints created by extracting values out of updates

experiments done with MySQL

Comparison with a relational database approach

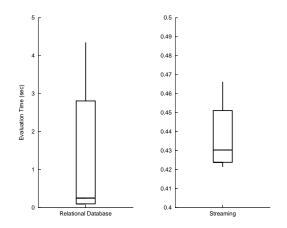


Figure: Boxplot of the evaluation time per query for 10⁵ records

・ロン ・聞 と ・ ヨ と ・ ヨ と

Comparison with a relational database approach

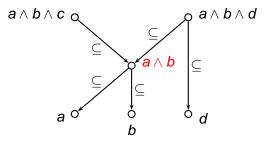
- Relational database
 - Loading the update into the DB: 655 sec
 - Evaluation: 1803 sec
 - Total: 2461 sec
- Streaming
 - Constructing complex values of the update: 230 sec

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

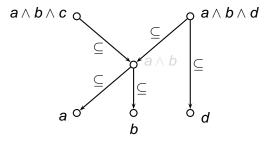
- Evaluation: 438 sec
- Total: 673 sec
- Advantages Streaming:
 - ullet \pm constant evaluation time per query
 - less overhead

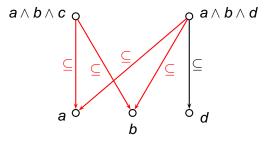
Outline

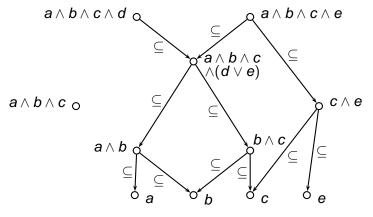
- Introduction to XML and XPath
- 3 System Overview
- 4 Evaluation
 - Brute Force
 - XML Streaming
 - Query Containment
- 5 Experiments
- Incremental Maintenance

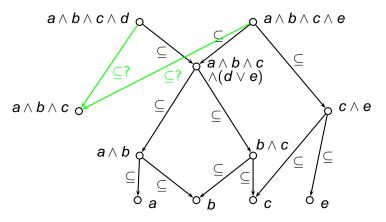

Conclusion

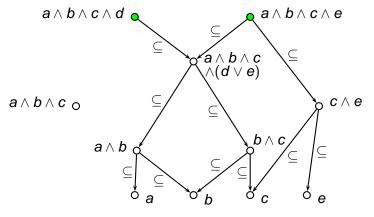
- containment DAG is independent of the updates
- maintained incrementally: deletion and insertion of monitor requests

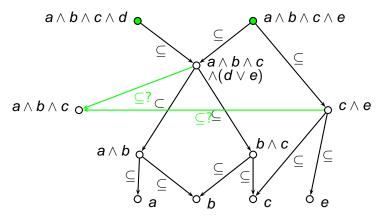

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

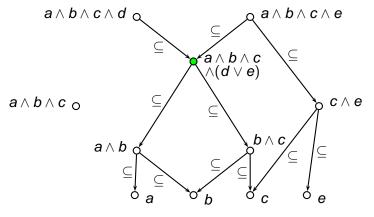

- Locate the corresponding node
- Remove the constraint, if the node is empty add edges from the parents to the children
- Deletion of $a \wedge b$

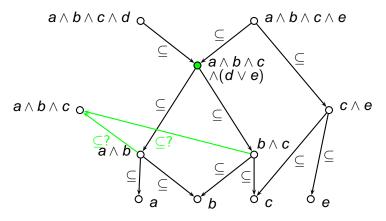

- Deletion
 - Locate the corresponding node
 - Remove the constraint, if the node is empty add edges from the parents to the children
 - Deletion of $a \wedge b$

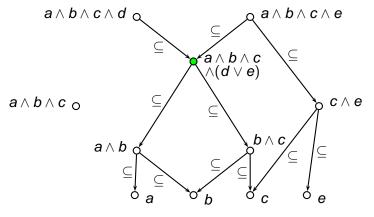

- Deletion
 - Locate the corresponding node
 - Remove the constraint, if the node is empty add edges from the parents to the children
 - Deletion of $a \wedge b$

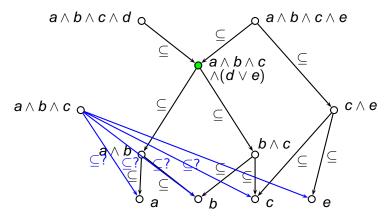

Incremental Maintenance

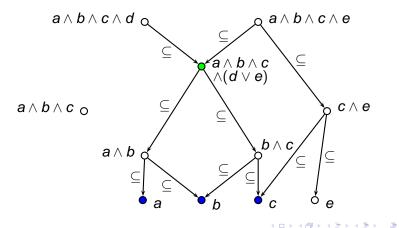

Incremental Maintenance

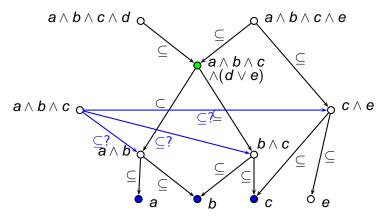

Incremental Maintenance


Incremental Maintenance


Incremental Maintenance


Incremental Maintenance


Incremental Maintenance


Incremental Maintenance

Incremental Maintenance

Incremental Maintenance

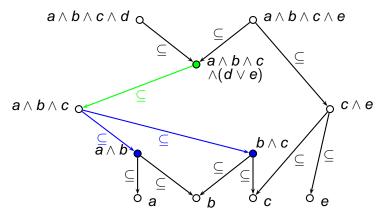
Incremental Maintenance

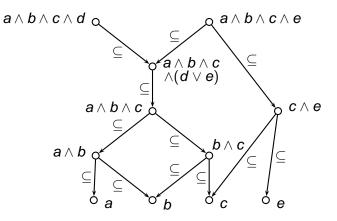
Insertion of a constraint a \langle b \langle c Idea: compute initial upper and lower borders, U and L, and gradually refine them

Incremental Maintenance



Incremental Maintenance


Insertion of a constraint a \langle b \langle c Idea: compute initial upper and lower borders, U and L, and gradually refine them


Incremental Maintenance

Incremental Maintenance

Incremental Maintenance

 expensive: add a constraint to a containment DAG containing

> 1250 nodes: 15 sec 2500 nodes: 30 sec 5000 nodes: 60 sec

- bottleneck: complexity of the containment check
- solution: transform constraints into DNF
 - \Rightarrow 25% increase in size

construction containment DAG with 5000 nodes: 60 sec

Conclusion

- Main Results
 - developed XSeqM, an extensible, light-weight monitoring system for biological databases
 - experimentally valited our evaluation method

- Future Work
 - Deploy the system
 - Test the system on real world data
 - Further optimize the false propagation method on containment DAGs of type R: OBDD